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Abstract

We present a monotonic convergent quantum optimal control method that can be utilized to op-

timize the control field while exactly enforcing multiple equality constraints for steering quantum

systems from an initial state towards desired quantum states. For illustration, special consider-

ation is given to finding optimal control fields with (i) exact zero area and (ii) exact zero area

along with constant pulse fluence. The method combined with these two types of constraints is

successfully employed to maximize the state-to-state transition probability in a model vibrating

diatomic molecule.
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I. INTRODUCTION

Control over the time evolution of quantum systems towards desired quantum states with

tailored control fields has motivated extensive experimental and theoretical studies [1–6],

ranging from the control of chemical reactions [7–11], the performance of gate transformation

in quantum information systems [12], to the control in nanostructures [13] and more. While

analytically accessible only in highly specialized cases [14], quantum optimal control theory

(QOCT) has become a powerful tool for designing optimal control fields that can maximize

the control objective [15–20]. The subject of finding reasonable control fields subject to

various constraints governed by partial differential equations while maintaining monotonic

convergence of the optimization algorithms is among the most challenging problems at the

frontier of quantum control research [21–28]. In a recent study [29], we proposed a gradient-

based frequency domain quantum optimal control method to optimize the spectral field of

laser pulses subject to multiple external constraints. For the present work, we generalize this

method to the time domain to directly optimize the temporal control fields while taking into

account multiple equality constraints. As illustrations, the method will be performed to find

optimal control fields with (i) exact zero area, and (ii) exact zero area while keeping pulse

fluence constant. The time-integrated zero area field constraint for a freely propagating

electromagnetic pulse is an important property for exploring coherent interaction of light

with matter [30–33], and is required as a fundamental condition for satisfying the Maxwell’s

equations [27]. Only have there been limited attempts to take into account such constraint

in the contexts of local control theory (LCT) and QOCT [27, 34]. However, these previously

proposed LCT- and QOCT-based methods in principle do not exactly reduce the field area

to zero and, as a result, an additional filtering process is required to accurately render a zero-

area field. The constant fluence constraint on the optimized control field has been considered

in our previous work by fixing the spectral amplitude of the control unchanged [29]. Here,

we will apply this requirement to the full control field in the time domain. In addition,

the present method can directly include these desired constraints into optimizations and

guarantee monotonic convergence of the algorithm, which is fundamentally different from

the brute force strategy by applying the constraints after each iteration [16].
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II. THEORETICAL METHODS

We consider a closed N -level quantum system |0〉, · · ·, |N − 1〉 governed by the time-

dependent Hamiltonian H(t) = H0 − µE(t), where H0 is the field-free Hamiltonian with

eigenenergies {En}, µ the dipole operator, and E(t) the control field of a finite pulse length T .

The objective is to identify an optimal control field that maximizes the transition probability

Pi→f for population transfer from an initial state | i〉 to a specified final state | f〉 at the

final time T . The time-dependent evolution of the quantum system is described by the wave

function ψ(t) = U(t, 0)ψ(0), where U(t, 0) is the corresponding unitary evolution matrix

governed by the time-dependent Schrödinger equation,

i~
∂U(t, 0)

∂t
= H(t)U(t, 0), U(0, 0) ≡ I, (1)

and ψ(0) is the state of the quantum system at the initial time t = 0.

In the present method, the local gradient-based algorithm utilized to optimize the control

field is a variant of D-MORPH [35, 36], in which the control field E(t) is parameterized by

s ≥ 0 with E(s, t) morphing from E(0, t) at s = 0 in steps s → s + ds (i.e., E(s, t) →
E(s + ds, t). Without considering any constraints on the control field, maximizing Pi→f

entails satisfying the monotonic convergence condition [37]

g0(s) ≡
dPi→f [E(s, ·)]

ds

=

∫ T

0

δPi→f [E(s, ·)]
δE(s, t)

∂E(s, t)
∂s

dt ≥ 0. (2)

A monotonic increase in Pi→f can be ensured by integrating the first-order differential equa-

tion

∂E(s, t)
∂s

=
δPi→f [E(s, ·)]
δE(s, t) , s > 0. (3)

The unconstrained D-MORPH algorithm in Eq. (3) can be generalized to include a set of

exact equality constraints on the control fields

hm [E(s, ·)] = Cm m = 1, 2, . . . ,M, (4)

where C1, . . . , CM are specified constants, and M(≥ 1) is the number of constraints, and

thus ∂E(s, t)/∂s is expanded to incorporate the conditions

gm(s) ≡
dhm[E(s, ·)]

ds
=

∫ T

0

δhm[E(s, ·)]
δE(s, t)

∂E(s, t)
∂s

dt = 0,

m = 1, 2, . . . ,M, (5)
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which is a manifestation of the equality constraints given in Eq. (4).

The condition Eq. (2) is satisfied when ∂E(s, t)/∂s is proportional to the derivative

δPi→f [E(·)]/δE(t) [35, 37], while the conditions Eq. (5) are satisfied when ∂E(s, t)/∂s is

orthogonal to all of the derivatives δhm/δE . The combined conditions Eqs. (2) and (5) can

be fulfilled by expressing ∂E(s, t)/∂s, in a projection operator formulation, as

∂E(s, t)
∂s

= S(t)

{

g0(s)

M
∑

ℓ=0

[

Γ−1
]

0ℓ
Pcℓ(s, t) + (1− P)β(s, t)

}

(6)

where S(t) ≥ 0 is the pulse profile that smoothly switches the control field on and off, β(s, t)

is an arbitrary function, implying that there exist multiple solutions to Eqs. (2) and (5),

and the coefficients cℓ(s, t) are defined as

cℓ(s, t) =















δPi→f [E(s, t)]
δE(s, t) , ℓ = 0 (7a)

δhℓ[E(s, t)]
δE(s, t) , ℓ = 1, ...,M. (7b)

The M + 1 dimensional symmetric square matrix Γ in Eq. (6) is composed of elements

Γℓℓ′ =

∫ T

0

S(t)cℓ(s, t)cℓ′(s, t)dt. (8)

Here the matrix Γ is assumed to invertible (i.e., full rank). For large values of M , regular-

ization may be needed to compute the corresponding inverse matrix Γ−1 [38]. The action of

the projection operator P on an arbitrary function α(s, t) is given by

Pα(s, t) ≡
∫ T

0

S(t′)

(

M
∑

k,k′=0

ck(s, t)
[

Γ−1
]

kk′
ck′(s, t

′)

)

α(s, t′)dt′

. (9)

By inserting Eq. (6) into Eqs. (2) and (5), we can verify that

gℓ′ = g0(s)

∫ T

0

S(t)cℓ′(s, t)
M
∑

ℓ=0

[

Γ−1
]

0ℓ
Pcℓ(s, t)dt+

∫ T

0

S(t)cℓ′(s, t)t) (1−P) β(s, t)dt

= g0(s)δ0ℓ′ +

∫ T

0

S(t)cℓ′(s, t)β(s, t)dt−
M
∑

k′=0

δℓ′k′

∫ T

0

S(t′)ck′(s, t
′)β(s, t′)dt′

= g0(s)δ0ℓ′ ℓ′ = 0, 1, ...,M. (10)
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is always greater than (ℓ′ = 0) or equal (ℓ′ 6= 0) to zero, indicating that Eq. (6) satisfies the

criteria set out in Eqs. (2) and (5) for any choice of β(s, t). The initial-value differential

equation Eq. (6) is integrated starting from an initial control field E(0, t), until an optimal

control E(s∞, t) is obtained at s = s∞ such that the control objective Pif(T ) is maximized.

With reasonably imposed equality constraints, the objective may still approach its global

maximum value Pi→f = 1.0. However, strongly demanding and competing constraints may

result in a suboptimal solution Pi→f < 1.0, even at the best attainable control field.

In the remainder of the paper, we will set β(s, t) = 0 to show the basic principles of the

procedure, and thus Eq. (6) becomes

∂E(s, t)
∂s

= S(t)g0(s)
M
∑

ℓ=0

[

Γ−1
]

0ℓ
cℓ(s, t). (11)

The gradient of Pi→f with respect to E(s, t) can thus be written as

δPi→f

δE(s, t) = −2Im {Tr {[|i〉〈i|, O(T )]µ(t)}} (12)

with µ(t) = U †(t, 0)µU(t, 0) and O(T ) = U †(T, 0)|f〉〈f |U(T, 0), and it can be readily com-

puted upon solving Eq. (1) with the control field E(s, t). The equality-constraint-preserving
differential equation Eq. (11) is solved to morph the control field E(s, t) over s, starting

with an initial field E(0, t), until the control objective Pi→f is maximized to an acceptable

precision.

As an illustration, we desire to find pure ac optimal controls of zero area that may also

preserve the control field fluence. For the pure ac control, the pulse area is zero, i.e.,

h1[E(s, ·)] =
∫ T

0

E(s, t)dt = 0, (13)

leading to c1(s, t) = 1, whereas for the constant pulse fluence, we have

h2[E(s, ·)] =
∫ T

0

E2(s, t)dt = constant, (14)

leading to c2(s, t) = 2E(s, t). Reliably solving Eq. (11) coupled to the time-dependent

Schrödinger Equation (1) is essential for obtaining optimal control fields. In our simulations,

Eq. (11) is solved by using MATLAB routine ode45 [40], a fourth-order Runge-Kutta

integrator, with a variable step size ds to determine the control field E(s, t), starting at

s = 0. We remark that in principle, the initial guess field E(0, t) can be an aribitrary

function, and we may start with a zero initial field E(0, t) = 0, then bring the field fluence

5



0

-5

-10

uconstrained

single-constrained

F
ie

ld
 a

re
a

 (
a

.u
.)

(a)

0 50 100 150 200

Iteration (n)

-15

0

0.2

0.4

0.6

0.8

1.0

O
b

je
c
ti
v
e

 

-20

-25

250

uconstrained

single-constrained

(c)

uconstrained

single-constrained

(b)

F
lu

e
n

c
e

 (
a

.u
.)

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 1. The pulse area (a), fluence (b) and control objective (c) as a function of iteration for

both the unconstrained and the single-constrained simulations. The result at the 0th iteration

arises from the pulse E(0, t). Both unconstrained and constrained optimizations were stopped at

Pi→f = 0.999.

up to the intended value using the unconstrained D-MORPH method [35, 36]. However, the

purpose of the following simulations is to demonstrate the utility of the proposed constrained

D-MORPH method for optimizing the control field subject to the zero-area and the constant

non-zero fluence equality constraints, Eqs. (13) and (14), throughout the optimization in

the time domain.

III. RESULTS AND DISCUSSION

We have carried out numerical simulations for control of state-to-state transitions for a

5−level LiH molecular system composed of the five lowest vibrational levels in the ground

electronic state. The energies of these five levels are E0 = 697.96, E1 = 2057.71, E2 =

3372.57, E3 = 4643.45 and E4 = 5871.22 cm−1. The dipole matrix elements µνν′ = 〈ν | µ |
ν ′〉, ν, ν ′ = 0, 1, 2, 3, 4, are obtained from the data in Ref. [41]. We consider the vibrational

ground state |0〉 as the initial state |i〉, and the target state |f〉 is a superposition state

1/
√
2(| 2〉− | 3〉). The convergence criterion is Pi→f > 0.999 to ensure that the final two

vibrational states |2〉 and |3〉 are equally populated. To satisfy the zero area condition in
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FIG. 2. The final control field and the corresponding Fourier power spectrum for the unconstrained

((a) and (b)) and ac field single-constrained ((c) and (d)) simulations.

Eq. (13) at s = 0, the initial control field E(0, t) is written as

E(0, t) = E0
[

ǫ(t)− 1

T

∫ T

0

ǫ(t)dt

]

, (15)

where E0 denotes the control field amplitude, and in this work we choose a transform-limited

laser field ǫ(t) = S(t) cos[ω0(t − t0)] with ω0 = 1600 cm−1, and t0 = T/2 = 300 fs. The

profile S(t) = exp[−4 ln 2(t − t0)
2/τ 2] has a full-width at half-maximum (FWHM) τ = 150

fs (bandwidth (FWHM) of 196 cm−1). The field amplitude E0 is chosen such that the initial

fluence is
∫ T

0
E2(0, t)dt = 0.125. The temporal grid was discretized with 2048 uniform time

steps.

We first consider the single-constraint case of finding a zero area control field. Figure

1 plots the pulse area (i.e., the dc component), the fluence of the final control field, and

the objective yield as a function of search effort (iteration) for the unconstrained and the

zero area field single-constrained control simulations. Figure 1 (a) shows that the pulse area

increases in magnitude with iteration when the zero area constraint is not imposed. As seen
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FIG. 3. The pulse area (a), fluence (b) and control objective (c) as a function of iteration for both

the unconstrained and the double-constrained simulations. Both unconstrained and constrained

optimizations were stopped at Pi→f = 0.999.

from Fig. 1 (b), the fluence of the optimized pulses in both cases increases. Figure 1 (c)

shows the monotonic convergence for the algorithm, which can be proved from Eq. (2). In

the present simulation, imposing the zero area constraint does not affect the convergence

rate, and the yield of Pi→f = 0.999 is successfully achieved for both unconstrained and

constrained cases.

Figure 2 shows the final time-dependent control fields and the corresponding Fourier

power spectra |E(ω)|2 for the unconstrained and the zero area single-constrained optimal

control simulations. The power spectrum beyond 3000 cm−1 is of little importance, because

the corresponding transition dipole moment, i. e., µ03 = 7.76 × 10−5 a.u. for transitions

|0〉 → |3〉 with transition frequency ~ω03 = E3 −E0 = 3945 cm−1, is much smaller than the

dominant ones µ01 = 0.9422×10−1 and µ02 = 6.945×10−3 [41] with the transition frequencies

equal to ∼ 1360 cm−1 and ∼ 2600 cm−1, respectively. The unconstrained final control

field in Fig. 2 (a) clearly shows asymmetric oscillations about E = 0 with substantially

larger negative amplitudes, and the corresponding power spectrum in Fig. 2 (b) contains a

pronounced dc component, in agreement with the results in Fig. 1 (a). On the other hand,

the subtle shift in the asymmetry for the zero area constrained final control field in Fig.

2 (c) consists of balanced positive and negative amplitudes, and the corresponding power

spectrum in Fig. 2 (d) has no dc component (as a result of a non-zero area). Both power
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FIG. 4. (a) the optimal control field, and (b) corresponding power spectrum for the double con-

straints of zero area field and fixed fluence constrained simulations.

spectra in Figs. 2 (b) and (d) are extremely broadband. Specifically, it was found in both

cases that the resultant optimal controls have two dominant transition frequencies, one at

∼ 1360 cm−1 corresponding to the |0〉 → |1〉 transition, and the other at ∼ 2600 cm−1

corresponding to the |0〉 → |2〉 and |1〉 → |3〉 transitions. This circumstance suggests the

presence of two constructively interfering pathways, |0〉 → |2〉 and |0〉 → |1〉 → |3〉 leading
to the objective state 1/

√
2(| 2〉− | 3〉). The peak at 1600 cm−1 found in the optimal fields

comes from the initial field and does not correspond to any existing transitions or their

combinations and may be suppressed by including further constraints on the control field.

The latter situation is demonstrated below by adding the constant pulse fluence constraint

described in Eq. (14). Finally, the frequency-domain constrained D-MORPH scheme [29]

may be solved in conjunction with the present time-domain constrained D-MORPH one for

removing the frequency components below ∼ 1000 cm−1 and above ∼ 2000 cm−1.

We now consider the double-constrained case of finding an optimal zero area control

field, while keeping the control field fluence constant. Figures 3 (a) and (b) respectively

give the pulse area and fluence as a function of iteration for both unconstrained and double

constrained simulations, showing that both constraints are satisfied by removing the dc

component while keeping the fluence of the control field constant. Figure 3 (c) demonstrates

that despite the strict double constraints, monotonic convergence to the optimal yield is

preserved.

Figure 4 shows the final optimized control field and corresponding power spectrum. The

control field in Fig. 4 (a) oscillates nearly symmetrically about zero. The power spectrum
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in Fig. 4 (b) consists of a main peak around 1350 cm−1 with a broadband width of 400

cm−1, which can cover all transition frequencies between neighboring vibrational states, and

a very small peak around 2600 cm−1, which corresponds to the direct transition frequencies

~ω02 = E2 − E0 = 2675 cm−1 and ~ω13 = E3 − E1 = 2586 cm−1. Interestingly, the highest

peak at 1600cm−1 in Figs. 2 (b) and (d) is virtually absent in Fig. 4 (b), showing that

including the fluence equality constraint further restricts the available control search space.

The negligible contributions from both low and high frequencies in Fig. 4 (b) does not

imply that the inclusion of the fluence constraint can generally serve to filter the spectrum

of control field. Additional control simulations (not shown) have been carried out using

initial control fields with higher fluence and it was found that the peak around 2600 cm−1

was further reduced, suggesting that at the larger field fluence the corresponding optimal

control pathways only involve single photon transitions between the immediate neighboring

levels. The final power spectrum depends not only on the Hamiltonian H0 of the quantum

system, but also on the initial field E(0, t) guess. For example, by varying the frequency as

well as the fluence of the initial field, the frequency distribution of the optimized control

field will be changed, indicating that there exist multiple transition pathways.

In practice, the dc component along with other unwanted frequencies can also be removed

by adding a spectral constraint, e.g., a bandpass filter throughout the optimization [8–

10], or more systematically, using a hybrid time-frequency D-MORPH scheme that solves

simultaneously the current time-domain constrained D-MORPH scheme and its frequency-

domain counterpart recently formulated [29].

IV. CONCLUSION

In summary, we have presented a monotonically convergent quantum optimal control

procedure for driving quantum systems towards desired control objective while talking into

account multiple functional equality constraints on the control fields. As illustrations, spe-

cial consideration is given to finding optimal control fields with (i) exact zero area and (ii)

exact zero area along with a constant fluence. With these constraints, we performed QOCT

simulations to maximize the vibrational state-to-state transition probability of the diatomic

molecule LiH in the ground electronic state. It is found that the optimal yield of the target

state can be successfully attained despite the additional constraints on the control field. The
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framework presented in this work is amenable to general quantum control optimal problems

subject to an arbitrary number of equality constraints in both the time and frequency do-

mains, either separately or simultaneously, and may have potential applications in quantum

physics including quantum information science [15].
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