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I. INTRODUCTION

Ultracold, dilute gases of fermionic atoms have been
studied extensively lately, in part due to the system be-
ing the simplest environment with strong interactions be-
tween fermions (for recent reviews of this active field see
e.g. Refs. [1, 2]). Most remarkably, a three-dimensional
(3d) atomic gas with two hyperfine states, say lithium or
potassium, can be constructed to have resonant interac-
tions: by applying an external magnetic field the S-wave
scattering length a can be tuned to satisfy 1/a = 0. In
this special situation, the properties of the gas become
universal, dependent only on the density and tempera-
ture. What can be learned in the atomic physics labora-
tory then has implications for nonrelativistic fermions as
small as nucleons.

This resonant Fermi gas – often called the “unitary
Fermi gas” due to the scattering being limited only by
unitarity – provides an excellent opportunity for quan-
titative theoretical calculations. The clean separation of
scales means that much can be inferred from dimensional
analysis and scaling arguments. What remains to be de-
termined are universal dimensionless constants, such as
the Bertsch parameter [3], or functions of the product
of the inverse temperature β and the chemical potential
µ [4] which completely specify the thermodynamic and
hydrodynamic behavior of the unitary Fermi gas. Much
effort has gone into using first-principles numerical meth-
ods to determine these quantities (see Refs. [5–7] for re-
views).

In this paper we use lattice Monte Carlo methods to
give numerical results for thermodynamic quantities as
the temperature is varied through the superfluid phase
transition. In particular we determine the chemical po-
tential, mean energy density, and contact density as func-
tions of temperature. The corresponding universal func-
tions f(βµ) are made dimensionless by taking ratios with
the appropriate powers of the Fermi energy εF . It is no-
table that several other numerical methods for studying
the Fermi gas cannot study the superfluid phase. With
this study, we also pay particular attention to investi-

gating and quantifying the systematic uncertainties as-
sociated with taking the thermodynamic limit and the
continuum limit, which is crucial to obtain correct phys-
ical result [8, 9]. Generally, we find good agreement with
experiment.

In previous work [10] we used the Diagrammatic De-
terminant Monte Carlo (DDMC) algorithm [11–13] to
numerically determine the critical temperature Tc and
thermodynamic properties of the unitary Fermi gas at
T = Tc. Here we study the temperature dependence
of physical observables in the approximate range Tc/2 ≤
T ≤ 2Tc. An approach which is formulated in the contin-
uum, bold-line diagrammatic Monte Carlo (bold DMC),
has been used to compute quantities above the critical
temperature [14, 15], and these results agree well with
experimental measurements. This method as presently
formulated does not extend to temperatures below Tc
due to the singularity in the pair propagator appear-
ing in the superfluid phase. Temperature effects have
also been studied in a lattice computation using Hybrid
Monte Carlo [16], however they do not present results of
varying the lattice spacing.

II. SETUP

We consider a system of equal-mass fermions with two
spin components labeled by the spin index σ = {↑, ↓}.
Since the details of the physical potential governing the
interatomic interactions are irrelevant in the dilute limit
realized in cold-atoms experiments, we can work on a spa-
tial lattice provided that we also take the dilute limit [17].
The Hamiltonian is that of the simple Fermi-Hubbard
model in the grand canonical ensemble,

H =
∑
k,σ

(εk − µσ)c†kσckσ + U
∑
x

c†x↑cx↑c
†
x↓cx↓, (1)

where the first term corresponds to the kinetic part of
the Hamiltonian Hkin and the second term to the in-
teraction part Hint. The units are chosen such that
~ = kB = 2m = 1. We work on a 3d periodic lattice
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with lattice spacing b and L3 sites. The discrete disper-
sion relation reads εk = 2b−2

∑3
j=1(1 − cos kjb); µσ is

the chemical potential, and c†kσ the fermionic creation
operator. The coupling constant U < 0 corresponding to
attractive interaction can be tuned so that the scattering
length becomes infinite. The corresponding value in the
infinite volume limit is U = −7.914/b2 which is the value
we use throughout the calculation. Another approach
is to include finite volume effects in this 2-body match-
ing calculation [16, 18, 19]. It remains to be seen which
approach leads to a milder extrapolation of many-body
results to the continuum limit.

The partition function Z = Tr exp(−βH) can be writ-
ten as a series of products of two matrix determinants
built of free finite-temperature Green’s functions [11]. If
µ↑ = µ↓ ≡ µ, as is always assumed to be the case in the
present work, the two determinants are identical since
the spin-dependence enters only via the chemical poten-
tial. Consequently all terms in the series are positive,
and the series can be used as a probability distribution
for Monte Carlo sampling.

We use the DDMC algorithm as introduced in [12] with
several modifications which increase the efficiency by re-
ducing autocorrelation effects as compared to the original
setup. We account for remaining autocorrelations by bin-
ning the data to the point where the statistical error is
insensitive to the bin size. A detailed description of our
numerical setup is given in [10, 20, 21].

We performed many calculations, varying the dimen-
sionless inputs for the chemical potential (µb2) and in-
verse temperature (β/b2), as well as the number of lattice
points L3, so that controlled extrapolations to the ther-
modynamic and continuum limits could be taken for a
range of temperatures in both the normal and superfluid
phases. Each diamond in Fig. 1 represents the thermo-
dynamic limit of lattice calculations done for values of
µb2 and β/b2 resulting in the corresponding filling factor
ν and dimensionless product βµ.

III. THERMODYNAMIC AND CONTINUUM
LIMITS

We set the physical scale via ν = nb3, where ν =
〈
∑
σ c
†
xσcxσ〉 is the dimensionless filling factor and n the

particle number density. Due to universality all physical
quantities are given in units which can be expressed as
appropriate powers of the Fermi energy εF = (3π2n)2/3.
To extract the physical results we need to perform two
limits: the thermodynamic limit to infinite system size
and then the continuum limit to zero lattice spacing.

First we take the thermodynamic limit in order to es-
timate and reduce systematic errors due to finite volume.
For each (µb2, β/b2) we perform computations with sev-
eral (usually 3 or 4) sizes of cubic volumes, V = L3,
and extrapolate results as 1/L → 0. At the lowest fill-
ing factor (smallest b) we used volumes up to V = 323

(corresponding to up to 1000 particles). Typical ranges
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FIG. 1. Diamonds correspond to parameters used for indi-
vidual simulations extrapolated to the thermodynamic limit.
The 15 bands indicate the subsets of data included in the
continuum (ν → 0) extrapolations as described in Sec. III.

are L = 6 to L = 14 at higher filling factors (about 40
to 700 particles) and L = 10 to L = 32 at lower fill-
ing factors (about 100 to 1000 particles). We find that
the filling factor ν is the quantity most sensitive to fi-
nite volume effects. With periodic boundary conditions,
we expect finite volume effects to cause an increase in
filling factor compared to the infinite volume limit. In
small volumes the particles will feel an enhanced attrac-
tion not just from their neighboring particles, but also
their round-the-world doppelgangers. In agreement with
[12] we observe that the data for the filling factor are
fit well by a linear function of 1/L. Once we have ν
in the thermodynamic limit, we can obtain εF and the
dimensionless observables by taking ν to the appropri-
ate power and multiplying by quantities which have no
statistically significant finite volume errors. Within the
statistical uncertainties, it appears that finite volume er-
rors are negligible for E/N and Eint/N . Examples of
thermodynamic extrapolations are shown in Figs. 2 and
3 for different parameter sets in the superfluid and nor-
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FIG. 2. Examples of thermodynamic limit extrapolations in the superfluid phase for the filling factor ν (left), the energy per
particle E/N = E/L3ν (middle), and the interaction energy per particle Eint/N = Eint/L

3ν (right), which yields the value of
the contact.

mal phases, respectively.

For the continuum limit we vary the dimensionless
chemical potential µb2 such that the filling factor tends
to zero. This is equivalent to b → 0 since b ∝ ν1/3 if
n is fixed to be a constant, physical value. Dimension-
less ratios of physical quantities can then be extrapolated
to the continuum limit by assuming discretization effects
can be parametrized using a power series in b, or equiv-
alently ν1/3.

Our previous work [10, 22] focused on determining the
critical temperature and computing thermodynamic ob-
servables there. The critical temperature was determined
at several values of the lattice spacing. In practice this
was done by varying the inverse temperature and chem-
ical potential in lattice units to the point where a finite-
size scaling study of the order parameter indicated the
transition would occur in infinite volume. Here we extend
that work by taking the continuum limit of observables
for a range of temperatures on either side of the phase
transition.

Ideally the continuum limit would be taken varying b
along lines of constant βµ. The numerical data acquired,
however, do not lie exactly along lines of constant βµ.
Therefore, we group the data in several narrow bands of
y = βµ values and extrapolate the data within each band
to the continuum limit. Each band is defined by a cen-
tral value y0 and a width, as shown in Fig. 1. In order
to account for mild y dependence, we find it sufficient
to introduce a term proportional to δy = y − y0 in the
extrapolation function. The lattice spacing dependence
of a physical quantity X can be written as a power se-
ries in the lattice spacing b ∝ ν1/3 [23]. Therefore, our
continuum limit fits were to functions of the form

X(y0; ν, δy) = X0

(
1 + d1δy +

K∑
k=1

ckν
k/3

)
. (2)

The fit parameter X0 = X0(y0) is then taken to be the
continuum limit result. The other fit parameters, d1 and
ck also depend on y0, but we suppress this dependence
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FIG. 3. Examples of thermodynamic limit extrapolations in the normal phase for the filling factor ν (left), the energy per
particle E/N = E/L3ν (middle), and the interaction energy per particle Eint/N = Eint/L

3ν (right), which yields the value of
the contact.

in the notation. In almost every case the Monte Carlo
data are sufficient to determine c1 but not the coeffi-
cients of higher-order terms. In other words, the data
points indeed look linear in ν1/3. However, given that,
especially for larger y, the numerical values of ν1/3 are
not very small, it is prudent to allow for higher-order con-
tributions in the numerical data. Therefore we introduce
Bayesian prior distributions for the ck with k > 1 [24].
In the cases where the Monte Carlo results do constrain
c2 (i.e. fits to µ/εF at low y) we find c2 ≈ 0.3. There-
fore, we take Gaussian prior distributions centered at 0
with width 0.3. We found very little difference in the
fits where we set K = 2 or K = 3, but we used the lat-
ter, more conservative, option for the results presented
here. Finally, we also performed fits which included a
term f1 δy ν

1/3, with a Gaussian prior for f1 of 0.0± 1.0.
This had no effect on the fits, so for simplicity we omit
this term from our final fits.

In Fig. 4 we show the results of these fits for 5 of the 15
bands. The fit curve and corresponding error are evalu-

ated at the value of βµ given in the legend, and represent
an interpolation of the data to the central value of the
lettered band shown in Fig. 1 as well as the continuum
extrapolation to ν = 0. In the case of band F, we have
several data points generated with βµ = 2; we emphasize
these points with stars. Within uncertainties, the widths
of the bands in βµ are sufficiently narrow that interpo-
lating in βµ is mild, well-parametrized by the d1 term in
(2).

Summarizing the size of discretization error for the
continuum extrapolations, we show the values obtained
for the coefficient c1 of ν1/3 in (2). Fig. 5 shows that
the Monte Carlo data for the chemical potential and en-
ergy per particle have significant linear dependence on
the lattice spacing, as parametrized by ν1/3, especially
at lower βµ. This is similar to what was seen for lat-
tice determinations of Tc [10, 12]. Nevertheless, the fits
described above, which include possible contributions of
higher-order terms, include estimates of these lattice ar-
tifacts in the uncertainties quoted below. We tried a



5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
µ
/ε
F

βµ = 0.71
band A data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
/E

F
G

βµ = 0.71
band A data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
/k

4 F

βµ = 0.71
band A data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

µ
/ε
F

βµ = 1.856
βµ = 2.0 data
other band F data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
/E

F
G

βµ = 1.856
βµ = 2.0 data
other band F data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
/k

4 F

βµ = 1.856
βµ = 2.0 data
other band F data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.0

0.1

0.2

0.3

0.4

0.5

µ
/ε
F

βµ = 2.94
band J data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
/E

F
G

βµ = 2.94
band J data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
/k

4 F

βµ = 2.94
band J data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

µ
/ε
F

βµ = 4.15
band N data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.0

0.1

0.2

0.3

0.4

0.5

E
/E

F
G

βµ = 4.15
band N data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
/k

4 F

βµ = 4.15
band N data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

µ
/ε
F

βµ = 4.75
band O data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
/E

F
G

βµ = 4.75
band O data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν1/3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
/k

4 F

βµ = 4.75
band O data

FIG. 4. Continuum limit extrapolation along bands of constant βµ± δ(βµ) (see Fig. 1) for the chemical potential (left), energy
density (middle) and contact density (right). See further discussion at the end of Sec. III regarding the interpolation in βµ.
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variety of other fits, altering the bands in βµ, and omit-
ting data with large filling factor, e.g. ν1/3 > 0.5 [9].
These variations produced fits which were in agreement
with our final results, but were less precise in some cases.

IV. RESULTS

A. Chemical potential

The left panel of Fig. 6 shows the continuum limit
of the chemical potential as a function of βµ. We see
excellent agreement with experimental data [25, 26], as
well as with several other theoretical predictions [14, 27].
Our results below Tc capture the experimentally observed
change of the slope of the chemical potential curve.

B. Energy per particle

The energy is composed of the kinetic energy Ekin and
the interaction energy Eint. We find that, within the
statistical uncertainties, neither Ekin/N nor Eint/N ex-
hibit dependence on L. This insensitivity can be under-

stood by looking at the lattice Monte Carlo estimator for
Ekin/N = Ekin/L

3ν [10], which can be expressed as

Ekin

L3ν
= 6

(
1−

∑
σ〈c†xσc(x+ĵ)σ〉

ν

)
. (3)

This expression contains the ratio of the kinetic energy
operator

∑
σ〈c†xσc(x+ĵ)σ〉 and the filling factor operator∑

σ〈c†xσcxσ〉. These two operators have a very similar
structure, which explains to some extent why finite vol-
ume errors are negligible within the error bars of the
data. The same holds for the interaction part of the en-
ergy. Therefore it is sufficient to consider the finite-size
scaling of 1/εF (which follows directly from the finite-size
scaling of ν), while the data for E/L3ν obtained at dif-
ferent lattice sizes can be fitted by a constant. Our data
confirms this scaling, as the constant fits of E/L3ν yield
acceptable χ2-values, see the middle panel of Figs. 2 and
3 for several examples.

The results for the energy per particle E/EFG, where
EFG = (3/5)NεF is the ground state energy of the free
gas, are shown in the right panel of Fig. 6. Like for the
chemical potential, we obtain excellent agreement with
experimental data [25, 26] and theory [14, 27].

C. Contact density

The contact density can be interpreted as a measure
of the local pair density [28]. The contact plays a crucial
role for several universal relations derived by Tan [29–
31]. We use the definition C = m2g0Eint, where g0 is
the physical coupling constant [28, 32]. The contact is
related to the contact density C via C =

∫
C(r)d3r, or for

homogeneous systems simply C = CV .
In [22] we have presented results for the contact density

at the critical point. Now we extend this study to other
values of the temperature. For the finite-size scaling we
can rewrite the dimensionless contact density as

C
ε2F

=
UEint

4L3ε2F
=
U

4

Eint

N

ν−1/3

(3π2)4/3
∝ ν−1/3Eint

N
. (4)

Since Eint/N is independent of L within uncertainties,
this part of the contact density for different lattice sizes
is fit to a constant (see the right panel of Figs. 2 and 3 for
examples of such fits), while the thermodynamic limit for
the part proportional to ν−1/3 follows from the finite-size
scaling of the filling factor ν.

Figure 7 shows the contact density in the continuum
limit. There has been recent progress experimentally in-
vestigating Tan’s contact, mostly for trapped systems
[36, 38, 39] as well as numerical and analytical calcu-
lations [15, 34, 40–43]. The homogeneous contact in
the normal phase has been studied experimentally in
Ref. [33]. They find a sharp decrease in the contact
around the superfluid phase transition. We do not ob-
serve any such sudden change around Tc, but our results
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FIG. 7. The contact density C/ε2F = C/k4F in the continuum
limit versus βµ. We compare our results (red circles; the
empty circle denotes our result at Tc from [22]) with experi-
mental data [33] (green squares), as well as results obtained
with bold DMC [15] (blue triangles), Luttinger-Ward formal-
ism [34] (black dashed line) and the zero-temperature results
from [35] (cyan line with error margin), [36] (purple dotted
line with error margin) and [37] (orange dash-dotted line with
error margin).

above Tc show good agreement with their data. Our re-

sults at low temperature also show excellent agreement
with the zero-temperature numerical [37] and experimen-
tal results [35, 36] (the contact is not discussed explicitly
in the latter reference, but can be easily extracted with
the appropriate Tan relation yielding C/ε2F = 2ζ/5π =
0.1184(64)).

V. SUMMARY AND CONCLUSION

In summary, we have calculated the chemical poten-
tial, the energy density and the contact of a homogeneous
3d balanced unitary Fermi gas at different temperatures
above and below the critical point. Our results show good
agreement with experimental measurements and provide
a benchmark for future studies, in particular below Tc
where few accurate predictions and measurements are
available.
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