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In the context of Gross-Pitaevskii theory, we investigate the unconventional Bose-Einstein con-
densations in the two-species mixture with p-wave symmetry in the second band of a bipartite
optical lattice. A new imaginary-time propagation method is developed to numerically determine
the p-orbital condensation. Different from the single-species case, the two-species boson mixture
exhibits two non-equivalent complex condensates in the intraspecies-interaction-dominating regime,
exhibiting the vortex-antivortex lattice configuration in the charge and spin channels, respectively.
When the interspecies interaction is tuned across the SU(2) invariant point, the system undergoes
a quantum phase transition toward a checkerboard-like spin density wave state with a real-valued
condensate wavefunction. The influence of lattice asymmetry on the quantum phase transition is
addressed. Finally, we present a phase-sensitive measurement scheme for experimentally detecting
the UBEC in our model.

PACS numbers: 03.75.Nt, 03.75.Lm, 05.30.Jp, 05.30.Rt

I. INTRODUCTION

Unconventional condensate wavefunctions of paired
fermions are identified by nontrivial representations of ro-
tational symmetry, in contrast to the conventional coun-
terpart with vanishing relative orbital angular momen-
tum (OAM). Exploration of unconventional condensates
dates back to the investigations of the A- and B-phases of
the superfluid 3He [1–4] and later the spin-triplet pairing
in Sr2RuO4 [5–8], which are characterized by the forma-
tion of Cooper pairs with OAM of L = 1 and spin-triplet
of S = 1. High Tc cuprates are another celebrated exam-
ple whose pairing symmetry is dx2−y2 [9, 10].

Recently, considerable discoveries, both theoreti-
cal [11–25] and experimental [26–33], were reported on
the single-boson condensation in the metastable high or-
bital bands of an optical lattice. The wavefunctions of
this archetype of unconventional Bose-Einstein condensa-
tion (UBEC) are identified by the nontrivial representa-
tions of the lattice symmetry group, which oversteps the
physical scenario set by “no-node” theorem - an underly-
ing principle of low-temperature physics stating that the
many-body ground-state wavefunctions of Bose systems,
including the superfluid, Mott-insulating and supersolid
states, are necessarily positive-definite under general cir-
cumstances [18, 34]. In consequence, the wavefunctions
of UBECs can be rendered complex-valued, and thus
spontaneously break the time-reversal (TR) symmetry
[18], which constitutes a remarkable feature of UBEC. It
is anticipated that UBECs can sustain exotic phenom-
ena not seen in conventional BECs, such as the non-
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trivial ordering of OAM moment, BECs with nonzero
momentum, half-quantum vortex and the spin texture
of skyrmions [18]. It is also worth mentioning that the
OAM moment formation still survives when system en-
ters the Mott-insulating regime wherein the global U(1)
phase coherence of superfluidity is no longer retained [19].

The experimental realization of single-species BECs in
the second band, where the condensed atoms survive a
long lifetime before tunnel to the nearly empty lowest
band [28–32], has marked an important progress towards
the creation and manipulation of UBECs in ultracold
atoms. Depending on the lattice asymmetry, the time-
of-flight (TOF) measurement revealed signatures of both
real and complex condensates with p-wave symmetry and
a large scale spatial coherence. The complex wavefunc-
tions exhibit the configuration of a vortex-antivortex lat-
tice with nodal points at vortex cores as theoretically pre-
dicted. More recently, a matter-wave interference tech-
nique was employed to provide direct observations of the
phase information of the condensate and to identify the
spatial geometry of certain low energy excitations [32].
The realization of UBECs in even higher bands was also
reported [29, 30].

In this work, we present a theoretical study of the
UBEC in a two-species boson mixture where both species
are equally populated in the second band of a bipartite
optical lattice [28]. Our study initiates the search of new
types of UBECs enriched by coupling spin degrees of free-
dom with U(1) symmetry, TR symmetry and nontrivial
representations of the lattice symmetry groups. To de-
termine the wavefunction of the UBEC in the context of
Gross-Pitaevskii equation (GPE), we develop a numeri-
cal scheme which resorts to precluding the s-orbital com-
ponents from the condensate wavefunction during the
imaginary-time evolution of the full Hamiltonian. This
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scheme enables us to determine the phase diagram of
UBEC in a wide range of parameters corresponding to
the inter- and intraspecies interaction. We find that the
emergent phases of UBEC involve the px± ipy (complex-
valued) and px ± py (real-valued) types of orbital order,
which appear in different regimes of interaction that can
be described as a consequence of the interplay between
OAM and interaction energies, as will be discussed later.

This paper is organized as follows. The Sec. II, we
briefly account for the experimental setup of the bipar-
tite two-dimensional lattice potential used in our model,
including the symmetry analyses of the lattice configu-
ration. The structure of the single-particle dispersion of
the p-band is demonstrated. In Sec. III, the numerical
implementation of the modified imaginary-time propaga-
tion method is described, which, together with the Bloch
wave approximation, enables to solve the GPEs in high
bands. In Sec. IV, we explore the properties of UBECs
and phase transitions in the symmetric and asymmetric
lattices. Finally, a scheme for experimentally exploring
the formation of UBECs in our model is addressed in
Sec. V and conclusions are made in Sec. VI.

II. THE OPTICAL LATTICE AND BAND
SPECTRUM

We consider the two-species BEC in the first excited
orbital band of the bipartite optical lattice employed in
the experiments [28], where the unit cell consists of two
sites with different potential depths. The optical poten-
tial V (x, y) is described by

V (r) = −V0

4

∣∣η [(ez cosα+ ez sinα) eiklx

+ezεe
−iklx

]
+ eze

iθ
(
eikly + εe−ikly

)∣∣2 , (1)

where the unit vectors ez and ey constitutes the basis
of the light polarization; V0 is determined by the laser
power; kl = 2π/a0 is the laser wavevector; α is the po-
larization angle with respect to z-direction; ε is the re-
flection loss; the intensity and phase differences between
laser beams along the x- and y-directions are described
by η and θ, respectively. The symmetry analysis of the
lattice configuration and the subsequent band structure
calculations have already been presented in Ref. [19]. Be-
low we recap this analysis in detail to make the paper
self-contained.

For the ideal case with η = 1, ε = 1, and α = 0, the
lattice potential is simplified as

V (r) = −V0

(
cos2 klx+ cos2 kly

+2 cos klx cos kly cos θ
)
,

which possesses the tetragonal symmetry. Since θ con-
trols the relative depth of the double-well inside the unit
cell, tuning θ away from 90◦ results in the bipartite lat-

tice. When η < 1 and ε = 1, the lattice potential becomes

V (r) = −V0

(
η2 cos2 klx+ cos2 kly

+2η cos klx cos kly cos θ
)
,

which still possesses the reflection symmetries with re-
spect to both x and y-axes, but the point group symme-
try is reduced to the orthorhombic one. For the realistic
case with η < 1 and ε < 1, the orthorhombic symmetry is
broken such that in general no special point group sym-
metry survives. Nevertheless, the lattice asymmetry can
be partially restored at α0 = cos−1 ε, where the lattice
potential becomes

V (r) = −V0

4

{
(1 + η2)(1 + ε2) + 2ε2η2 cos 2klx

+2ε2η2 cos 2kly

+4εη cos 2klx
[
ε cos(kly − θ) + cos(kly + θ)

]}
and the reflection symmetry with respect to the y-axis is
retrieved. Therefore we call the case of α with α 6= α0

as “asymmetric” and that of α = α0 as “symmetric”,
respectively. The lattice structure with the experimental
parameters V0 = 6.2Er, η = 0.95, θ = 95.4◦, ε = 0.81,
and α = π/5 is shown in Fig. 1 (a).
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FIG. 1. (a) The double-well optical lattice with the experi-
ment parameters V0 = 6.2Er, η = 0.95, θ = 95.4◦, ε = 0.81,
and α = π/5. The white dashed line illustrates the half wave-
length of laser a0 and

√
2a0 is the lattice constant. The A

and B sublattice sites are denoted in (a). (b) The energy
spectra of the second band, whose energy minima are located
at K1 = (π/2a0, π/2a0) and K2 = (−π/2a0, π/2a0). (c) and
(d) are the density profiles (upper panel) and phase profiles
(bottom panel) for non-interacting gas for K1 and K2, re-
spectively.

The Bloch-wave band structure of the Hamiltonian
H0 = −~2∇2/2M + V (r) can be calculated based on
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the plane-waves basis. The reciprocal lattice vectors are
defined as Gm,n = mb1 +nb2 with b1,2 = (±π/a0, π/a0)
where a0 is a half wavelength of the laser. The diagonal
matrix elements are

〈k + Gm,n|H0|k + Gm,n〉 = Er

×

{[
a0kx
π

+ (m− n)

]2

+

[
a0ky
π

+ (m+ n)

]2
}

(2)

where k is the quasi-momentum in the first Brillouin
zone, and the off-diagonal matrix elements are

〈k|V |k + G∓1,0〉 = −V0

4
εη(e±iθ + cosαe∓iθ),

〈k|V |k + G0,±1〉 = −V0

4
η(ε2e±iθ + cosαe∓iθ),

〈k|V |k + G∓1,±1〉 = −V0

4
η2ε cosα,

〈k|V |k + G∓1,∓1〉 = −V0

4
ε.

(3)

The energy spectrum of the second band of the optical
lattice, Eq. (1), is shown in Fig. 1 (b). Several obser-
vations are in order. Firstly, The energy minima are
located at K1,2 ≡ b1,2/2 with the corresponding wave-
functions ψK1

and ψK2
. For the symmetric lattice, ψK1

and ψK2
are degenerate due to reflection symmetry, while

for the asymmetric lattice, the degeneracy is lifted. Sec-
ondly, there are four points in the Brillouin zone (BZ),
namely, the zero center O, the high symmetry point X,
(π/a0, π/a0), and K1,2, which are TR invariant because
their opposite wavevectors are equivalent to themselves
up to reciprocal lattice vectors. As a result, their Bloch
wavefunctions are real, in other words, they are stand-
ing waves instead of propagating waves. Thirdly, the
hybridized nature of ψK1

and ψK2
is also manifest in

real-space: their wavefunctions are mostly in the super-
position of the local s-orbital of the shallow well and the
p-orbital of the deep well, which possess nodal lines pass-
ing through the centers of the deeper wells as shown in
Fig. 1 (c) and (d).

III. THE MODIFIED IMAGINARY-TIME
PROPAGATION METHOD

In current experiments [28], the correlation effects
are relatively weak due to the shallow optical potential
depth, and thus the two-species UBEC can be well de-
scribed by the coupled GPE as

EΨβ(r) =

H0
β +

∑
α=A,B

g̃βα|Ψα(r)|2
Ψβ(r) (4)

where H0
β = (−~2∇2)/2Mβ + V (r) is the one-particle

Hamiltonian and the wavefunction Ψβ is normalized to

the area of one unit cell,
´ ′
d2r|Ψβ(r)|2 = Ω = 2a2

0; g̃αβ =
gαβnβ with nβ the particle number per unit cell and gαβ
the interaction strength between α and β species.

Furthermore, in terms of ΨA and ΨB , the real-
space spin density distribution is defined as S(r) =
(1/2)Ψ†(r)σ̂Ψ(r) where Ψ ≡ (ΨA,ΨB)T and σ̂ de-
notes the Pauli matrices in vector form. Explicitly,
the Cartesian components of the spin density are re-
lated to ΨA and ΨB by Sx + iSy =

√
2~Ψ∗AΨB and

Sz = ~
(
|ΨA|2 − |ΨB |2

)
. Obviously, the orientation of

spin in xy plane depends only on the global phases of
ΨA and ΨB .

In solving Eq. (4), we assume g̃AA = g̃BB , g̃AB = g̃BA,
MA = MB = M [35, 36], and nA = nB . Since the band
minima are located at K1,2, we expand the two-species
condensate wavefunction in terms of ψK1

and ψK2
,(

ΨA(r)
ΨB(r)

)
=

(
cos δAψK1(r) + eiφA sin δAψK2(r)
cos δBψK1

(r) + eiφB sin δBψK2
(r)

)
.

(5)
In general, ψK1

(r) and ψK2
(r) are determined by the

renormalized lattice potential, and are thus different from
those based on the free band Hamiltonian H0 [37]. Be-
cause the particle number of each species is conserved
separately, the formation of two-species BEC sponta-
neously breaks the U(1)×U(1) symmetry, leaving the
freedom of choosing the condensate wavefunction by indi-
vidually fixing the phase factor of ψK1(r) in each species
of Eq. (5).

The theoretical model in the single-species UBEC
based on the GP description has been investigated with
a self-consistent approach [19, 22]. For the two-species
case, the structure of competing orders is even richer
than that of the single-species case. In the enlarged phase
space, the orbital states can entwine with spin degrees of
freedom. We introduce a modified imaginary-time prop-
agation method to solve the two-species UBEC, which
liberates us from the restriction of certain types of solu-
tions and can be generalized to other higher orbital bands
as well. Since the ordinary imaginary-time propagation
method only applies to yield the ground-state conden-
sate, in order to reach the UBEC in the second band, the
new method is devised to constantly project the lower or-
bital components out of the evolving (in imaginary time)
condensate wavefunction, forcing the initial wavefunction
evolve to the stationary solution in the target orbital. We
have examined this method for one- and two-dimensional
harmonic oscillators, and the resultant wavefunctions not
only converge to the exact solutions, but also yield the
correct degeneracy of high energy levels.

The implementation of our imaginary-time propaga-
tion algorithm is summarized as follows. We start by
initializing a trial condensate wavefunction in the form
of Eq. (5) with ψK1,2

determined by V (r) of the empty
lattice. After the propagation of one time step, we ar-
rive at a new set of ΨA and ΨB which are then em-
ployed to generate the renormalized lattice potential
Veff,α(r) = V (r) +

∑
β g̃βα|Ψα(r)|2. Then we solve the
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s-orbital states |ϕk〉α at k = K1 and K2 based on Veff,α,
and construct the projection operator

P̂ = 1−
∑

α=A,B

∑
k=K1,K2

|ϕk〉α α〈ϕk|. (6)

After projecting out the s-orbital component by apply-
ing P̂ to Ψ, we proceed to the next step of imaginary-
time evolution. The above process is repeated until the
convergence is achieved and P̂ is updated in each step.
To assure the reliability of this method, we choose sev-
eral different initial trial wavefunctions and add small
complex random noises to break any specific symmetry
which could lock the solution. Every simulation was im-
plemented with a sufficiently long time to ensure that
the energy converges. We have successfully reproduced
the one-species UBEC solutions in the second band, and
confirmed the results consistent with the previous works
[19, 22]. The interaction strengths are much smaller than
the energy difference between the s and p-orbital bands
in our simulations, and thus the band mixing effect is
negligible.

IV. MAIN RESULTS

A. The symmetric lattice

We first consider the symmetric lattice and the compe-
tition between intra- and interspecies interactions which
determines the condensate wavefunctions. Defining γ =
g̃AB/g̃AA, we start with an SU(2) symmetry breaking
case in the regime of γ < 1. When γ = 0, the system
simply reduces to two decoupled single-species problems
and each of them is in the complex condensate exhibit-
ing nodal points rather than nodal lines. Accordingly,
there are two p-orbital condensations characterized by
substituting the following phase angles into Eq.(5): (I)
φA = φB = ±π2 , δA = δB = π

4 ,(
ΨA(r)
ΨB(r)

)
=

1√
2

(
ψK1

(r) + iψK2
(r)

ψK1
(r) + iψK2

(r)

)
, (7)

and (II) φA = −φB = ±π2 , δA = δB = π
4 ,(

ΨA(r)
ΨB(r)

)
=

1√
2

(
ψK1

(r) + iψK2
(r)

ψK1
(r)− iψK2

(r)

)
. (8)

When 0 < γ < 1, the corresponding p-orbital solutions
take the forms of state (I) and (II) as well.

States (I) and (II) possess different symmetry struc-
tures, as illustrated in Fig. 2 (a) to (d). Species A and
B can be interpreted as a Kramers doublet, and a com-
monly used Kramers-type TR transformation is defined
as T̂ = iσ̂yĈ where Ĉ is complex conjugation opera-

tion and σ̂y is the Pauli matrix. T̂ keeps particle num-
ber and spin-current invariant but flips the sign of spin
and charge current, and it satisfies T̂ 2 = −1. For state

(I), its axial OAM moments of two species are paral-
lel exhibiting a vortex-antivortex lattice configuration,
the condensate spin is polarized along the x-direction,
which obviously breaks Kramers TR symmetry. As for
state (II), its axial OAM moments are antiparallel to each
other exhibiting a spin-current vortex-antivortex lattice
configuration. Although spin current is invariant under
Kramers TR transformation, the spin density exhibits
the in-plane spin texture with the winding number ±2
around each vortex core, which also breaks the Kramers
TR symmetry. Nevertheless, state (II) is invariant by the

anti-linear transformation T̂ ′ = σ̂xĈ, which is equivalent
to a combination of the TR transformation followed by a
rotation around the z-axis at π. Since T ′,2 = 1, it is no
longer a Kramer transformation, which maintains the xy-
components of spin invariant but flips the z-component
of spin.

States (I) and (II) give rise to the same particle den-
sity and kinetic energy distributions for both species, and
thus their energy are degenerate at the mean-field GPE
level. Nevertheless, since they are not directly connected
by symmetry, this degeneracy is accidental and only valid
at the GPE level. The system symmetry allows a current-
current interaction between two species, which is absent
in the bare Hamiltonian, but could be effectively gener-
ated through quantum fluctuations for low energy physics
in the sense of renormalization group. Since the current
density distributions of two species are the same in one
solution but are opposite in the other. This emergent in-
teraction would lift this accidental degeneracy. However,
this is a high order effect beyond the GPE level, which is
certainly an interesting subject for future investigations.

The spatial distributions of the population and phase
of both condensate species, together with the correspond-
ing spin texture are shown in Fig. 2 (a) and (b), respec-
tively. The particle density mainly distributes in the
shallow sites which is the nodeless region corresponding
to the s-orbital, while the density in the deep sites at
which the nodal points are located corresponding to the
px(y)-orbitals. Each species exhibits a vortex-antivortex
lattice structure: The vortex cores are located at the deep
sites, and the nodeless region exhibits the quadripar-
tite sublattice structure featuring the cyclic phase factors
exp (iπn/2) for n ∈ {1, 2, 3, 4} in the shallow sites. For
state (I), both species exhibit the same vorticity distribu-
tion and thus the spin density orientation lies along the
x-direction according to the phase convention of Eq. (5).
There is no preferential direction of spin orientation in
xy plane due to U(1) symmetry generated by the total
z-component spin. For state (II), the two species ex-
hibit opposite vorticities, and the configuration is a spin-
vortex-antivortex lattice. In both cases, the vorticity or
the spin vorticity patterns exhibit a double period of the
lattice potential.

With γ = 1, the sum of interaction energies is ren-
dered an SU(2)-invariant form such that the wavefunc-
tions of UBEC become highly degenerate. At this point,
the states (I) and (II) persist as expected. Because of
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FIG. 2. Spatial distributions of the density, phase, and spin
texture of the condensate wavefunctions corresponding to var-
ious states in the symmetric lattice are showcased in different
groups of subplots: state (I) [(a) and (b)], state (II) [(c) and
(d)] and checkerboard state [(e) and (f)]. The intra-species in-
teractions are g̃AA = g̃BB = 0.025Er with Er = ~2k2l /2M ;
the interspecies ones are g̃AB = 0.25g̃AA for (a) and (b),
and g̃AB = 1.1g̃AA for (c) and (d), respectively. In (a), (c)
and (e), the density and phase distributions are shown in the
upper and lower panels for each species, respectively. The
spin texture configurations are shown in (b), (d) and (f),
respectively, with arrows indicating the orientation of spins
and color bars representing the values of Sz. The parame-
ters used are V0 = 6.2Er, η = 0.95, θ = 95.4◦, ε = 0.81,
α = α0 = cos−1 ε ≈ 35.9◦.

the SU(2) invariance, we can further apply the global
SU(2) rotations to states (I) and (II) [38]. For state (I),
the constraint of maintaining nA = nB does not allow
new states under the form of Eq. (5). For state (II),
any SU(2) rotation still maintains nA = nB . For ex-
ample, after a rotation of −π/2 around the y-axis, we
arrive at (ΨA,ΨB) = (ψK1 ,−iψK2), and a subsequent
π/2-rotation around the x-axis yields(

ΨA(r)
ΨB(r)

)
=

1√
2

(
ψK1(r) + ψK2(r)
ψK1(r)− ψK2(r)

)
. (9)

Next we consider the case of γ > 1, where the degen-
eracy of the SU(2) invariant condensate wavefunctions is
lifted. In this case, within the convention of Eq. (5), the

solution of Eq. (9) is selected, whose density, phase and
spin distributions are plotted in Fig. 2 (c) and (d). We
see that bosons of different species occupy mostly the
shallow sites in a checkerboard pattern with staggered
spin density distribution. The condensate wavefunction
in each species becomes real-valued with square-shaped
nodal lines along with the period-doubled density pro-
file, and we call this configuration the checkerboard state.
In the single-species case [19, 22], the real non-Bloch
states ψK1(r)±ψK2(r) are always more energetic than the
complex non-Bloch states ψK1(r)± iψK2(r) and the real
Bloch states ψK1 and ψK2 , because the density distribu-
tions of the real non-Bloch states are less uniform than
those of the latter ones. However, the conclusion is oppo-
site in the two-species case: both species exhibit strong
constructive and destructive interferences between ψK1

and ψK2
alternatively in adjacent shallow sites, and their

real-space density distributions avoid each other and ex-
hibit the checkerboard pattern. Consequently, the dom-
inant interspecies interaction is greatly suppressed and
the checkerboard state turns out to be the least ener-
getic.

In the strongly repulsive regime (γ > 1), however, it
is possible that the system develops isolated ”ferromag-
netic” single-species domains. The case of spatial sep-
aration has been discussed for the bosonic mixture in
the s-orbital bands of optical lattices in the same in-
teraction regime [39–42]. When this scenario occurs in
p-orbital bands, isolated domains of either species can
choose themselves in whichever of the complex states,
ψK1

(r) ± iψK2
(r). We call such a configuration the

spatially phase-separated spin-polarized state. Seem-
ingly, this state could have an energy lower than that
of the checkerboard state because of the vanishing in-
terspecies interaction. In Fig. 3, we plot E/Ntol of
full spin-polarized state with the complex condensate
ψK1

(r) + iψK2
(r), or, its TR breaking counterpart. Sim-

ple numerical test shows that the energy per particle
of the checkerboard state is very close to that of the
fully spin-polarized state. When the initial state is
prepared with nA = nB , the fully spin-polarized state
becomes phase-separated spin polarization accompanied
with the formation of inhomogeneous ferromagnetic do-
mains, which cost the domain energy. In spite of that,
the checkerboard state of Eq. (9) is still the prevailing
UBEC state in this regime. Another issue is the time
scale: Starting from the unpolarized initial state, form-
ing ferromagnetic domains is a process of phase separa-
tion with a large scale arrangement of real space boson
configurations. It is much longer than the time scale of
the formation of the checkerboard state which only needs
local phase adjustment of boson configurations.

B. The asymmetric lattice

Next we consider the interplay between lattice asym-
metry and interactions. The lattice asymmetry breaks
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FIG. 3. E/Ntot v.s. g̃AB/g̃AA in the symmetric lattice with
α = α0. Red dot, blue triangle, and green square are for
different values of g̃AA = 0.015Er, 0.025Er, and 0.05Er,
respectively. The dashed horizontal line represents the energy
for γ > 1 without i ncluding domain walls, i.e., solving the GP
equation assuming fully polarization. The parameter values
are the same as those in Fig. 2.

~

~

~

~

~ ~

FIG. 4. The condensate fraction of ψK1 , cos2 δ, as a function
of γ = g̃AB/g̃AA. The red dot, blue triangle and green square
indicate g̃AA/Er = 0.015, 0.025 and 0.05 respectively, and the
dotted lines depict the fraction of spin-polarized state with
the same total particle numbers for each interaction strength.
The parameter values of the optical lattice here are the same
as for Fig. 2 except for α = π/5 > α0.

the degeneracy between the single particle states ψK1

and ψK2 . Without loss of generality, we choose α > α0,
which sets the energy of ψK2 slightly lower than that of
ψK1 , such that the calculated condensate wavefunctions
satisfy δA = δB = δ 6= π/4. In Fig. 4, the condensate
fraction of ψK1

, cos2 δ, is plotted as a function of γ at
various values of g̃AA. We find that the lattice asymme-
try effect is more prominent for weak interactions. At
g̃AA = 0.015Er, the condensate fraction of ψK1

(r) van-
ishes when γ < 0.5. The corresponding density, phase,
and spin density distributions are depicted in Fig. 5 (a)
and (b). This is a real Bloch-type UBEC with a stripe-
like configuration and an in-plane spin orientation. With
increasing γ, ψK1

and ψK2
superpose in a complex way

with φA = φB = ±π/2 or φA = −φB = ±π/2, but

FIG. 5. (a) Density, phase and (b) spin texture of g̃AA =
g̃BB = 0.015Er, and γ = 0.1. The parameter values of the
optical lattice here are the same as for Fig. 1 in the main text
except α = π/5.

cos2 δ remains small even at γ = 1. We note that, only
when γ > 1, does the condensate quickly evolve to the
checkerboard state. As g̃AA increases, the complex non-
Bloch condensates become more and more prominent, as
shown in Fig. 4.

Hitherto, we have concluded that the two-species p-
orbital condensation can manifest itself in different forms
of non-Bloch condensation: the complex states (I) and
(II), the real checkerboard state in Eq. (9) and the spa-
tially phase-separated spin-polarized state. Since all
these states are linear combination of ψK1

(r) and ψK2
(r),

it is expected that four Bragg maxima would develop
around the quasi-momenta, ±K1,2 in the TOF spec-
tra [12, 19, 28]. Given the condensate fractions ψK1 of
Fig. 4, the states (I) and (II) as well as the spatially
phase-separated complex spin-polarized state show that
the relative intensities of these two pairs of peaks are
dependent on the lattice asymmetry. However, when
γ > 1, the condensate fractions of ψK1

and ψK2
for the

real checkerboard state quickly become nearly equally
populated and thus the Bragg peaks of the TOF spec-
tra have almost equal intensities, irrespective of the lat-
tice asymmetry. This experimental observation could di-
rectly exclude the phase-separated spin-polarized state
and provide supporting evidence for the phase transition
from the complex UBECs towards the real-valued UBEC
driven by the interspecies interaction.

V. EXPERIMENTAL SCHEME FOR PHASE
MEASUREMENT

The two-species UBEC can be realized and observed
by state-of-art experimental techniques [28–32]. Utilizing
two different hyperfine spin states of an atom (labeled as
the A- and B-species) [35, 36], one first creates a conden-
sate of sole species in the superposition of ψK1

(r) and
ψK2

(r) which are the degenerate lowest-energy states in
the p-orbital band. A π/2-Raman pulse is applied to con-
vert half of the already condensed atoms into the other
species. After tuning the interspecies atomic interaction
with Feshbach resonance, the system is held for some
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time to let it relax to the intended non-Bloch p-orbital
states, ΨA,B =

(
ψK1

+ eiφA,BψK2

)
, whose phase infor-

mation can be inferred by matter-wave interferometry as
explained below.

After the preparation of the two-species condensate,
the atoms are then released from optical lattices and
subsequently experience a Stern-Gerlach splitting during
the ballistic expansion. Precisely, by applying a pulsed
magnetic field gradient, the atoms are accelerated by a
spin-dependent force [43], Fβ ∝ mβ |B|ẑ (mβ is the pro-
jection of spin), and thus the two-species UBEC breaks
into spatially separated parts along z direction. A sec-
ond π/2 Raman pulse is then applied to mix states of
different momenta, leading to(

Ψ̃A

Ψ̃B

)
∝
(
ψK1 + eiφAψK2

)( 1
ieiΦ

)
⊗ |pA〉

+
(
ψK1

+ eiφBψK2

)( ie−iΦ

1

)
⊗ |pB〉

(10)

where Φ accounts for the accumulated phases for the dy-
namical effects involved, and pA,B denote the momenta
acquired by atoms after the Stern-Gerlach splitting. At
this stage, the motion of each species is described by
a wavepacket consisting of a superposition of two non-
Bloch states with different quasi-momenta which inter-
fere with each other along z direction during the TOF
[32, 43]. The phase difference ∆φAB = φA − φB can be
inferred from the interference patterns imaged along ver-
tical and horizontal directions for each species, as demon-
strated in [32]. It can be shown from the Eq. (10), that
among the Bragg maxima, the K1 and K2 columns pos-
sess the same interference pattern, except the positions
of fringes in the two columns are shifted by a phase an-
gle, |∆φAB |. By comparing the positions of fringes in the
Bragg peaks, one can expect, when γ < 1, |∆φAB | = 0
for state (I) and |∆φAB | = π for state (II). Our scheme
provides a feasible way for phase measurement in the
current system.

VI. SUMMARY AND DISCUSSIONS

In summary, we have studied the two-species p-orbital
BECs in the experimentally accessible regime by a new
imaginary-time propagation method for coupled GPEs,
which can be applied to solve UBECs in higher bands.
The competition between inter- and intraspecies inter-
actions drives the transition from two non-equivalent

complex-valued states, possessing respectively broken
and unbroken TR symmetry, to a real-valued checker-
board state with a staggered spin density structure. We
have also proposed experimental schemes to study the
UBECs of the mixture. The current study paves the way
for approaching the least explored p-orbital physics of
multi-species bosonic systems. Our theory can be also
generalized to study the superfluity and magnetism of
spinful p-orbital condensation in the presence of spin-
dependent optical lattices or exotic spin-exchange inter-
actions.

We have used the GPE method throughout this arti-
cle, whose applicability is justified in the limit of weak
inter-species interaction. In this case, the two-species
problem studied here is reduced to two weakly cou-
pled single-species problems, for which previous works
show that the GPE equation has captured the essen-
tial physics of the complex p-orbital condensates being
the energy-minima. When the interspecies interaction
becomes stronger, however, the entanglement between
two-species would become important. In this case, in-
deed more exotic states beyond the GPE level is also
possible. For example, the singlet paired boson con-
densation, whose spatial pair-wavefunctions are antisym-
metrized, and thus reduces the inter-species repulsion.
This state is highly entangled and beyond the GPE equa-
tion level. Nevertheless, the mean-field GPE equation is
still a natural beginning point on this challenging prob-
lem. The checkerboard state already investigated in this
article remains a potential competing state, then both
species avoid each other in their real-space density distri-
butions characterized by a staggered spin-density struc-
ture, which also greatly reduces the interspecies repul-
sion. We would leave a detailed study on novel states
beyond the mean-field GPE level and their competitions
with the single-boson condensate for a future publication.
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