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Bose-Einstein condensates (BECs) offer the potential to examine quantum behavior at large length
and time scales, as well as forming promising candidates for quantum technology applications. Thus,
the manipulation of BECs using control fields is a topic of prime interest. We consider BECs in
the mean field model of the Gross-Pitaevskii equation (GPE), which contains linear and nonlinear
features, both of which are subject to control. In this work we report successful optimal control
simulations of a one dimensional GPE by modulating the linear and nonlinear terms to stimulate
transitions into excited coherent modes. The linear and nonlinear controls are allowed to freely vary
over space and time to seek their optimal forms. The determination of the excited coherent modes
targeted for optimization is numerically performed through an adaptive imaginary time propagation
method. Numerical simulations are performed for optimal control of mode-to-mode transitions
between the ground coherent mode and excited modes of a BEC trapped in a harmonic well. The
results show greater than 99% success for nearly all trials utilizing reasonable initial guesses for
the controls, and analysis of the optimal controls reveals primarily direct transitions between initial
and target modes. The success of using solely the nonlinearity term as a control opens up further
research toward exploring novel control mechanisms inaccessible to linear Schrödinger-type systems.

I. INTRODUCTION

The control of quantum phenomena spans a wide
range of time and length scales [1, 2]. The large dy-
namical scale of Bose-Einstein condensates (BECs)
makes them ideal systems for studying macroscopic
quantum effects [3, 4], in addition to potential quan-
tum technology applications such as quantum in-
formation processing [5]. Moreover, BECs also of-
fer the possibility to explore the control of non-
linear Schrödinger equations (NLSE). The Gross-
Pitaevskii equation (GPE) is one such NLSE, and
it is utilized extensively to study dynamical features
of a BEC [3],

i~
∂ψ(x, t)

∂t
= H(x, t)ψ(x, t)

=
[
H0 + V (x, t) + g(x, t)|ψ(x, t)|2

]
ψ(x, t). (1)

The wavefunction (order parameter) in the one-
dimensional GPE shown in eq. (1) is normalized to
the number of particles in the condensate. The GPE
provides a mean-field description of the condensate
where the effective Hamiltonian contains the kinetic
energy term H0 and trapping potential V , accompa-
nied by a nonlinear term g|ψ|2 accounting for the
weak interparticle interactions. Additionally por-
tions of both V (x, t) and g(x, t) can serve as controls
(i.e., later referred to as Vcont(x, t) and gcont(x, t)).

The character of each quantum control problem
is revealed by its landscape, defined as the physi-

cal objective as a functional of the controls. The
success of a growing number of optimal control ex-
periments, as well as vast numbers of simulations,
led to the formulation of a key theorem referred
to here as the “landscape principle.” The principle
states that upon satisfaction of assumptions (suffi-
cient conditions) about the controllability, surjectiv-
ity and available resources, the topology of quantum
control landscapes for systems with a finite number
of states allows for facile determination of optimal
controls [6–8].

The landscape principle has only been rigor-
ously established and examined for quantum sys-
tems driven by a Schrödinger equation of finite di-
mensions that is linear with respect to the wavefunc-
tion ψ. While investigation into the landscape for a
discrete, finite-level representation of NLSE systems
suggests that the landscape principle still holds [9],
a numerical investigation of control of the NLSE in
a spatial representation of the quantum system has
yet to be performed. Although a full investigation of
the landscape principle has not been performed for
the GPE, there is encouraging evidence of its suc-
cessful optimal control. Early work utilized Krotov
optimization to study the optimal control of load-
ing a BEC onto an optical lattice and preserving its
global phase [10]. Additional optimal control sim-
ulations have been performed with magnetic fields
described by small sets of control parameters for
effective splitting of condensates [11, 12], number
squeezing [13], and time-optimal controlled transfor-



mations of a many-boson systems [14]. The numeri-
cal aspects of BEC optimization have also been stud-
ied, in particular the comparisons of optimal control
algorithms [15], and numerical software for study-
ing controlled BEC dynamics [12]. The strongest
evidence for success of controlling a NLSE lies in ex-
perimental demonstrations, and parametrized con-
trol methods have been used to create stable matter-
wave optics experiments [16], as well as Ramsey in-
terferometry [17].

Here we depart from the use of parametrized con-
trols in order to examine the full, unconstrained ca-
pability of controls identified through optimization.
Thus, control functions are considered, which permit
adjusting of their spatio-temporal form throughout
an unconstrained optimization, thereby opening up
study of the most flexible possible controls. In this
context, we also consider the nonlinearity strength
g(x, t) in eq. (1) as a control through its magnetic
field dependence via Feshbach resonance [18]. In a
recent experimental demonstration [19], spatial con-
trol of the nonlinear strength of a BEC was mani-
fested through the spatial dependence of the applied
optical field (i.e., the magnetic field component of
the optical field) tuned far away from any unwanted
molecular excitation, and utilized a “magic wave-
length” to avoid unwanted dipole forces upon the
atoms in the condensate. In the spirit of such a
scheme, we consider a generalized spatio-temporal
nonlinearity control free of cross-talk from the con-
densate trapping potential and spatio-temporal po-
tential control. In addition to this study providing
a simulation test of the landscape principle for the
continuous GPE, the utilization of a functional non-
linear control also opens up control strategies inac-
cessible to linear Schrödinger quantum systems.

The objective studied here is the transition be-
tween stationary modes of the GPE,

P0→f =

∣∣∣∣∫ ∞
−∞

φ∗f (x)ψ(x, T )dx

∣∣∣∣2 , ψ(x, 0) = φ0(x).

(2)

The terminology of a mode versus that of a state is
associated with the stationary GPE posing a non-
linear eigenvalue or eigenfunction (mode) problem,
which will be discussed further in Section III. In par-
ticular, the present work considers the goal of max-
imizing the transition from the ground mode φ0 to
a target excited mode φf ,

max
Vcont,gcont

P0→f (3)

at final time T through the utilization of the con-
trols Vcont(x, t) and/or gcont(x, t). Maximizing state
transitions is a well-studied objective in quantum
optimal control of the linear Schrödinger equation,
where typically the initial and final states are taken
to be eigenstates of the field-free Hamiltonian [20].
As mentioned above for the GPE, though, locat-
ing such eigenmodes of the control-free Hamilto-
nian (i.e., with V being just a spatially depen-
dent trapping potential and g being a constant) in-
volves solving a nonlinear eigenvalue problem, which
can lead to a diversity of solutions [21]. One such
class of eigenmodes considered here manifest coher-
ence across the entire BEC (See the discussion in
Sec. III). Analogous to the eigenstates of the lin-
ear Schrödinger equation for a harmonic oscillator
or particle in a box, these coherent stationary modes
φj of energy Ej correspond to a particular coherence
over the entire condensate. Thus, full maximization
of eq. (3) would permit patterning of a BEC ac-
cording to the spatial shape of φf (x), or possibly the
shape created by a superposition of modes at time T
[22–24]. As analytical descriptions of φ0 and φf are
generally not available, special numerical methods
must be used to identify the coherent modes.

This work is organized as follows. Section II for-
mulates the GPE functional control problem, and
an algorithm for determining coherent modes of the
GPE is presented in section III, which is then uti-
lized for a BEC in a harmonic trapping potential
for various nonlinearity strengths. Optimal control
of mode-to-mode transitions is presented in section
IV. Analysis of the identified controls is performed
in section V, followed by concluding remarks in sec-
tion VI. Numerical details concerning the propaga-
tion methods are provided in the Appendix.

II. CONTROL OF THE GROSS-PITAEVSKII
EQUATION

The optimal control of the GPE will be considered
in the one-dimensional spatial representation of the
dynamics given by eq. (1). In order to highlight the
controls of interest, eq. (1) is written more explic-
itly for a BEC trapped in a harmonic potential well
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centered at position L/2

i~
∂ψ(x, t)

∂t
=
[
H0 + V (x, t) + g(x, t)|ψ(x, t)|2

]
ψ(x, t)

= [H0 +
mω2

0

2

(
x− L

2

)2

+ g0|ψ(x, t)|2+

Vcont(x, t) + gcont(x, t)|ψ(x, t)|2ψ(x, t),
(4)

where

V (x, t) =
mω2

0

2

(
x− L

2

)2

+ Vcont(x, t) (5)

g(x, t) = (g0 + gcont(x, t)). (6)

Here a harmonic well of frequency ω0 contains the
condensate, wherem is the mass of individual bosons
in the condensate, and g0 is a characteristic, con-
stant nonlinearity strength. For simplicity we will
later set ω0 = m = 1, and normalize ψ to 1.
In addition to the potential well and g0, eq. (4)
also contains two functional control terms: a po-
tential control Vcont(x, t) and a “nonlinearity con-
trol” gcont(x, t), where the latter attempts to manip-
ulate the condensate through the contribution from
|ψ(x, t)|2.

The nonlinearity terms, [g0 + gcont(x, t)]|ψ(x, t)|2
relate to the scattering length of interparticle inter-
actions inside the condensate [3]. In practice the
scattering length has a dependence ∼ 1/(B − B0)
arising from an applied magnetic fieldB (or the mag-
netic field component of an optical field) through
a Feshbach resonance near point B0 specific to the
bosons forming the condensate and system setup.
Here g0 accounts for the intrinsic nonlinearity of the
condensate, analogous to a condensate in the ab-
sence of additional magnetic fields apart from the
trapping potential, and hence away from a Feshbach
resonance point. gcont(x, t) conversely accounts for
changes in the scattering length through its influ-
ence on a neighboring Feshbach resonance accessed
through an applied magnetic field B. gcont(x, t)
is considered tuneable along with the linear con-
trol term Vcont(x, t). Recent work has demonstrated
spatial shaping of the nonlinearity through an op-
tically induced Feshbach resonance control that lo-
cally modulates the nonlinearity while leaving the
trapping potential unaltered [19]. We will more gen-
erally explore controls capable of both spatial and
temporal tuning to perform optimal mode transi-
tions in BECs.

The necessary equations for optimizing eq. (2)
can be derived with the Lagrange multiplier method,

whereby a constraint is added to eq. (2) such that
the GPE is satisfied. Differentiation of this aug-
mented cost leads to optimality conditions and the
gradient of P0→f [11]. The optimality equations are
briefly summarized below, and their derivation is
given in the Supplementary Material. Introducing
the constraint through a Lagrange multiplier state
p∗(x, t) in eq. (2), the modified cost functional J is
expressed as [12]

J [ψ, p, V, g] =

∣∣∣∣∫ φ∗f (x)ψ(x, T )dx

∣∣∣∣2 +

2Re

(∫ T

0

dt

∫ ∞
−∞

dxp∗(x, t)

[
−i~ ∂

∂t
+H(x, t)

]
ψ(x, t)

)
.

(7)

The (x, t)-dependence may later be left as implic-
itly understood where no confusion will arise. The
variational cost functional J leads to optimality con-
ditions that must be satisfied. These conditions are
found by setting the functional derivatives of J with
respect to p and ψ equal to zero (and their complex
conjugates, not shown. See Supplementary Material
for full details) to respectively produce

i~
∂

∂t
ψ(x, t) = H(t)ψ(x, t), ψ(x, 0) = φ0(x) (8)

i~
∂

∂t
p(x, t) =

[
H(t) + g(x, t)|ψ(x, t)|2

]
p(x, t)

+ g(x, t)ψ2(x, t)p∗(x, t), (9)

p(x, T ) = − i
~
φf (x)

∫ ∞
−∞

φ∗f (x)ψ(x, T )dx. (10)

Additionally, the derivatives with respect to the con-
trols are

δJ

δVcont(x, t)
≡ δPi→f
δVcont(x, t)

= 2Re [p∗(x, t)ψ(x, t)] (11)

δJ

δgcont(x, t)
≡ δPi→f
δgcont(x, t)

= 2Re
[
p∗(x, t)|ψ(x, t)|2ψ(x, t)

]
, (12)

which must also finally be zero when optimal con-
trols are found. Importantly, eqs. (11) and (12)
will generally be nonzero on the way to maximizing
P0→f .

The evolution of p(x, t) is often referred to as the
sensitivity equation, as its spatio-temporal variation
and magnitude correspond to the important portions
of ψ(x, t) in the controlled dynamics. Numerically
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calculating the gradient in eqs. (11) and (12) in-
volves solving eqs. (8)-(10), with special note that
eq. (9) calls for simultaneously solving for p∗(x, t).
Defining the supervector ~p(x, t) = [p(x, t), p∗(x, t)]T ,
then the system of equations can be written as

∂

∂t
~p = − i

~
L~p (13)

L =

(
[H0 + V + 2g|ψ|2] gψ2

−gψ∗2 −[H0 + V + 2g|ψ|2]

)
.

(14)

In the context of the GPE, eqs. (13) and (14) can be
identified as a mean-field analogue to the Bogoliubov
de Gennes (BdG) equation describing the evolution
of elementary excitations of the condensate [3]. The
numerical details for simulating dynamics of ψ(x, t)
and ~p(x, t) are provided in the Appendix.

III. NONLINEAR COHERENT MODES:
IDENTIFICATION AND
CHARACTERIZATION

Commonly examined nonstationary modes of non-
linear Schrödinger equations take soliton-like solu-
tions [25, 26], but nonlinear coherent modes form
a separate class of stationary modes. Each coherent
mode corresponds to a spatial pattern over the entire
condensate, making these modes relevant to atom
laser technology and the study of large scale quan-
tum relaxation processes [22–24]. The transitions
considered in this work for P0→f optimizations are
between coherent modes obtained when Vcont = 0
and gcont = 0.

Without an analytical form for the coherent
modes, they must be numerically determined, which
is performed here through an iterative procedure.
A technique for determining the ground mode for
a time-independent GPE Hamiltonian has been
identified based on an imaginary time propaga-
tion method, in which the Schrödinger equation is
evolved in negative imaginary time, such that the
amplitude of higher eigenmodes are damped out
via factors dependent on their respective energies
[11, 27]. By a renormalization of the wavefunction
to its original norm at each propagation step, the
propagation will converge to the lowest-energy eigen-
mode of the GPE Hamiltonian. Long time propaga-
tion of the GPE starting with a purportedly discov-
ered stationary mode in real time provides the means
to test if the mode is truly stationary.

A. Spectrum-adapted imaginary time
propagation (S-AITP)

The nonlinear coherent modes of interest {φj} are
eigenmodes of the nonlinear Hamiltonian operator
Hnl[φj ],

Hnl[φj ]φj =

[
H0 +

mω2

2

(
x− L

2

)2

+ g0|φj |2
]
φj

= Ejφj . (15)

The nonlinear Hamiltonian above depends explic-
itly upon the mode φj on which it operates, and the
ground coherent mode φ0 would be associated with
the lowest-energy eigenvalue of Hnl[φ0]. Locating
excited coherent modes is a demanding task, as the
conventional imaginary time propagation algorithm
will naturally converge to the ground eigenmode of
a Hamiltonian. Moreover, simply diagonalizing the
Hamiltonian Hnl[φ0] that can be constructed after
convergence of the algorithm to obtain φ0(x) does
not provide exited modes to the nonlinear Hamilto-
nian in eq. (15); instead, the latter procedure pro-
vides states Φ0

k satisfying

Hnl[φ0]Φ0
k =

[
H0 + Vtrap(x) + g0|φ0|2

]
Φ0
k

= E0
kΦ0

k. (16)

where E0
k corresponds to the energy of the linear,

Hermitian Hamiltonian Hnl[φ0] in eq. (16). Here,
the state Φ0

k is the kth eigenstate arising from
Hnl[φ0], using the 0-th coherent mode of the desired
nonlinear Hamiltonian. Thus, these eigenstates Φ0

k
are a set of orthonormal states for a Hamiltonian
with a potential term utilizing the ground mode φ0

of the GPE; an analogous set of separately orthogo-
nal functions Φjk would arise from the Hamiltonian
Hnl[φj ]. The distinction between the modes {φi}
and {Φjk} is important, as the latter are not gener-
ally stationary modes of the GPE.

An initial attempt at using projection methods for
locating excited modes, which removes contributions
from the lower-energy modes at every propagation
step, tended to show poor performance (not shown).
Alternatively a reverse imaginary time propagation
method was developed in which the eigenvalue spec-
trum of the Hamiltonian is artificially adapted by
replacing the smallest eigenvalue with a very large
one, such that the lowest-lying eigenmode is always
dampened more than other excited modes during
execution of the algorithm. In this manner, any de-
sired excited mode can be self-consistently incorpo-
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rated into the Hamiltonian. This scheme is referred
to here as spectrum-adapted imaginary time propa-
gation (S-AITP), and it is capable of locating arbi-
trary order excited modes. The basic schematic of
the algorithm is given below for identifying the j-th
eigenmode φj . For every time step in which imagi-
nary time propagation would conventionally be cal-
culated as ψj(t − i∆t) = exp(−Hnl(t)∆t)ψj(t), the
following procedure is instead performed:

• Diagonalize the Hamiltonian Hnl[ψj(t)](t) =
H0 + V + g0|ψj(t)|2 into a matrix of eigen-
values Λ = diag(λ1, λ2, ...λN ) and associ-
ated eigenvectors M = [f1, f2, ...fN ], where
λ1 < λ2 < ...λN . The wavefunction used to
generate the nonlinear term will the be the
most updated wavefunction from the previ-
ous iteration, hence the explicitly labeled time-
dependence of the Hamiltonian.

• Create the adapted spectrum Λ̃ by re-
placing the smallest j − 1 eigenvalues
with λN in order to locate state φj .

Λ̃ = diag(λN , λN , ..λN , λj , λj+1, ....λN ).

• Calculate the propagation term as Ũ =
M†exp(−Λ̃∆t)M .

• Propagate ψj(x, t− i∆t) = Ũψj(x, t).

• Renormalize ψj(x, t− i∆t) to have norm 1.

• Repeat for k iterations until the norm of the
distance
‖ψj(x, t− ki∆t)− ψj(x, t− [k − 1]i∆t)‖2 is
below a specified threshold value ε, indicating
that the eigenmode is adequately identified
as ψj(x, t− ki∆t) = fj ≡ φj , modulo a phase
factor.

An inherent challenge in S-AITP is the need
to diagonalize the Hamiltonian at every propaga-
tion step. For 1D systems this diagonalization is
tractable, although extensions of this method to 2D
and 3D descriptions of BEC dynamics may call for
special numerical techniques. Moreover, as this is
a self-consistent, iterative method, the initial trial
wavefunction ψj(t = 0) can be important for ef-
ficiently locating a stationary excited mode. Dif-
fusion Monte Carlo is a related technique utilized
in electronic structure calculations, and under that
technique trial states can successfully converge re-
gardless of their relative energies, provided that the
initial guess maintains the correct spatial wavefunc-
tion symmetry about the center of the trapping po-
tential (i.e., even or odd parity wavefunctions) [28].

This suggests that similar initial choices in imagi-
nary time propagation can also be effective at locat-
ing excited modes. For example, ref. [27] reported
success at locating the first excited mode of a BEC in
a harmonic trap with conventional imaginary prop-
agation techniques by choosing an odd-parity spa-
tial function as the initial trial guess. While lo-
cating an excited mode in systems containing an
asymmetric trapping potential falls outside of the
scope of this strategy for choosing an initial wave-
function guess, additional considerations about the
symmetry group of the irreducible representation of
the Hamiltonian can provide similar guarantees for
wavefunction convergence in diffusion Monte Carlo,
which may also extend to the imaginary time prop-
agation search techniques discussed here [28]. In the
following section, higher-order coherent modes in a
symmetric trapping potential are located with the
S-AITP method.

B. Nonlinear coherent modes of a BEC in a
harmonic trap

The GPE’s nonlinear contribution does not
change the symmetry of the Hamiltonian, nor the
parity of its coherent excited modes in accord with
the linear case (g0 = 0). Thus, the linear quantum
harmonic oscillator Hamiltonian wavefunctions are
chosen as suitable initial trials to the S-AITP for
determining the coherent stationary modes of the
GPE. Using linear-case wavefunctions as trial forms
for S-AITP and a convergence criteria of ε < 10−10,
the first five excited coherent modes of a control-
free BEC (i.e., eq. (15)) with varying nonlinearity
strengths g0 were located. The length of the spatial
grid is L = 20 (∆x = L/299). To examine non-
linearity strengths in the regime from weak up to
modest strength (compared to the trap frequency
ω0), various values of g0 ∈ [0, 1, 5, 10, 20] were uti-
lized. The square amplitudes |φj |2 of the located
coherent modes for the ground and first five excited
modes are shown in Figure 1. Comparing the differ-
ent excited modes to the linear Hamiltonian states
(g0 = 0) shows that the j-th harmonic oscillator
state is a reasonable initial guess to the j-th GPE
coherent mode, as the higher excited GPE station-
ary modes appear very similar in form across a range
of nonlinearity strengths g0 > 0. This is perhaps due
to a reduced contribution from the nonlinear term
in the Hamiltonian when the local wavefunction den-
sity is lower in these higher energy modes (See the
ordinate scales in Figure 1).

A distance measure d(φj) was used to assess the
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FIG. 1: (Color online) Coherent modes densities |φj |2, j = 0, 1, ...5 for various g0 values.

stability of solutions of the coherent modes {φj}:

d(φj) = 1−

∣∣∣∣∣
∫ L

0

φ∗j (x)ψ(x, T )dx

∣∣∣∣∣
2

(17)

ψ(x, 0) = φj(x), (18)

where ψ(x, T ) is the result of propagating ψ(x, 0) =
φj(x) forward in real time. The distance measures
d(φj) for different g0 values are listed in Table I for
propagation time T = 10 (∆t = T/499). While the
stability of higher energy modes is diminished, all
of the identified stationary modes accumulate less
than 0.1% error. Reducing the convergence criteria
ε and refining the spatial grid can increase the sta-
bility of the stationary modes, although we found
the present performance suitable for defining an op-
timization target.

An important aspect for understanding tran-
sitions among nonlinear coherent modes is their
energy level structure for different nonlinearity

strengths g0,

Ej = 〈φj |Hnl[φj ]|φj〉

=

∫ L

0

dxφ∗j (x)

[
− 1

2m

d2

dx2
+
mω2

2

(
x− L

2

)2

+ g0|φj(x)|2
]
φj(x), (19)

The energy level differences Ef −Ej , from Eq. (19)
will be utilized to characterize the frequency com-
ponents in the control potentials that promote tran-
sitions between the modes. Table II lists the en-
ergies of the coherent modes for various values of
g0 [29]. The linear quantum harmonic oscillator
at g0 = 0 has constant energy level spacings be-
tween successive modes (states), and this transition
energy degeneracy is broken for GPE nonlinear co-
herent modes. The originally degenerate level spac-
ings grow further apart for successive higher-energy
modes for any value of g0, suggesting an anharmonic
“steeping” contribution to the harmonic trap from
the nonlinear term. The effect may be qualitatively
understood from the outer two strong, positive fea-
tures in |φj(x)|2, evident in Figure 1.

As each individual coherent mode φj arises from
its associated Hermitian Hamiltonian Hnl[φj ], rather
than a single Hamiltonian as in eq. (16), the coher-
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g0 0 1 5 10 20
φ0 4× 10−10 2× 10−7 6× 10−7 1× 10−6 2× 10−6

φ1 1× 10−9 3× 10−6 7× 10−7 4× 10−6 1× 10−5

φ2 3× 10−9 1× 10−5 1× 10−5 1× 10−5 6× 10−5

φ3 5× 10−9 3× 10−5 5× 10−5 5× 10−5 8× 10−5

φ4 8× 10−9 6× 10−5 1× 10−4 2× 10−4 1× 10−4

φ5 1× 10−8 1× 10−4 3× 10−4 4× 10−4 3× 10−4

TABLE I: Stability distance measure d(φj) for
nonlinear coherent modes φj in eq. (17).

g0 0 1 5 10 20
E0 0.50 0.87 2.01 3.11 4.87
E1 1.50 1.79 2.81 3.86 5.61
E2 2.50 2.75 3.67 4.68 6.39
E3 3.50 3.73 4.58 5.54 7.20
E4 4.50 4.71 5.51 6.42 8.04
E5 5.50 5.69 6.45 7.33 8.90

TABLE II: Calculated energy Ej of nonlinear
coherent modes φj .

ent modes are not expected to be orthogonal. The
degree of orthogonality between modes φj(x) and
φk(x) is captured through the overlap term aj,k,

aj,k =

∫ L

0

φ∗j (x)φk(x)dx. (20)

The square amplitudes of the orthogonality coeffi-
cients |aj,k|2for the stationary BEC modes are given
in Figure 2 for the each value of g0. For weak non-
linear contributions, the overlaps show that the non-
linear modes demonstrate a high degree of orthog-
onality, though this diminishes for larger g0 values.
Additionally, the reduction in orthogonal behavior
is most evident for lower-energy modes, due to the
more prominent effect for the nonlinear term in the
Hamiltonians in this energy regime.

IV. OPTIMIZATION OF COHERENT
MODE-TO-MODE TRANSITIONS

Maximization of the mode-to-mode P0→f transi-
tions is considered here for a variety of g0 values.
Three separate spatio-temporal control schemes are
studied: (i) control by solely the potential Vcont(x, t),
(ii) dual control using both Vcont(x, t) and the non-
linear strength gcont(x, t), and (iii) nonlinearity-only
control with just gcont(x, t). Initial trial controls for
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FIG. 2: (Color online) Orthogonality coefficients

|aj,k|2 = |
∫ L

0
φ∗j (x)φk(x)dx|2. Orthogonality is

preserved at small g0, although at larger g0 values
the lower-lying modes begin to overlap.
Nevertheless, the set of functions {φi} show a high
degree of orthogonality, despite each arising from
corresponding distinct Hamiltonians Hnl[φi].

the optimization take the form of a simple sinusoidal
oscillation in both time and space for the potential
control and a constant value for gcont,

Vcont(x, t) = a sin(ωvt− α(x)), (21)

gcont(x, t) = g. (22)

Several initial trials were chosen for Vcont(x, t) in
the study, where a = either 1 or 1/5π, as well as
spatially independent (α(x) = π/L) or spatially
dependent (α(x) = πx/L) phases. Note that in
the case α(x) = πx/L we have sin(ωvt− α(x))
= sin(ωvt) cos(α(x)) - cos(ωvt) sin(α(x)) such that
the trial potential has both symmetric and anti-
symmetric spatial components. In all cases the ini-
tial frequency was set to ωv = ω/10. The latter
low frequency in the non-resonant trials of eq. (21)
was chosen to initially couple into the system, while
minimally overlapping with system transition fre-
quencies so as not to bias the final optimal con-
trol (See Sec. V). The constant nonlinearity trial
was set to gcont(x, t) = g0 for potential-only con-
trol. For dual and nonlinearity-only control, dif-
ferent constant values of gcont(x, t) ∈ ±[1, 5, 10, 20]
were all examined as initial trial guesses. Initial
gcont values were chosen from this range such that
(gcont + g0) ∈ [1, 5, 10, 20] for any given trial. This
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ensured that any trial nonlinearity was always pos-
itive. The choice of a fixed “background potential”
Vcont(x, t) being present can significantly impact the
effectiveness of gcont(x, t) as a spatio-temporal con-
trol. Thus, for nonlinear-only control, the trial po-
tential form in eq. (21) was also included (utiliz-
ing each form of α(x) and a). Although not func-
tionally varied throughout the optimization, it was
found that such a background potential term aided
the optimization efficiency for gcont(x, t). Two ter-
minal times T = π and T = 10 are studied, with
∆t = π/499, and the length of the space domain is
L = 20, with ∆x = L/299. Optimization is per-
formed with the D-MORPH algorithm [30–32] using
the gradient forms in eq. (11) and (12). Specifically,
a generic control c(x, t) = Vcont(x, t) or gcont(x, t) de-
pends on the continuous search trajectory variable
s ≥ 0 that parametrizes the path taken along the
quantum control landscape during an optimization,
with the requirement that dP0→f/ds ≥ 0 ,

dP0→f

ds
=

∫ L

0

∫ T

0

δP0→f

δc(s, x, t)

∂c(s, x, t)

∂s
dtdx ≥ 0,

(23)

assured by

∂c(s, x, t)

∂s
=

δP0→f

δc(s, x, t)
. (24)

Eq. (24) is numerically solved with a fourth-
order Runge-Kutta integrator (MATLAB’s ode45
routine), where each optimization step by ode45 dis-
cretely advances the trajectory variable s, and pro-
vides monotonic optimization of P0→f . In the case
of dual controls, then two corresponding relations
like eq. (24) were used. Optimizations were stopped
once P0→f > 0.99.

The optimization trajectories (i.e., P0→f progres-
sion over each optimization step) of all initial con-
trol and target combinations are shown in Fig-
ure 3. In total, over 700 optimizations were per-
formed. All trials utilizing initial guesses with a spa-
tially dependent phase α(x) = πx/L succeeded with
P0→f > 0.99. A small portion of solutions ( 6%) of
the spatially-dependent phase guesses initially led to
suboptimal fidelities at the given spatial and tempo-
ral resolution of the controls; however, upon refining
the temporal and spatial resolution all of the controls
resulted in optimization P0→f > 0.99. Spatial and
temporal meshing are known to act as “resources” in
the linear Schrödinger equation where adequate res-
olution is needed to avoid false suboptimal solutions
[33]; the findings above are consistent with the latter

resource considerations. However, the spatially in-
dependent initial guesses displayed different behav-
ior. Roughly a third of the asymmetric target trials
for dual control were not successful when using sym-
metric initial control guesses with α(x) = π/L. In
this instance of a spatially symmetric control paired
with an asymmetric target, the initial fidelity value
of a control is always P0→f ∼ 0, and poses a strong
challenge for the numerical optimization to grow in
asymmetric features from a critical point at the bot-
tom of the quantum control landscape. Interestingly,
this symmetry mismatch was still overcome in many
instances (i.e., likely due to numerical “noise” break-
ing the symmetry). Such a result draws attention to
the practical considerations involved when choosing
“reasonable guesses” to a quantum control optimiza-
tion.

P
P
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P
P
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0    2

0    3

0    4

0    5

P
0    f

0 

Mode-to-mode optimizations

5
10

20

FIG. 3: (Color online) Optimal control trajectories
for all initial conditions and nonlinearity strengths.
Final trajectory values are projected on the far axis
with dots. Dotted lines correspond to spatially
symmetric initial guesses (i.e., α(x) = π/L) to
Vcont(x, t), while solid lines are coupled in the
spatially dependent phase of eq. (21) (α(x) = πx/L
). The trajectories that failed to optimize away
from P0→f = 0 used the spatially symmetric initial
conditions, and could not readily grow in the
antisymmetric potential necessary for optimization
to a desired antisymmetric objective mode. A
small portion of the simulations (≈ 5%) have been
omitted for visualization purposes, as they took
longer than 200 optimization steps.
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V. DYNAMICAL CONTROL ANALYSIS

This section seeks to examine the qualitative fea-
tures of the identified controls. When traditionally
examining optimal control results from the linear
Schrödinger equation, the primary features of the
controls and population evolution can aid in estab-
lishing the dynamical mechanism, and we follow a
similar path here for relating GPE dynamics to key
features of the controls. Importantly, the structure
identified in these controls does not exclude a wide
array of other possible optimal controls for a partic-
ular objective.

First, the short time results for T = π are ex-
amined for each of the three control scenarios. In
this regime, the dynamics of the short propagation
time result in strong-field control, and do not allow
for resonant solutions in which the control has tem-
porally and spatially oscillatory features at selected
transition frequencies and wavenumbers related to
the initial and final coherent modes. As a represen-
tative example, the optimized mode evolution and
controls (using initial guess a = 1/5π, α(x) = πx/L)
for g0 = 5 for the P0→4 transition are plotted in Fig-
ure 4. Potential-only control (Figures 4a and 4b )
begins focusing the condensate early in the dynam-
ics, and then splits the condensate. Utilizing only
the nonlinearity as a control however, seems to take
a different dynamical pathway with a large nonlin-
earity, as shown in Figures 4c and 4d, though also
imparting an initial, but weaker focusing effect upon
the condensate. Similar to potential-only control,
the dual-control results of Figures 4e-g demonstrate
that shaping of the nonlinearity primarily serves to
assist Vcont, which consequently makes the conden-
sate dynamics similar to that of potential-only con-
trol in Figures 4a and 4b.

For longer times, the resonant nature of controls
become evident. In this situation we will follow stan-
dard practice of like analysis of the controlled dy-
namics with the linear Schrödinger equation. In par-
ticular we will examine selected illustrations of the
spatial and temporal structure of the controls, the
frequency and/or wavenumber features of the con-
trol upon Fourier Transform, as well as the mode
population evolution over time. These simple tools
applied to the cases of Vcont(x, t) and gcont(x, t) give
valuable insight into the control mechanisms. A
more elaborate analysis by a Dyson-like expansion
of the GPE is confounded by the nonlinear nature
of the equation, and is beyond the scope of this work.

Resonant control solutions will now be examined
for T = 10. We first consider Vcont(x, t), and to

assess whether or not specific transitions between
coherent modes are being directly excited, a spa-
tially averaged power spectrum |V (ω)|2 arising from
Vcont(x, t) is computed from

V (ω) =

∫ L

0

Ft[Vcont(x, t)]dx, (25)

where Ft[f ] =
∫ T

0
exp(−iωt)f(t)dt, and |V (ω)|2

shows the average spectral behavior of the control.
The power spectrum is plotted in Figure 5a for
the P0→5 transition with potential-only control and
g0 = 10. The strong DC feature is a remnant of the
initial controls in eq. (21). This leaves the remain-
ing higher-frequency terms to be interpreted as rel-
evant to the optimal dynamics of generating coher-
ent mode transitions. Here, the 0→ 5 transition at
ω = 4.2 is a prominent feature, but there also appear
to be other transition energies excited from the po-
tential, such as 3→ 5 (ω = 1.8), which are likely in-
volved in transitions involving intermediate modes.
Higher frequency components are also present, sug-
gesting that transitions into higher excited coher-
ent modes also play a role in the transition path-
way. Some caution is called for in giving precise
frequency interpretation to the spectral features, as
power shifting can occur due to the controls. In
this regard, the amplitude of the optimal controls
often were not weak compared to the energy level
spacing of the stationary modes (shown for T = π
cases in Fig. 4, with similar results for cases where
T = 10). The time-dependent population dynamics
between coherent modes shown in Figure 5b also in-
dicate prominence of the direct 0→ 5 transition, as
well as possible, indirect pathways 0 → 3 → 5 and
0→ 2→ 5.

Analogous to the potential power spectrum, a spa-
tially averaged power spectrum |g(ω)|2 of the non-
linearity control can be calculated with

g(ω) =

∫ L

0

Ft[gcont(x, t)|ψ(x, t)|2]dx, (26)

as well as the spatially averaged power spectrum
|[V + g](ω)|2 for dual potential and the nonlinear-
ity control through

[V + g](ω) =

∫ L

0

Ft[Vcont + gcont|ψ|2]dx. (27)

The power spectrum |g(ω)|2 for nonlinear-only con-
trol is shown in Figure 6a. The 0 → 5 transition is
again evident as the prominent feature. The results
of dual control for the P0→5 transition are shown in
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FIG. 4: (Color online) Optimal control results with T = π for P0→4 for g0 = 5. a),b) show the
spatio-temporal dynamical evolution and control for potential-only optimization. c),d) similarly show
results for nonlinearity-only control. e),f), and g) show the dynamics and both controls for dual control.
Dual control mimics the dynamical behavior of potential-only control in a),b) by still heavily utilizing the
potential as a primary control, while the nonlinearity-only scheme creates discernibly different dynamics.

Fig. 6b. In addition to |[V + g](ω)|2, we also plot
|V (ω)|2 and |g(ω)|2 in order to demonstrate that the
bulk of the action on the system was provided by the
potential, as |[V + g](ω)|2 and |V (ω)|2 are nearly
identical. This is similar to the results for T = π
in Figure 4, in which the dynamics of dual control
closely resembled the results of potential-only con-
trol. Again, primarily direct transitions between ini-
tial and target modes occur. High frequency com-
ponents at ω ≈ 6, 8 are likely due to intermediate
population of other excited coherent modes involv-
ing indirect transition pathways.

The goal of maximizing |〈φf |ψ(T )〉|2 suggests that
an effective control will reflect spatial features re-
lated to related to ∼ φ∗f (x)φ0(x), which would be
consistent with the dominant direct pathway found
in Figs. 5 and 6. This spatial profile is plotted along-
side the potential-only optimal controls for g0 = 10
and P0→5 in Figure 7 for comparison of the poten-
tial’s evolving spatial structure. The spatial pattern-
ing of the control closely resembles the peaks occur-
ring in |φ∗5(x)φ0(x)|, demonstrating that the optimal
control adopts a similar form reminiscent of the lat-
ter pattern, but with the judicious variation of the
spatial pattern over time to achieve the target tran-

sition. The other studied mode-to-mode transitions
also showed similar behavior.

Examining the joint spatial and temporal features
provides guiding insight into optimal controls, and
a complementary picture is the 2D spectra for con-
trols in the frequency ω and wavenumber k domains,
given respectively for potential-only and nonlinear-
only controls by

V (k, ω) = Fx,t[Vcont(x, t)] (28)

g(k, ω) = Fx,t[gcont(x, t)|ψ(x, t)|2] (29)

Fx,t[f ] =

∫ T

0

∫ L

0

e−iωte−2πikxf(x, t)dxdt. (30)

These spectra |V (k, ω)|2 and |g(k, ω)|2 are plotted
for the P0→5 transition with g0 = 10 and T = 10 in
Figure 8. In both simulations, the primary energy
level transition located at ω = E5−E0 is the promi-
nent feature, although it can be seen that higher
energy modes in these particular control solutions
are linked to higher wavenumber components. In an
analogous fashion to the expected spatial structure
displayed in Figure 7, the spectra maintains some
overlap with the expected wavenumber structure
given by |Fx[φ∗5(x)φ0(x)]|2, denoted by the curve in
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FIG. 5: (Color online) Potential-only control with
g0 = 10. a) Spatially averaged potential power
spectrum |V (ω)|2 and b) time-dependent
population P0→j(t) = |〈φj |ψ(t)〉|2 for the goal of
the P0→5 transition at T = 10. Frequencies ω > 5
in a) are due to transitions into excited coherent
modes higher than φ5. Given the coarse spectral
resolution provided by simulated dynamics of
duration T = 10, the 2→ 5 and 0→ 3 transitions
are essentially degenerate in a).

Figure 8 . However, there is a clear deviation present
from the profile given by |Fx[φ∗5(x)φ0(x)]|2. This de-
viation was observed most strongly for higher g0 val-
ues for each target mode transition, which highlights
the limited view of a mechanism analysis based on
just examining the controls; the finding is parallel
with like analyses of controlled dynamics with the
linear Schrödinger equation. Again, for any given
targeted mode transition there is expected to be
many optimal controls, with a diversity of temporal
and spatial structural features. The results shown
here display a sampling of possible motifs that may
be encountered under the rich GPE dynamics.
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FIG. 6: (Color online) a) Spatially averaged
nonlinearity-only control power spectrum |g(ω)|2
and b) dual control power spectra |[V + g](ω)|2 for
the P0→5 transition, g0 = 10. For dual control,
|V (ω)|2 and |g(ω)|2 are also plotted to demonstrate
that most of the energy from the controls resides in
Vcont. Again, frequencies ω > 5 are likely due to
higher-level excited mode transitions or power
shifting.

VI. CONCLUSION

BECs possess a unique opportunity to explore
and exploit the nonlinear features driving their dy-
namics, and here we demonstrated that this con-
trol can be successfully used to drive transitions be-
tween nonlinear stationary modes. These nonlinear
coherent modes are analogous to eigenstates of a lin-
ear Schrödinger equation, and arbitrary order ex-
cited modes were successfully characterized through
an imaginary time propagation method that adap-
tively altered the spectrum of the Hamiltonian to
locate specific excited modes. This S-AITP method
was successful at locating coherent modes in a har-
monic trap, and exploring its general capability for
asymmetric trapping potentials will further establish
its utility as a characterization method of nonlinear
Hamiltonian eigenmodes. While the numerical effort
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The spatial profile of the potential follows the
overlap of target and initial modes |φ∗5(x)φ0(x)|,
but accompanied by complex temporal variations.

involved for implementing S-AITP in higher dimen-
sions is significant, extending it to excited modes
of 2D and 3D systems opens up further interesting
questions about its utility, as exploration of differ-
ent varieties of stationary modes such as vortices
becomes available. Investigating these modes with
S-AITP is a direction of ongoing work.

The perspective taken in this work rests on un-
leashing the spatial-temporal nature of the controls
in order to assess performance with the widest avail-
able freedom. Although the freedom in mode-to-
mode optimization should permit many solutions
to exist, the particular solutions examined here re-
vealed a leading, direct transition between initial
and target modes. When operating with dual con-
trols using both the potential and the nonlinear
term, the solutions were dominated by the poten-
tial. Finally, we hope that this work opens further
study of the rich domain of spatio-temporal control
possibilities for manipulating BEC dynamics, which
may enable access to new fundamental and practical
domains of its experimental implementation.
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Appendix A: Propagation methods

Simulation of the GPE requires consideration of
numerical stability issues, and much work has been
done in this regard with numerous propagation
schemes, including semi-implicit Crank-Nicholson
methods, time-splitting approaches, and also adap-
tive step size techniques [12, 34–39]. As utilized in
ref. [11], here we adopt a small time stepping ap-
proach based upon symmetric split-order propaga-
tion. In this fashion H0 is expressed in momentum
space and the potential terms in coordinate space,
where a fast Fourier transform Fx[·] is used to trans-
form between the two representations [40]. With
suitable resolution over time and space, split-step
GPE solutions are known to be of good accuracy
[35, 38, 41], and a standard second-order symmetric
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form is employed here (upon setting ~ = 1),

ψ(t+ ∆t) =

e−iH̃1(t+∆t) ∆t
2 e−iH0∆te−iH1(t+∆t) ∆t

2 ψ(t), (A1)

where

H1(t+ ∆t) = V (t+ ∆t) + g(t+ ∆t)|ψ(t)|2 (A2)

H̃1(t+ ∆t) = V (t+ ∆t) + g(t+ ∆t)|ψ(t+ ∆t)|2
(A3)

H0 = p̂2/2m. (A4)

Note that in order to calculate the nonlinear term
g|ψ(t)|2 in the first step of the splitting procedure,
ψ(x, t) from the previous time step is used. The
final step in the coordinate representation is per-
formed with increased accuracy by calculating the
nonlinear term using ψ(t+ ∆t) at the updated time
step. As the final step of the propagation utiliz-
ing exp(−iH̃1(t+∆t)∆t/2) occurs in the coordinate
representation, it only adds a phase to ψ, allowing
for calculation of the modulus |ψ(t + ∆t)| from the
previous two operations

|ψ(t+ ∆t)| =
∣∣∣e−iH0∆te−iH1(t+∆t) ∆t

2 ψ(t)
∣∣∣ . (A5)

Equation (A5) can then be used to accurately cal-

culate the nonlinear term in H̃1 at the updated time
step [11].

Similar to ψ, the coupled system of equations for
~p in eq. (13) can be solved through a short time step
evolution procedure, which entails backward evolu-
tion in time from the terminal condition in eq. (10),

~p(t−∆t) = exp (iL(t)∆t) ~p(t). (A6)

The calculation of exp(iL∆t) also employs a sym-
metric splitting scheme, but with special treatment
of the potential terms that are no longer diagonal in
coordinate space in this coupled equation form:

exp (iL(t)∆t) = eiL1(t) ∆t
2 eiL0∆teiL1(t) ∆t

2 (A7)

L0 =

(
H0 0
0 −H0

)
(A8)

L1(t) =

(
[V + 2g|ψ|2] gψ2

−gψ∗2 −[V + 2g|ψ|2]

)
. (A9)

Propagation due to the L0 term is performed in
momentum space by Fourier transforming ~p(x, t) to
~p(k, t) as

~p(k, t) = Fx[~p(x, t)] =

[
Fx[p(x, t)]
Fx[p∗(x, t)]

]
, (A10)

where exp(iL0∆t) is easily calculated, since the L0

term is diagonal in momentum space. In coordi-
nate space the L1 term at each discrete spatial point
L1(xj , t) can be represented as a 2×2 matrix opera-
tor acting on a length two vector [p(xj , t), p

∗(xj , t)]
T ,

and the matrix exponential exp(iL(xj , t)∆t/2) of the
non-normal matrix L can be expressed as [37, 42]

exp

(
iL1(xj , t)

∆t

2

)
=

cos

(
∆t

2
λL

)
I + i sin

(
∆t

2
λL

)
L1(xj , t)

λL
(A11)

λL =
(∣∣V (xj , t) + 2g(xj , t)|ψ(xj , t)|2

∣∣2
−
∣∣g(xj , t)ψ

2(xj , t)
∣∣2)1/2

. (A12)
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