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A 3-photon process for producing a degenerate gas of metastable alkaline-earth atoms

D.S. Barker,∗ N.C. Pisenti, B.J. Reschovsky, and G.K. Campbell
Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, MD 20742

We present a method for creating a quantum degenerate gas of metastable alkaline-earth atoms. This has
yet to be achieved due to inelastic collisions that limit evaporative cooling in the metastable states. Quantum
degenerate samples prepared in the 1S 0 ground state can be rapidly transferred to either the 3P2 or 3P0 state
via a coherent 3-photon process. Numerical integration of the density matrix evolution for the fine structure
of bosonic alkaline-earth atoms shows that transfer efficiencies of ' 90% can be achieved with experimentally
feasible laser parameters in both Sr and Yb. Importantly, the 3-photon process can be set up such that it im-
parts no net momentum to the degenerate gas during the excitation, which will allow for studies of metastable
samples outside the Lamb-Dicke regime. We discuss several experimental challenges to successfully realizing
our scheme, including the minimization of differential AC Stark shifts between the four states connected by the
3-photon transition.

I. INTRODUCTION

Alkaline-earth-like (AE) atoms have attracted experimen-
tal and theoretical interest due to their narrow optical reso-
nances and non-magnetic ground state. Recent experiments
have exploited these properties to study atom interferome-
try [1–3], atom clocks [4, 5], superradiant lasers [6], quan-
tum simulation [7–9], and molecular physics [10–13]. An
outstanding experimental challenge is the realization of quan-
tum degenerate samples of AE atoms in the metastable 3P2
and 3P0 states. These samples would be useful in a wide va-
riety of applications. For example, the 3P2 state has a perma-
nent electric quadrupole moment, and 3P2 degenerate gases
are a potential platform for quantum simulation [14] or for
studies of anisotropic collisions [15, 16]. Degenerate samples
of 3P0 atoms could help to advance atomic structure calcu-
lations [17–19], increase the accuracy of atomic clocks [20],
or generate highly entangled states [21]. Simultaneous coher-
ent manipulation of atoms in both 3P2 and 3P0 is required for
several proposed quantum computing schemes [22, 23].

Inelastic collisional losses, which are on the order of 10−10−

10−11 cm3/s, prevent direct evaporation of metastable AE
atoms to quantum degeneracy [24–28]. Previous experiments
used either incoherent excitation [24, 26, 28, 29] or coher-
ent excitation of a doubly-forbidden transition [27, 30, 31] to
transfer pre-cooled AE atoms to a metastable state. These
single-photon techniques necessarily impart momentum to
the sample during excitation, which limits their application
to either thermal atoms or to the Lamb-Dicke regime. Ad-
ditionally, addressing a doubly-forbidden transition is chal-
lenging due to the stringent requirements on the excitation
laser’s linewidth and the need for accurate spectroscopy of the
1S 0 →

3P0 (2) transitions, which has only been performed on
a few isotopes of AE atoms [32–36].

We propose a 3-photon excitation scheme for the creation
of degenerate gases in metastable states, which transfers the
atoms through the 1S 0 →

3P1 →
3S 1 →

3P0 (2) path. Dur-
ing the 3-photon process each atom absorbs two photons and
emits one, so an appropriate laser arrangement can elimi-
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FIG. 1. (Color Online) Laser configuration for the 3-photon exci-
tation scheme. A Bose-Einstein Condensate (BEC) sits in an Opti-
cal Dipole Trap (ODT) in a region with a uniform magnetic field,
~B = B ẑ. Three lasers cross at the BEC and drive the transi-
tion to the metastable state. These lasers address the 1S 0 →

3P1,
3P1 →

3S 1, and 3S 1 →
3P0 (2) transitions with Rabi frequencies

of Ω1S 0 ,3P1
, Ω3P1 ,3S 1

, and Ω3S 1 ,3P0 (2)
, respectively. The angles of in-

cidence, ϕ3P1 ,3S 1
and ϕ1S 0 ,3P1

, between the excitation laser beams
and the x-axis can be chosen so as to eliminate the net momentum
transfer to the condensate during the excitation process. The double
headed black arrows indicate the polarization of the optical fields,
which decomposes to either |σ = 1〉+ |σ = -1〉 or |σ = 0〉 in the
circular basis, depending on whether the laser is polarized parallel
or perpendicular to the magnetic field. The angle between the ODT
polarization vector and the magnetic field, θ, can be tuned to control
dephasing due to differential AC Stark shifts between the four atomic
states (see Section III).

nate the net momentum transfer to the atomic sample (see
Figure 1). All the transitions addressed in this scheme are
much broader than the doubly-forbidden transitions in AE
atoms (the smallest single-photon linewidth is ' 370 Hz for
Ca, ' 7.5 kHz for Sr, and ' 180 kHz for Yb), which sub-
stantially relaxes the laser linewidth requirements. For the 3-
photon process to be coherent, the three lasers must be phase-
locked. Although the necessary wavelengths potentially span
hundreds of nanometers (see Table II), the lasers can be stabi-
lized to each other with a cavity transfer lock, an electromag-
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netically induced transparency (EIT) lock, or a beatnote lock
to an optical frequency comb [37–42].

Here, we investigate the feasibility of the 3-photon scheme
by numerically integrating the Optical Bloch Equations
(OBEs) for the 13-level system of bosonic AE atoms (see
Figure 2). The simulations use linewidths and wavelengths
for strontium and ytterbium, but the generic results should
apply to calcium as well. We present the numerical results
and estimate the effective 3-photon linewidth in Section II.
Section III describes possible solutions to several experimen-
tal challenges, including ways to extend the lifetime of the
metastable sample and mitigate inhomogeneous broadening.
We summarize our results and discuss future outlook in Sec-
tion IV.

II. 3-PHOTON DYNAMICS

Figure 2 shows the 13 relevant Zeeman sublevels for
bosonic AE atoms and the coupling lasers needed for the 3-
photon transition. We label the states |`,mJ〉, where ` =
2S +1LJ is the term symbol for the state and mJ the projec-
tion of the total electronic angular momentum, J, onto the
z-axis. The optical field coupling level |`〉 to |`′〉 is given by
its electric field magnitude, E`,`′ = Ω`,`′/〈`

′‖ ~d ‖`〉, where Ω`,`′

is the single-photon Rabi frequency, 〈`′‖ ~d ‖`〉 is the reduced
dipole matrix element, and we have taken ~ = 1. The 1-
photon laser detuning is ∆3P1 , the 2-photon detuning is ∆3S 1 ,
and the 3-photon detuning is either ∆3P2 or ∆3P0 depending on
the desired final state. All the detunings, ∆`, are referenced
to the lowest energy Zeeman state of level |`〉. A magnetic
field, ~B = ΩBẑ/µB with µB the Bohr magneton, breaks the
degeneracy of the Zeeman states. This splitting allows indi-
vidual addressing of 3P0 or the mJ = ±2 states of 3P2. For
our calculation, we selected |3P2,±2〉 as the target states in
3P2 based on their large quadrupole moment [14] and favor-
able Clebsch-Gordan overlap with |3S 1,±1〉. Other 3P2 Zee-
man levels can be prepared using RF transitions, as has been
demonstrated in [29]. The laser polarizations, Zeeman split-
tings, and laser detunings must be carefully chosen to sup-
press dipole-allowed transitions to undesired states (see Fig-
ure 2). For example, the laser driving the |3P1〉 → |

3S 1〉 tran-
sition must be π polarized to prevent unwanted accumulation
of atoms in |3P1,±1〉.

In the rotating wave approximation, the Hamiltonian for the
system shown in Figure 2 is [43]:

Ĥ =
∑
`

J∑
mJ=−J

[
(∆` + gJ(mJ + J)ΩB) |`,mJ〉〈`,mJ |

+

( ∑
{`′,mJ′ }
> {`,mJ }

∑
σ

Ω`,`′

2
CGσ,mJ ,mJ′

`,`′

( |σ|
√

2
sin(α`,`′ ) e−i(σϕ`,`′+ π/2)

+ (1 − |σ| ) cos(α`,`′ )
)
|`′,mJ′〉〈`,mJ |

)
+ h.c.

]
.

(1)

The first term in the brackets represents the energy shift of the
Zeeman state |`,mJ〉 due to the laser detuning and magnetic
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FIG. 2. (Color Online) The Zeeman level structure of bosonic AE
atoms relevant for the 3-photon process. The colored double-headed
arrows indicate dipole-allowed transitions for each optical field af-
ter projection of its polarization onto the quantization axis. These
arrows are solid for the transitions closest to resonance and dotted
for transitions that are far off resonance. The polarization projection
depends on the angle, α`,`′ , between the laser polarization vector and
the magnetic field, ~B = ΩBẑ/µB (see Figure 1), where ` (`′) is the
term symbol of the lower (upper) state of the transition and we have
taken ~ = 1. The excitation laser strength is E`,`′ = Ω`,`′/〈`

′‖ ~d ‖`〉
with 〈`′‖ ~d ‖`〉 the reduced dipole matrix element. The detuning, ∆`,
is referenced to the lowest energy Zeeman state of |`〉. Here, we
have depicted a 3-photon transition to either |3P2,−2〉 or |3P0, 0〉,
but |3P2, 2〉 can be reached by reversing the magnetic field or de-
tuning each laser to the blue of the highest energy Zeeman state that
it addresses. RF transitions from |3P2,±2〉 can prepare other Zeeman
states in 3P2.

field, where gJ is the Landé g-factor. The second term and
its hermitian conjugate contain the off-diagonal couplings.
We denote the photon polarization basis states by |σ〉, with
σ ∈ {−1, 0, 1}. The laser connecting |`〉 to |`′〉 propagates at
an angle ϕ`,`′ relative to the x-axis and is linearly polarized
at an angle α`,`′ from the z-axis. These two angles control
the projection of the laser photon’s angular momentum onto
the quantization axis and the relative phase of the Rabi fre-
quencies, Ω`,`′ . For a coherent process, these phases are well-
defined and we take the Ω`,`′ to be real valued. The Clebsch-
Gordan coefficients, CGσ,mJ ,mJ′

`,`′
, set the relative strength of the

drive between different magnetic sublevels of |`〉 and |`′〉.
We incorporate the non-Hermitian component of the 3-

photon process using the density matrix formalism. The den-
sity matrix for our system is

ρ̂ =
∑
{`,mJ }

∑
{`′,mJ′ }

ρ{`,mJ }, {`
′,mJ′ }
|`,mJ〉〈`

′,mJ′ |. (2)

Each state’s population, ρ{`,mJ }, {`,mJ }, decreases at a rate given
by the sum of the natural decay rates, Γ` =

∑
`′ Γ`′,`, con-

necting it to lower states |`′〉. The coherence, ρ{`,mJ }, {`
′,mJ′ }

,
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FIG. 3. (Color Online) Results of the numerical integration of the
Optical Bloch Equations (OBEs) for bosonic AE atoms given in
equation (5). Solid curves show ground state populations while
dashed and dash-dotted curves show target state populations (|3P0, 0〉
and |3P2,−2〉, respectively). The populations in other states are negli-
gible and not shown. Each laser turns on instantaneously at time zero
and is instantaneously extinguished at time te. All the parameters for
these simulations can be found in Table I.

between states with distinct term symbols ` and `′ decays at
a rate Γ`,`′/2. Coherences between the magnetic sublevels,
|`,m1〉 and |`,m2〉 of a given |`〉 increase at a rate given by the
decay of upper states into |`〉 and the Clebsch-Gordan coef-
ficients governing the branching of those decays into |`,m1〉

and |`,m2〉. In order to account for all of these processes, we
define

ξ̂σ,`,`′ =
∑
m,m′

CGσ,mJ ,mJ′

`,`′
|`,mJ〉〈`

′,mJ′ |, (3)

which allows us to construct the Liouville operator between
|`〉 and |`′〉,

L̂ `,`′ =
Γ`,`′

2

∑
σ

[(
ξ̂σ,`,`′ ρ̂ ξ̂

†

σ,`,`′
− ξ̂†

σ,`,`′
ξ̂σ,`,`′ ρ̂

)
+ h.c.

]
. (4)

By combining equations (1) and (4), we arrive at the OBEs
for the system [43]

d
dt
ρ̂ = −i

[
Ĥ, ρ̂

]
+

∑
`,`′

L̂`,`′ . (5)

Once we insert the propagation angles, ϕ`,`′ , and the polar-
ization angles, α`,`′ , for the target state (either |3P2,±2〉 or
|3P0, 0〉, see Table I), the OBEs contain seven free parameters.
These are the detunings (∆3P1 , ∆3S 1 , and ∆3P0 (2) ), the magnetic
field strength, ΩB, and the three Rabi frequencies (Ω1S 0,3P1 ,
Ω3P1,3S 1 , and Ω3P0 (2),3S 1 ). Our objective is to find experimen-
tally reasonable values for the free parameters that produce
Rabi dynamics between |1S 0, 0〉 and the target state.

TABLE I. The input parameters and results for the simulations in
Figure 3. The peak population in the target state, ρπ, is reached after
an evolution time, tπ. By varying ∆3P0 (2)

in the simulations, we can
extract the full width at half maximum of the 3-photon resonance,
γ3-photon (see Figure 4). We quote detunings in units of the natural
decay rate of their associated level.

Sr, |3P2,±2〉 Sr, |3P0, 0〉 Yb, |3P2,±2〉 Yb, |3P0, 0〉

∆3 P1
−100 × Γ3P1

−470 × Γ3P1
−230 × Γ3 P1

−210 × Γ3P1

∆3S 1
−21.6 × Γ3S 1

−86.4 × Γ3S 1
−38.9 × Γ3S 1

−47.2 × Γ3S 1

∆3 P0 (2)
0 0 0 0

Ω1S 0 ,
3P1

2π × 0.25 MHz 2π × 0.25 MHz 2π × 1.5 MHz 2π × 1.5 MHz

Ω3P1 ,
3S 1

2π × 100 MHz 2π × 90 MHz 2π × 150 MHz 2π × 150 MHz

Ω3P0 (2) ,
3S 1

2π × 4.0 MHz 2π × 3.0 MHz 2π × 6.0 MHz 2π × 4.1 MHz

ΩB 2π × 10 MHz 2π × 10 MHz 2π × 10 MHz 2π × 10 MHz
α1S 0 ,

3 P1
90◦ 90◦ 90◦ 90◦

α3P1 ,
3S 1

0◦ 0◦ 0◦ 0◦

α3P0 (2) ,
3S 1

90◦ 90◦ 90◦ 90◦

ϕ1S 0 ,
3P1

−60.9◦ −59.6◦ −53.8◦ −51.5◦

ϕ3 P1 ,
3S 1

60.8◦ 59.5◦ 80.7◦ 73.3◦

ρπ 97.5% 94.0% 91.5% 91.0%
tπ 81.5 µs 112.3 µs 46.9 µs 51.4 µs
γ3-photon 10.0 kHz 7.2 kHz 17.6 kHz 15.5 kHz

We numerically integrate the OBEs and vary the input pa-
rameters to optimize the amplitude of Rabi oscillations. The
optical fields all turn on instantaneously at time zero and
uniformly illuminate the system for an evolution time, te, at
which point they are all instantaneously extinguished. For
both Sr and Yb, we find values of the detunings and couplings
that yield & 90% peak population transfer. Figure 3 shows the
evolution of the relevant diagonal elements of the density ma-
trix for these parameter sets. The transfer efficiency is slightly
higher for strontium than ytterbium, which is likely due to the
reduced linewidth of the 1S 0 →

3P1 line. The coherence of
the dynamics allows a degenerate gas to be transferred to a
metastable state with minimal heating. We plot the peak exci-
tation fraction of the target state as a function of the 3-photon
detuning in Figure 4. The width of these curves is a numerical
estimate of the 3-photon linewidth, which we extract from a
sinc2 fit to the numerical results. The fit captures the behavior
of the central peak, but deviates in the wings because the ac-
tual lineshape is a convolution of multiple broadening effects.
We find that the full width at half maximum is ' 10 kHz for Sr
and ' 20 kHz for Yb. We have not simulated the 3-photon dy-
namics for AE fermions due to the 10× (6×, 2×) larger Hilbert
space for 87Sr (173Yb, 171Yb). However, the results for bosons
suggest that high efficiency transfer of a spin-polarized Fermi
degenerate gas to a metastable state is possible.

III. EXPERIMENTAL CONSIDERATIONS

In Section II, we demonstrated that a coherent, 3-photon
excitation scheme can theoretically transfer a large population
fraction from |1S 0, 0〉 to |3P0, 0〉 or |3P2,−2〉. However, there
are several technical details that must be considered in order
to realize the 3-photon process experimentally. For example,
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FIG. 4. (Color Online) The excitation fraction of the target state,
|3P2,±2〉 (|3P0, 0〉), at tπ as a function of the 3-photon detuning is
shown in the top (bottom) row. The left column shows the results
for Sr and the right column shows the results for Yb. Except for
the 3-photon detuning, which is varied, the parameters for the sim-
ulations are identical to those used in Figure 3 and reported in Ta-
ble I. The sinc2 fits (solid lines) yield full widths at half maximum for
the 3-photon transitions to 3P2 (3P0) of 10.0 (7.2) kHz for Sr and of
17.6 (15.5) kHz for Yb. The amplitude mismatch between the wings
of the fit and the simulation is likely caused by the convolution of
power broadening and the transform limit.

the incident laser beams must be carefully aligned to mini-
mize the net momentum transfer to the degenerate gas during
excitation. The differential AC Stark shift between the four
Zeeman levels involved in the process must also be controlled
to avoid inhomogeneous broadening of the 3-photon transi-
tion. The elastic and inelastic interactions of the degenerate
gas could also broaden the 3-photon transition or affect the
utility of the resulting metastable sample.

For the 3-photon process to be successful, it must not ex-
cite center of mass oscillations or excessively heat the sam-
ple. During population transfer, an atom emits a photon into
the laser beam addressing 3P0 (2) →

3S 1 and absorbs one pho-
ton each from the other two lasers. Because three photons are
involved in the excitation, we can find angles of incidence,
ϕ`,`′ , that eliminate net momentum transfer to the degenerate
gas even though each photon carries distinct momentum. For
the laser configuration in Figure 1, the ϕ`,`′ are given by

k1S 0,3P1 cos(ϕ1S 0,3P1 ) + k3P1,3S 1 cos(ϕ3P1,3S 1 ) = k3S 1,3P0 (2)

k1S 0,3P1 sin(ϕ1S 0,3P1 ) + k3P1,3S 1 sin(ϕ3P1,3S 1 ) = 0,
(6)

where k`,`′ is the wavenumber for the |`〉 → |`′〉 transition. The
first equation in (6) represents the momentum transfer along
x̂ and the second is the transfer along ŷ (see Figure 1). The
angles for excitation to 3P0 (2) for both Sr and Yb are given in
Table I. Misalignment of any of the lasers will lead to heat-
ing during the 3-photon transfer. We can estimate the effect

of misalignment by comparing the recoil energy of the net
momentum after the 3-photon process (Er) to the level spac-
ing of the harmonic trapping potential (Etrap). If we assume
a trap frequency of 50 Hz and a ±1◦ error in either or both
of ϕ1S 0,3P1 and ϕ3P1,3S 1 , then Er/Etrap < 0.09 (0.07) for both
target states in Sr (Yb). Each of the lasers could also be mis-
aligned out of the xy−plane. For the worst combination of ±1◦

vertical alignment errors and the same 50 Hz trap frequency,
Er/Etrap < 0.27 (0.17) for either target state in Sr (Yb). Both
types of misalignment result in Er/Etrap substantially less than
unity, so the recoil heating should be insignificant.

The Rabi frequencies {Ω1S 0,3P1 , Ω3P1,3S 1 , Ω3P0,3S 1 , Ω3P2,3S 1 }

from Figure 3 correspond to saturation parameters, I/Isat, on
the order of {1000, 1000, 10, 1} (For Yb, the saturation for
Ω1S 0,3P1 is on the order of 100). For the 3P1 →

3S 1 tran-
sition, a laser beam can achieve the necessary intensity with
approximately 10 mW of power and a 1/e2 radius ' 400 µm.
The other transitions only require a beam with . 1 mW of
power and a waist ' 3 mm to reach the appropriate saturation.
Diode lasers can easily produce these powers and the requisite
waists are much larger than the typical dimensions of a degen-
erate gas, which will suppress dephasing due to the gaussian
intensity profile of the laser beams.

The three excitation lasers must be phase stabilized to better
than the 3-photon linewidth (see Figure 4 and Table I) in order
to produce coherent dynamics. The lasers for Sr have very
similar wavelengths (see Table II), and interrogation of the
1S 0 →

3P1 transition in Sr typically requires a high finesse
optical cavity to decrease that laser’s linewidth. This makes a
cavity transfer lock an appealing strategy, and cavity mediated
stability transfer at the . 10 kHz level has been demonstrated
in the context of Sr Rydberg excitation [42]. The excitation
wavelengths span a much larger range for Yb, which increases
the technical difficulty of a cavity transfer lock. The lasers
could instead be locked using a combination of cascade and
lambda type EIT [37, 38] or by stabilizing each laser with an
optical frequency comb [40, 41].

Ideally, the 3-photon excitation would occur in an optical
trap with no differential AC stark shift between any of the
coupled levels. However, due to the dipole-allowed transi-
tions between |3S 1〉 and the states in the 3PJ manifold, we
should expect that no practical wavelength satisfies this con-
dition. Intuition from 2-photon Raman processes suggests,
and simulations of our system verify, that trap induced shifts

TABLE II. The wavelengths and linewidths for the transitions in-
volved in the 3-photon process [44, 45]. Except for the 1S 0 →

3P1

transition in Yb, diode lasers can easily generate the requisite wave-
lengths.

`, `′
Sr Yb

λ`,`′ γ`,`′ λ`,`′ γ`,`′

1S 0,
3P1 689 nm 7.5 kHz 556 nm 180 kHz

3P0,
3S 1 679 nm 1.4 MHz 649 nm 1.5 MHz

3P1,
3S 1 688 nm 4.3 MHz 680 nm 4.3 MHz

3P2,
3S 1 707 nm 6.7 MHz 770 nm 6.0 MHz
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to the intermediate detunings (∆3P1 and ∆3S 1 ) contribute only
weakly to inhomogeneous broadening of the 3-photon tran-
sition. This allows population transfer to occur in a trap op-
erating at a magic wavelength that eliminates the differential
AC Stark shift between the initial and final states. The magic
wavelengths for |1S 0〉 and |3P0〉 are well known in Sr and Yb
because of their application to optical clocks [4, 5, 20]. To
search for magic wavelengths for |3P2,±2〉, we calculate the
polarizability (scalar and tensor) for each state involved in the
multi-photon transition following the procedure in [43, 46]
with lines from [44] and linewidths from [44, 47–52], for Sr,
and [44, 45, 53, 54], for Yb. We expect the calculated polariz-
abilities to predict magic wavelengths with better than ±10 nm
accuracy (the level at which it reproduces known magic wave-
lengths in Sr) except for the Yb 3P0 state, for which few ma-
trix elements are reported in the literature.

Figure 5 contains the results of our calculations for trap-
ping lasers polarized parallel and perpendicular to the mag-
netic field axis. The plots show the differential polarizabil-
ity between {|3P0, 0〉, |3P1,±1〉, |3P2,±2〉, |3S 1,±1〉} and the
ground state, |1S 0, 0〉. In the two upper panels of Figure 5,
we see two magic wavelengths for |1S 0, 0〉 and |3P2,±2〉 near
520 nm and 950 nm. The lower panels in Figure 5 indicate
that in Yb there is a magic wavelength for these two states
near 1100 nm. All of these magic wavelengths can be tuned
over a wide range (& 100 nm for the near-IR wavelengths)
by varying the dipole trap polarization angle, θ, between 0◦

and 90◦. In particular, the Yb |3P2,±2〉 magic wavelength
moves to 1064 nm when θ ≈ 66◦ and the green magic wave-
length in Sr is tunable over the range {508, 520} nm. We can
also see in Figure 5 that the near-IR magic wavelengths for
|3P1,±1〉 and |3P2,±2〉 have opposite angular dependence in
both Sr and Yb. This observation suggests the existence of
a doubly-magic wavelength, λ2×m, that eliminates differential
light shifts between |3P2,±2〉, |3P1,±1〉 and |1S 0, 0〉 when the
dipole trap is polarized at a magic angle, θ2×m. By varying
θ, we are able to identify one doubly-magic wavelength in Sr
and two in Yb (see Table III), which would allow further re-
duction of the trap-induced inhomogeneous broadening. We
note that the optical clock transition magic wavelengths can
also be made doubly-magic for both elements by tuning the
polarizability of |3P1,±1〉.

The remaining AC Stark shift of |3S 1〉 or |3P1〉 with respect
to the ground state inhomogeneously broadens the 3-photon
transition. This inhomogeneous broadening arises due to the
different harmonic confinement of |3S 1〉 and |3P1〉 compared
to the ground state. We estimate the scale of the broadening
by taking the difference between the ground state chemical po-
tential of the degenerate gas, µ1S 0 , and the chemical potential
it would have in |3S 1〉, µ3S 1 , or |3P1〉, µ3P1 . Typical degen-
erate gases have chemical potentials on the order of 1 kHz.
The excited state chemical potential is related to the ground
state chemical potential by the ratio of the polarizabilities of
the two states, assuming that the s-wave scattering lengths are
equal. For the magic wavelengths under consideration (see
Table III), the ratio of the |3S 1,±1〉 and |1S 0, 0〉 polarizabilities
for Sr (Yb) ranges from −0.1 to −10 (−2 to −40). This means
that the inhomogeneous broadening, µ1S 0 − µ3S 1 , should be
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FIG. 5. (Color Online) The AC polarizabilities of |3P0, 0〉 (solid or-
ange), |3P1,±1〉 (dotted blue), |3P2,±2〉 (dash-dotted magenta), and
|3S 1,±1〉 (dashed green) relative to |1S 0, 0〉 in atomic units. The top
two panels show the polarizability of Sr for ODT light polarized par-
allel and perpendicular to the quantization axis, respectively. The
bottom two panels are the corresponding plots for Yb. Every zero
crossing indicates a magic wavelength. We indicate the magic wave-
lengths of specific interest here using black arrows. For |3P2,±2〉 and
|3P1,±1〉, the laser polarization can tune the indicated magic wave-
lengths over a wide range (see Table III). Note that the position of
the |3P0, 0〉 and |3P2,±2〉 magic wavelengths flips with respect to
the |3P1,±1〉 magic wavelength in the near-IR as the polarization an-
gle changes from 0◦ to 90◦. This indicates the presence of a double
magic wavelength at a particular polarization angle that equalizes the
AC Stark shifts of three energy levels.
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TABLE III. Magic wavelengths and magic wavelength ranges for
the target states in the 3-photon process. We also list the double
magic wavelengths and associated angles that equalize the AC Stark
shifts of |3S 0, 0〉, |3P1,±1〉, and |3P2,±2〉 or |3P0, 0〉. For |3P0, 0〉,
magic wavelengths for fermionic isotopes are taken from [4, 20] and
rounded to the nearest nm.

Sr, |3P2,±2〉 Sr, |3P0, 0〉 Yb, |3P2,±2〉 Yb, |3P0, 0〉

λmagic
720−935 nm
508−520 nm

813 nm 780−1100 nm 759 nm

λ2×m 823 nm 813 nm 802 nm
1036 nm

759 nm

θ2×m 44◦ 55◦ 15◦

58◦
55◦

. 10 kHz for Sr and . 40 kHz for Yb. Because the inhomo-
geneous broadening due to |3S 1,±1〉 is substantially smaller
than the 2-photon detuning, its effect on the Rabi dynamics
should be negligible. Similarly, our reasoning implies that the
inhomogeneous broadening from |3P1,±1〉 will be . 5 kHz,
which is substantially smaller than the 1-photon detunings we
consider.

The s-wave scattering length of atoms in the metastable de-
generate gas will generally differ from the scattering length
of atoms in the ground state. This difference in interaction
strength will cause both a shift in the resonance frequency and
inhomogeneous broadening of the 3-photon transition. There
have been few measurements or calculations of the scatter-
ing lengths of metastable AE atoms [15, 30, 55, 56], so an
accurate estimate of this inhomogeneous broadening is not
possible. However, it is reasonable to assume that the inter-
action broadening will be on the order of the ground state
chemical potential, µ1S 0 , and thus only weakly perturb the 3-
photon dynamics since the intermediate detunings are large.
The inelastic collision rate for metastable AE atoms is on
the order of 10−10 − 10−11 cm3/s depending on the state and
species [24–28], while AE degenerate gases usually have den-
sities & 1013 cm−3 [57, 58]. We would thus expect the lifetime
of the metastable degenerate gas to be limited to ' 10 ms,
severely restricting the experimental timescale. However, sev-
eral AE atom isotopes (40Ca, 86Sr, 168Yb) have sufficiently
strong interactions to allow cooling to degeneracy at rela-
tively low densities (' 1012 cm−3) [59–61]. These isotopes
could also sympathetically cool other isotopes to degeneracy
at low density. Alternatively, recent advances in optical trap-
ping techniques might allow dynamic decompression of the
ground state degenerate gas at fixed trap depth [62, 63]. By
using either a strongly interacting isotope or a dynamically de-
compressed trap to generate a low density sample, the lifetime

of a metastable degenerate gas could be extended to ' 100 ms.
This timescale is sufficient for a wide variety of experiments,
and for |3P2〉 it could be extended even further using a mag-
netic Feshbach resonance [15]. The Bose-Einstein or Fermi-
Dirac statistics of the degenerate gas will suppress inelastic
collisions due to changes in the 2-particle correlation func-
tion (as has been observed for three-body loss processes in,
e.g., [64, 65]), potentially allowing longer sample lifetimes.

IV. CONCLUSIONS

We have proposed and studied a coherent 3-photon pro-
cess for creating quantum degenerate metastable samples of
AE atoms. Numerical simulations of the 3-photon Rabi dy-
namics show that ' 90 % population transfer to 3P0 (2) can
be achieved in Sr and Yb. Similar transfer efficiency should
be attainable in Ca as well. The smaller mass of Ca reduces
the linewidth of the 1S 0 →

3P1 transition (to ' 370 Hz),
which will increase the technical challenge of phase locking
the necessary lasers. The Rabi dynamics are fast compared
to reasonable trap oscillation frequencies, but slow compared
to typical experimental timing resolution. We considered sev-
eral experimental obstacles to implementation of the transfer
scheme. The excitation lasers require moderate laser power
(. 10 mW) with reasonable beam waists (& 100 µm) and can
be arranged to cancel the momentum kick during population
transfer. An optical dipole trap could operate near a doubly
magic wavelength to cancel the differential polarizability be-
tween three of the four states involved in the excitation. Even
in the worst case, the inhomogeneous broadening due to the
remaining state, 3S 1, is insignificant. The ratio of the detun-
ing from, and linewidth of, the remaining state (3S 1) to the
worst case inhomogeneous broadening induced by the trap is
large enough to render the broadening insignificant. A sim-
ilar argument applies to interaction induced broadening ef-
fects. By using an isotope with a large ground state s-wave
scattering length or by dynamically changing the trapping po-
tential to decompress the degenerate gas at fixed trap depth,
the lifetime of the final metastable sample could be extended
to ' 100 ms. The Bose or Fermi statistics of the metastable
sample suppress inelastic collisions [64, 65] and will increase
the lifetime further (potentially to several seconds for spin-
polarized Fermi degenerate gases). The 100 ms timescale is
long enough to perform useful experiments in the thermody-
namically 3-dimensional limit [17] or to adiabatically ramp on
an optical lattice to create a Mott insulating state for quantum
simulation experiments [14, 16].
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