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We study the effects of quasiparticle interactions in a quasi-two dimensional (quasi-2D), zero-
temperature Bose-Einstein condensate of dipolar atoms, which can exhibit a roton-maxon feature in
its quasiparticle spectrum. Our focus is the Beliaev damping process, in which a quasiparticle collides
with the condensate and resonantly decays into a pair of quasiparticles. Remarkably, the rate for
this process exhibits a highly non-trivial dependence on the quasiparticle momentum and the dipolar
interaction strength. For weak interactions, low energy phonons experience no damping, and higher
energy quasiparticles undergo anomalously weak damping. In contrast, the Beliaev damping rates
become anomalously large for stronger dipolar interactions, as rotons become energetically accessible
as final states. When the dipoles are tilted off the axis of symmetry, the damping rates acquire
an anisotropic character. Surprisingly, this anisotropy does not simply track the anisotropy of the
dipolar interactions, rather the mechanisms for damping are qualitatively modified in the anisotropic
case. Our study reveals the unconventional nature of Beliaev damping in dipolar condensates, and
has important implications for ongoing studies of equilibrium and non-equilibrium dynamics in these
systems. Further, our results are relevant for other 2D superfluids with roton excitations, including
spin-orbit coupled Bose gases, magnon condensates, and Helium-4 films.

I. INTRODUCTION

The quasiparticle picture of fluctuations and excited
states in condensed matter systems is a fundamental
modern paradigm. Early investigations in this direc-
tion focused on superfluid 4He, which hosts very low en-
ergy quasiparticles at intermediate wave vectors, termed
“rotons” [1–3]. Rotons were first observed in neutron
scattering experiments with 4He [1, 4–6], and are now
understood to emerge in strongly interacting superfluids
due to strong, longer-range two-body correlations [7–9].
Bose-Einstein condensates (BECs) of atoms with large
magnetic dipole moments, such as Cr, Er, or Dy, are
unique in that they are predicted to support roton quasi-
particles when confined to highly oblate, quasi-two di-
mensional (quasi-2D) geometries, despite remaining ex-
tremely dilute and weakly interacting compared to super-
fluid 4He [10–13]. Thus, mean-field theories typically pro-
vide good descriptions of these systems [14, 15], despite
their treatment of quasiparticles as free, non-interacting
excitations. Here, we systematically step beyond the
mean-field approximation, and study the effect of quasi-
particle interactions on the damping of collective excita-
tions in quasi-2D dipolar condensates, finding non-trivial
effects beyond the free quasiparticle picture.

In 1958, Beliaev first presented a theory of the Bose-
condensed state that includes quasiparticle interactions,
showing how they manifest as effective condensate-
mediated processes [16, 17]. An important consequence
of such interactions is the damping of quasiparticle mo-
tion, resulting in finite lifetimes for collective condensate
excitations. Beliaev specialized to the case of isotropic,
short-range (contact) interactions, which is relevant for
alkali atom condensates [18]. A number of subsequent
works have followed along these lines [19–24], and there
is notable agreement with experimental work [25, 26].

However, despite a growing interest in the experimen-
tal study of quantum many-body physics with dipolar
atoms [27–33] and polar molecules [34–38], a systematic
theoretical understanding of beyond mean-field effects,
such as quasiparticle damping, is lacking for these sys-
tems.

In this manuscript, we present a theory describing
these effects in a quasi-2D dipolar BEC, and find a num-
ber of striking results. When the dipolar interactions are
weak, the damping rates are anomalously small, being
significantly less than those of a gas with purely con-
tact interactions of equal strength. In contrast, when
the dipolar interactions are stronger and rotons begin to
emerge in the quasiparticle spectrum, the Beliaev damp-
ing rates acquire anomalously large values, though the
rotons themselves remain undamped. These results are
directly applicable to other 2D systems with roton quasi-
particles, such as magnon condensates [39, 40], spin-orbit
coupled BECs [41–43], and 4He films [44].

Additionally, the dipolar interactions can be made
strongly anisotropic in the quasi-2D geometry [45, 46].
In this regime, we find that the Beliaev damping rates
do not simply track the anisotropy of the interactions.
Instead, they acquire a nontrivial character with quali-
tatively distinct features depending on the direction of
quasiparticle propagation; this has no analog in con-
ventional superfluids. Our results mark an important
step towards understanding the physics of dipolar con-
densates beyond the mean-field approximation, and have
important implications for both the equilibrium and non-
equilibrium properties of these novel superfluids.
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II. BELIAEV DAMPING FORMALISM

Here, we provide a brief review of Beliaev damping
theory, and obtain expressions for the relevant damping
rates. A more detailed derivation of our results can be
found in Ref. [47]. In the grand canonical ensemble, the
dipolar Bose gas Hamiltonian is

Ĥ =

∫
dr ψ̂†(r)

(
p2

2m
+ U(r)− µ

)
ψ̂(r)

+
1

2

∫
dr

∫
dr′ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r). (1)

Here, m is the atomic mass, U(r) is the external po-

tential, µ is the chemical potential of the gas, and ψ̂(r)

(ψ̂†(r)) is the Bose annihilation (creation) operator. For
fully polarized dipoles with dipole moments d, the two-
body interaction potential is

V (r) = gδ(r) + d2
1− 3 cos2 θ

|r|3
(2)

where θ is the angle between r and d, and g is the con-
tact interaction strength, which is proportional to the
s-wave scattering length of the atoms. In this study, we
consider a purely dipolar gas and set g = 0, which can
be achieved, for example, with atomic Cr, Er, or Dy by
tuning the s-wave scattering length with magnetic Fes-
hbach resonances. Having finite values of g can modify
the critical dipolar interaction strength at which rotons
emerge, though this circumstance does not modify our
key results in a qualitative manner.

At ultracold temperatures, the dilute Bose gas can be
described by a mean-field theory with a condensate or-

der parameter φ(r) = 〈ψ̂(r)〉, which evolves under the
equation of motion,

i~φ̇(r) =

(
p2

2m
+ U(r)− µ

)
φ(r)

+

∫
dr′V (r− r′)〈Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)〉. (3)

Under the decomposition Ψ̂(r) = φ(r)+ ϕ̂(r), where ϕ̂(r)

annihilates non-condensed atoms, 〈Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)〉 '
n(r′)φ(r) + ñ(r′, r)φ(r′), where n(r) = |φ(r)|2 + ñ(r, r) is
the total density of the gas and ñ(r′, r) = 〈ϕ̂†(r′)ϕ̂(r)〉
is the non-condensate density matrix. We work in the
Popov approximation, and omit the anomalous density
matrix m̃(r′, r) = 〈ϕ̂(r′)ϕ̂(r)〉 from the theory [48]. In the
perturbative framework we employ, the Beliaev damp-
ing rates are insensitive to this approximation [20, 21].
Here, diluteness implies that the average interparticle
spacing is much greater than the relevant interaction
length, which in this case is given by the effective dipole
length md2/3~2; diluteness is satisfied throughout this
manuscript.

Small amplitude condensate oscillations can be mod-
eled as perturbations δφ(r) about the stationary state

of Eq. (3), denoted φ0(r). We obtain equations of mo-
tion for these condensate oscillations by inserting φ(r) =
φ0(r) + δφ(r) into Eq. (3) and linearizing about δ. If the
couplings between δφ(r) and the non-condensate density
ñ are ignored, this procedure reproduces the Bogoliubov
free-quasiparticle description of small amplitude conden-
sate oscillations. This description, however, is inadequate
to describe the damping of condensate oscillations. To
correct this, we couple the condensate oscillations, which
take the form of Bogoliubov quasiparticles, to the non-
condensate atoms perturbatively in δ, following the pro-
cedures of Refs. [20, 21, 47, 49]. We obtain eigenfrequen-
cies ω′ = ω + δω, where ω are the bare (non-interacting)
quasiparticle frequencies and δω are frequency shifts that
arise due to quasiparticle interactions. The imaginary
part of δω corresponds to a damping rate for conden-
sate oscillations. At T = 0, this is a Beliaev process,
which involves the resonant decay of a quasiparticle into a
pair of quasiparticles under the constraints of energy and
momentum conservation [16, 17]. The relevant damping
rate is thus γB = Im[δω]T=0. This perturbative scheme
remains valid for large damping rates, as long as the non-
condensate density remains small.

We restrict our study to the quasi-2D regime, where
the atoms are free to move in-plane but are tightly
confined in the axial direction by an external potential
U(r) = mω2

zz
2/2. If ~ωz is the dominant energy scale

in the system, to a good approximation all atoms oc-
cupy the single-particle ground state in the z-direction,

χ(z) = exp[−z2/2l2z ]/
√
πl

1/4
z , where lz =

√
~/mωz. An

effective quasi-2D theory is obtained by separating all
bosonic fields into this axial wave function and inte-
grating the z-coordinate from the theory [50]. Below,
we rescale all lengths in units of lz and all energies in
units of ~ωz; this is natural for experiments, as ~ωz

can be controlled by changing the intensity of the con-
fining lasers. The condensate order parameter becomes
φ(r) =

√
n0χ(z) where n0 is the uniform areal conden-

sate density, and the condensate oscillations take the

form δφ(r) = χ(z)
∑

p(upe
i(p·ρ−ω′

pt) + v∗pe
−i(p·ρ−ω′

pt)),
where ρ and p are in-plane spatial and momentum co-
ordinates, respectively. The coefficients up and vp are
the Bogoliubov quasiparticle amplitudes, given by up =√
εp/2ωp + 1 and vp = −sgn[Ṽ (p)]

√
εp/2ωp − 1, where

εp = p2/2 + n0gdṼ (p). The bare quasiparticle spectrum
is

ωp =

√
p2

2

(
p2

2
+ 2gdn0Ṽ

(
p√
2

))
, (4)

where gd =
√

8πd2/3 is the quasi-2D dipolar interac-

tion strength and Ṽ (p) = F⊥ (p) cos2 α + F‖(p) sin2 α
is the quasi-2D momentum-space dipolar interaction po-

tential, with F⊥(p) = 2 − 3
√
πpep

2

erfc[p] and F‖(p) =

−1+3
√
π(p2y/p)e

p2

erfc[p]. Here, erfc[p] is the complimen-
tary error function and α is the polarization tilt angle
between d = d(ẑ cosα+ ŷ sinα) and the z-axis. The Be-
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FIG. 1: (color online). Manifold of available final states for
Beliaev damping, enforced by simultaneous energy and mo-
mentum conservation, for a quasiparticle with momentum (a)
plz = 0.9x̂, a maxon (black +), and (b) plz = 2.2x̂, in the
free-particle part of the spectrum (black circle), in a quasi-2D
dipolar condensate with n0gd = 1.7 ~ωz and α = 0. The light
red (gray) lines on the vertical panels show the quasiparticle
spectrum; the vertical axes correspond to the quasiparticle en-
ergy, and the horizontal axes show the x- and y-components
of the quasiparticle momenta, being px and py, respectively.
The thick dark blue (dark gray) lines show the manifold of de-
cay channels allowed by energy and momentum conservation.
The thinner dark blue (dark gray) lines show the projection of
these manifolds onto the px-py plane, and indicate the allowed
momenta of the decay channels.

liaev damping rate for a quasiparticle with momentum p
is found to be

γB,p =
2π

~
∑
kq

|Āp
kq|

2δ(ωp − (ωk + ωq)), (5)

where Āp
kq = Ap

kq +Ap
qk, and Ap

kq has matrix elements

Ap
kq = π

√
n0

[
up

(
Ṽ (k)(u∗ku

∗
q + v∗ku

∗
q) + Ṽ (k + q)v∗ku

∗
q

)
+ vp

(
Ṽ (k)(v∗kv

∗
q + u∗kv

∗
q) + Ṽ (k + q)u∗kv

∗
q

)]
δp,k+q.

(6)

The Dirac delta function in Eq. (5) enforces energy con-
servation in the Beliaev damping process, while the Kro-
necker delta function in Eq. (6) enforces momentum con-
servation. We take the thermodynamic limit, and evalu-
ate Eq. (5) numerically.

III. ISOTROPIC INTERACTIONS

We first consider a quasi-2D dipolar condensate that is
polarized perpendicular to the 2D plane (α = 0), so the
in-plane dipolar interactions are isotropic. In this case,
an expansion of the small-momentum, phonon part of the
quasiparticle spectrum gives ωp ' cdp(1 −

√
9π/32p +

. . .), where cd =
√

2n0gd is the phonon speed. This
downward curvature prohibits the Beliaev damping of
phonons, due to the impossibility of simultaneous energy
and momentum conservation [49]. This is in contrast
to quasi-2D condensates with repulsive, isotropic contact

interactions, which host quasiparticle spectra with up-
ward curvature at small momenta, resulting in Beliaev
damping rates ∝ p3 at small p [51].

At larger momenta, a local “roton” minimum with an
energy gap ∆r develops in the quasiparticle spectrum for
dipolar interaction strengths n0gd & 1.15, which ulti-
mately softens to ∆r = 0 at a momentum pr ' 1.62 when
n0gd ' 1.72. This is accompanied by a local “maxon”
maximum at p ' 0.74. An example roton-maxon spec-
trum for n0gd = 1.7 is shown in the vertical panels of
Fig. 1 and by the red curve in Fig. 2(d).

As the roton minimum develops, the density of quasi-
particle states grows significantly. Near the minimum,
the spectrum can be expanded about p ∼ pr to give
ωp ' ∆r + (p − pr)2/2mr where mr is the effective ro-
ton mass. The density of states near the roton minimum
is thus ρr(ω) = 2πmr(1 + pr/

√
2mr(ω − ωr)). The di-

vergence of this expression at ω = ωr contributes to an
anomalously large density of states in this vicinity. It
is instructive to note that the expression for the Beliaev
damping rate in Eq. (5) is reminiscent of Fermi’s Golden
Rule, which describes the scattering of a quantum state
into other final states at a rate proportional to the den-
sity of available final states. Indeed, the evaluation of
the Dirac-delta function in Eq. (5) produces a factor re-
sembling the density of final quasiparticle states; we thus
expect large damping rates for quasiparticles that can
decay into rotons.

In Fig. 1, we illustrate the manifold of available fi-
nal quasiparticle states for n0gd = 1.7, which supports
a prominent roton-maxon feature. The red curves in-
dicate the quasiparticle spectrum, which is rotationally
symmetric in the px-py plane, and the blue curves in-
dicate the manifold of available quasiparticle states. In
panel (a), we consider a quasiparticle with momentum
p = 0.9x̂ (shown by the black + sign in the px-py plane),
which is in the maxon part of the spectrum. The con-
straint of simultaneous energy and momentum conserva-
tion forbids maxons from decaying into either phonons
or other maxons. However if the maxon energy exceeds
2∆r, which is the minimum energy needed to produce a
roton pair, Beliaev damping of maxons becomes allowed.
The blue lines, which show the energy and momenta of
the available final quasiparticle states, are centered about
the roton minima in the +y and −y directions. Momen-
tum conservation implies that maxons undergo Beliaev
damping by resonantly decaying into a pair of nearly
counter-propagating rotons that travel transverse to the
initial quasiparticle direction.

In panel (b) of Fig. 1, we consider a quasiparticle with
momentum p = 2.2x̂ (black circle), which is in the higher
energy, free particle-like part of the spectrum. A number
of final states are available to these quasiparticles; they
can decay into rotons, maxons, and phonons. In the lat-
ter process, the quasiparticle “sheds” low-energy phonons
and loses a correspondingly small amount of energy and
momentum. In the former processes, many combinations
are final states are possible. Roton-maxon pairs can be
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FIG. 2: (color online). (a) Beliaev damping rates for weak
dipolar interactions, where no roton is present in the quasi-
particle spectrum; the corresponding spectra are shown in
(c). (b) Beliaev damping rate for stronger dipolar interac-
tions, where a roton is present; the corresponding spectra are
shown in (d). In panels (a) and (c), the Beliaev damping
rate is identically zero for values of quasiparticle momenta at
which the rates are not shown, due to the impossibility of si-
multaneous energy and momentum conservation. Here, n0gd
is given in units of ~ωz.

produced, or pairs of forward-propagating quasiparticles;
the momenta of these final states are shown by the de-
tached blue loop in Fig. 1(b).

We plot the Beliaev damping rates for a range of dipo-
lar interaction strengths in Fig. 2, obtained by integrat-
ing Eq. (5) numerically. The rates (plotted on a semi-log
scale) are scaled by the axial trap frequency ωz to fa-
cilitate comparison with experimental parameters. The
breaks in the curves indicate regions where the damp-
ing rate is identically zero due to the impossibility of si-
multaneous energy and momentum conservation. Panel
(a) shows rates for quasiparticle spectra that lack roton-
maxon features (shown in panel (c)). The downward
curvature of the quasiparticle spectrum forbids phonon
damping below a critical momentum pcrit (γB = 0); this

is apparent in all cases shown. For small p, pcrit =
√

9πc2d,
and pcrit ∼ cd for larger p [49]. Additionally, we see ev-
idence that as n0gd increases, the downward curvature
of the quasiparticle spectrum becomes more pronounced,
and pcrit increases correspondingly. As p → pcrit from
above, the damping rate becomes anomalously large.
The only available mechanism for Beliaev damping in
this small range of momenta near pcrit is the shedding of
low energy phonons. These anomalously large damping
rates are due to the unique curvature of the quasiparti-
cle spectrum, which produces a factor resembling a large
density of phonon states in the evaluation of Eq (5).

For n0gd = 0.1, the Beliaev damping rates are very
small, remaining much less than ωz in the range of p
shown. These rates are nearly an order of magnitude
smaller than those of a quasi-2D non-dipolar BEC with
an equivalent chemical potential. As n0gd increases, the

damping rates increase significantly across the range of
p, which we expect due to the proportionality γB ∝ g2d.
The rates at larger p become comparable to those of a
system with purely contact interactions as n0gd → 1.

Panel (b) of Fig. 2 shows Beliaev damping rates for
larger dipolar interaction strengths, which support spec-
tra with pronounced roton-maxon features (shown in
panel (d)). We consider two distinct cases; for n0gd =
1.5, the maxon energy is less than 2∆r (blue curve), and
for n0gd = 1.7, the maxon energy is greater than 2∆r

(red curve). In the former case, it is energetically forbid-
den for a maxon to decay into a pair of rotons. Thus, all
low-energy quasiparticles (phonons, maxons, and rotons)
remain undamped, and Beliaev damping only occurs for
p & 2. In the latter case, a maxon can damp into a
pair of transverse, counter-propagating rotons. Notice
that the red curve in panel (b) is separated into three
distinct parts. The two left-most parts correspond to
Beliaev damping into roton pairs only. These damping
rates are anomalously large, achieving values well over
100ωz for some values of p; this is due to the large den-
sity of states near the roton minimum. In this case, the
spectral line width of the quasiparticles is significantly
larger than the mode frequencies themselves, suggest-
ing that maxons are not well defined quasiparticles, due
to their being highly over-damped. These anomalously
large damping rates may be artifacts of the quasi-2D ap-
proximation used here, which neglects the effects of axial
excitations.

Additionally, the Beliaev damping rate vanishes for a
range of p near the roton minimum, reflecting the fact
that rotons are undamped due to their anomalously low
energy and large momenta; this is due to their inability
to decay under the constraint of simultaneous energy and
momentum conservation. The black + sign and circle
show the Beliaev damping rates for quasiparticles with
p = 0.9 and p = 2.2 respectively, corresponding to the
discussion of Fig. 1. Though the non-condensate density
grows as ∆r softens [11], it remains dilute for the cases we
consider here. We thus expect our perturbation theory
to remain valid for these large damping rates.

IV. ANISOTROPIC INTERACTIONS

By tilting the external polarizing field off axis (α 6= 0),
the dipolar interactions can be made strongly anisotropic.
It is predicted that anisotropic dipolar interactions can
produce a quasiparticle spectrum with correspondingly
strong anisotropies, supporting rotons for only a narrow
range of propagation directions [45, 46]. In this regime,
the Beliaev damping rates exhibit a highly non-trivial
dependence on the direction of quasiparticle propagation.

We plot the quasiparticle spectra and Beliaev damp-
ing rates for a condensate with n0gd = 1.3 and a tilt
angle α = π/8 in Figs. 3(b) and 3(c), respectively. In
this case, the spectrum for quasiparticles propagating in
the x-direction (⊥, red line) exhibits roton-maxon char-
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FIG. 3: (color online). Beliaev damping of a quasi-2D dipolar
condensate with n0gd = 1.3 ~ωz, α = π/8, and θ = 0 (dipoles
tilted in the y-direction). (a) Manifold of allowed decay chan-
nels for a quasiparticle with momentum plz = 0.7ŷ (black
+) shown by the dark blue (dark gray) lines, and momen-
tum plz = 1.7x̂ (black circle) shown by the light red (gray)
lines. (b) The spectrum for quasiparticles propagating in the
y-direction is shown by the dark blue (dark gray) line, and the
spectrum for quasiparticles propagating in the x-direction is
shown by the light red (gray) line. (c) The corresponding Be-
liaev damping rates. For quasiparticles propagating in the x-
direction, the absence of transverse rotons (in the y-direction)
results in all quasiparticles being undamped below the free-
particle part of the spectrum (pxlz & 1.7). By contrast, quasi-
particles propagating in the y-direction can undergo Beliaev
damping into transverse rotons (in the x-direction) traveling
in opposite directions, similar to the case of untilted dipoles.
The Beliaev damping rates are identically zero for values of
quasiparticle momenta at which the rates are not shown, due
to the impossibility of simultaneous energy and momentum
conservation.

acter, while the spectrum in the y-direction (‖, blue line)
does not. Above, we noted that maxons can only un-
dergo Beliaev damping by decaying into a pair of nearly
counter propagating rotons when α = 0. Here, no ro-
tons exist in the transverse direction, and maxons are
consequently undamped despite the fact that the maxon
energy exceeds 2∆r. Quasiparticles propagating in the
x-direction only begin to damp near p = 1.7x̂, shown
by the black circle(s) in Fig. 3. The momenta of the
available final states are shown by the red line in panel
(a), and the corresponding damping rates are shown in
panel (c). The onset of damping is due to the shedding of
phonons near this momentum. Interestingly, the damp-
ing rate is not anomalously large near this onset, unlike
the α = 0 case; this is due to the anisotropy of the spec-
trum, which skews its curvature unfavorably. As α is
tuned away from zero, maxons therefore go from being
over damped to completely undamped beyond a critical
value of α.

For small α however, the momentum dependence of
the damping rate is dramatically different in the x- and
y- directions. Although no roton-maxon feature exists in
the y-direction, quasiparticles propagating in this direc-
tion can damp by decaying into transverse roton pairs, as
illustrated by the blue lines in Fig. 3(a), which show the
momenta of the available final states for a quasiparticle
with p = 1.7x̂ (shown by the black + sign). The damp-
ing rates for this process are shown by the two left-most
blue line segments in panel (c). For larger momenta, the
quasiparticles begin to shed phonons in the y-direction.
Interestingly, the critical momentum for phonon shed-
ding is nearly isotropic in this system. We attribute this
to the fact that phonon propagation is itself isotropic in
quasi-2D dipolar BECs, despite the presence of strongly
anisotropic interactions [45]. Thus, the Beliaev damp-
ing rates do not simply track the anisotropy of dipolar
interactions. Instead, they exhibit qualitatively distinct
features depending on the direction of quasiparticle prop-
agation, which rely crucially on the energetic landscape
of the quasiparticle spectrum. Thus, we expect similar
features in other superfluids with anisotropic rotons, such
as BECs with synthetic gauge fields [41–43].

V. DISCUSSION

Our predictions have important consequences for on-
going experiments with ultracold dipolar atoms. For
example, in experiments measuring the dynamic struc-
ture factor S(p, ω) of the condensate via, for exam-
ple, optical Bragg scattering [52], these rates will ap-
pear as spectral widths [53]. Further, our results can
be used to predict the short-time non-equilibrium dy-
namics of these systems, as the Beliaev mechanism is
responsible for the redistribution of quasiparticles near
T = 0. Take, for example, the anisotropic case dis-
cussed above. If an oblate dipolar condensate is pre-
pared with n0gd = 1.3 and α = π/8, and modes with
p = 0.5x̂ are excited, they should undergo coherent dy-
namics for long times. On the other hand, the excitation
of modes with p = 0.5ŷ will result in the nearly imme-
diate redistribution of energy into transverse rotons. In
this sense, the anisotropic Beliaev damping should re-
sult in strongly anisotropic relaxation dynamics. Exper-
imentally, the limit of a deep roton (n0gd = 1.7) can
be achieved, for example, with 164Dy [29] in an oblate
trap with axial frequency ωz = 2π × 103 Hz and a mean
3D density n̄3D ∼ 3 × 1014 cm−3. For strongly dipolar
molecules, much smaller densities are required.

Finally, it is important to comment on the validity
of the Bogoliubov approximation for the quasi-2D dipo-
lar condensate. The softening of roton quasiparticles
(∆r → 0) is associated with the quantum depletion of
the condensate [11], which brings to question the valid-
ity of the Bogoliubov approximation when it is not em-
ployed self-consistently (i.e. when the quantum depletion
is not used to correct the condensate fraction). Ref. [54]
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showed explicitly that the roton energy gap ∆r should
satisfy ∆r/n0gd �

√
gd/2π for quantum fluctuations

to have negligible effects on the condensate at T = 0.
For the shallower roton that emerges at n0gd = 1.5 (see
Fig. 2(d)), this criteria is satisfied for the 164Dy system
mentioned above. This criteria is not satisfied, how-
ever, when n0gd = 1.7, indicating that the quantum fluc-
tuations will result in significant condensate depletion.
Thus, our results are likely not quantitatively accurate
in this regime, however their qualitative features should
hold. The behavior of the quasi-2D dipolar Bose gas in
the regime of deep rotons warrants further study with a
self-consistent Bogoliubov approach.
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A. Griesmaier, S. Giovanazzi, and T. Pfau, Nature 448,
672 (2007).

[29] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys.
Rev. Lett. 107, 190401 (2011).

[30] M. Lu, N. Q. Burdick, and B. L. Lev, Phys. Rev. Lett.
108, 215301 (2012).

[31] G. Bismut, B. Laburthe-Tolra, E. Maréchal, P. Pedri,
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