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The standard closed-orbit theory is extended for the photodetachment of negative ions in a time-
dependent electric field. The time-dependent photodetachment rate is specifically studied in the
presence of a single-cycle terahertz pulse, based on exact quantum simulations and semiclassical
analysis. We find that the photodetachment rate is unaffected by a weak terahertz field, but oscillates
complicatedly when the terahertz pulse gets strong enough. Three types of closed classical orbits are
identified for the photoelectron motion in a strong single-cycle terahertz pulse, and their connections
with the oscillatory photodetachment rate are established quantitatively by generalizing the standard
closed-orbit theory to a time-dependent form. By comparing the negative hydrogen and fluorine
ions, both the in-phase and antiphase oscillations can be observed, depending on a simple geometry
of the contributed closed classical orbits. On account of its generality, the presented theory provides
an intuitive understanding from a time-dependent viewpoint for the photodetachment dynamics
driven by an external electric field oscillating at low frequency.

PACS numbers: 32.80.Gc, 31.15.xg

I. INTRODUCTION

Quantum effects from closed (or periodic) classical or-
bits in a microscopic system have been explored in many
different branches of physics[1]. One of the most typical
processes in atomic and molecular physics is the pho-
toionization of neutral atoms or the photodetachment
of negative ions in external fields[2]. Its studies often
promise an intuitive picture of the embedded dynamics,
which not only reveals an interesting correspondence be-
tween classical and quantum mechanics, but also allows a
better control and manipulation on a microscopic scale.
The general physical picture and formalism are known
as closed-orbit theory[3–5] which has been applied or ex-
tended in different situations. However, almost all the
systems investigated before are time independent and
therefore energy conserving[6–15]. Time-dependent sys-
tems have been rarely studied, the one exception being
the photoionization of neutral atoms in a static electric
field plus a weak oscillating field[16, 17]. In this paper, we
demonstrate an application of closed-orbit theory for the
photodetachment of negative ions in a time-dependent
electric field.

Many kinds of specific field profiles, like a microwave
field or a low-frequency laser pulse, could be applied to
study the time-dependent effect of an external field on
the photodetachment rate of negative ions. Recently, a
strong single-cycle terahertz (THz) pulse has been avail-
able in a table-top experiment. As a result of its simplic-
ity and other peculiarities, the single-cycle THz pulse has
been applied in exploring the ionization dynamics of Ry-
dberg atoms[18–20], as well as controlling the alignment
and orientation of polar molecules[21, 22]. Inspired in
part by these results, we consider the possibility of using

∗Electronic address: robichf@purdue.edu

a single-cycle THz field to manipulate the photodetach-
ment dynamics of negative ions. Temporal interferences
in the time-dependent electron flux (or the angle-resolved
energy spectrum) at large distances were investigated in
a previous paper[23], by extending the original idea for
traditional photodetachment microscopy in a static elec-
tric field[24–27]. The classical trajectory of the photo-
electron was tracked from the negative-ion center to a
large distance. We found that some trajectories could
return to the source region when the single-cycle pulse is
strong enough. This observation of closed classical orbits
constitutes the main motivation of this work.

Following the general picture depicted by closed-orbit
theory[3–5], an external field can modulate the photon
absorption rate in the photoionization and photodetach-
ment processes by driving back an outgoing electron wave
to the source region where the initial bound state is lo-
calized. The returning electron wave interferes with the
outgoing wave near the source center. Each closed classi-
cal orbit corresponds to one sinusoidal term in the total
modulation function. Therefore, an oscillatory photode-
tachment rate should be expected if the applied single-
cycle THz pulse is strong enough that the electron can be
driven back to the source region. This is indeed observed
in our quantum simulations for a strong THz pulse. In
Fig. 1, a representative case is shown for the negative
hydrogen ion (H−). It can be observed that the pho-
todetachment rate is quite stable in a weak THz pulse
with the maximum field strength Fm = 10kV/cm, but
oscillates in a complex way when a stronger THz pulse is
used such as Fm = 40kV/cm. By examining the classical
trajectories, no closed orbit is found for Fm = 10kV/cm
while, three different types of closed orbits are found
when Fm = 40kV/cm. These observations are qualita-
tively consistent with the general predictions of closed-
orbit theory. To quantitatively understand the oscilla-
tory behavior as in Fig. 1(b), we have to generalize the
existing formulas to include time-dependent field effects.
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FIG. 1: (Color online) (a) Field configurations reproduced
from Ref. [23] with a slightly modification. The gray curve
and the solid red line represent the weak laser field and the
single-cycle THz pulse, respectively, divided by their corre-
sponding field amplitudes. The laser-field oscillation cannot
be resolved due to its high frequency. (b) Time-dependent
photodetachment rate obtained from exact quantum simula-
tions for H−. The THz pulse strengths Fm are given in the leg-
end for different lines, respectively. All the curves are normal-
ized using the value of the photodetachment rate at t = 0ps
without the single-cycle pulse applied (Fm = 0kV/cm).

It turns out that the generalized formulas agree very well
with exact quantum simulations.

Comparing with the well-established closed-orbit the-
ory for the photodetachment dynamics in a static elec-
tric field[14, 15], the generalized formulas mainly have
two differences as follows. (a) A static electric field can
always guarantee one and only one closed orbit, and the
oscillation phases are opposite between the photodetach-
ment rates from an s-wave source like negative fluorine
ion (F−) and a p-wave source like H−. While, in a time-
dependent electric field, no closed orbit exists if the max-
imum momentum transfer is not large enough, but more
than one closed orbit may be found if the field is strong.
Determined by a simple property of each closed orbit,
both the in-phase and antiphase oscillations can be ob-
served by comparing the time-dependent photodetach-
ment rates of H− and F−. (b) An electron’s kinetic
energy is conserved if it was driven back to the ion by
a static field. In contrast, when the electron is driven
back by a time-dependent electric field, its kinetic energy
is usually different from its initial value. Consequently,
each sinusoidal term in the total modulation function is
multiplied by an additional coefficient related to both the
electron’s outgoing and returning momenta along the cor-
responding closed classical orbit.

Although the single-cycle THz pulses are specifically

studied, the presented theory is quite general. The re-
lated formulas can be used directly for the photodetach-
ment of negative ions in any other forms of the time-
dependent electric field, as long as the whole photode-
tachment process can be divided approximately into two
steps: one-photon absorption from a weak laser field fol-
lowed by the photoelectron motion in the applied exter-
nal field. The only additional work needed for a spe-
cific system is to identify all the possible closed classi-
cal orbits. We note that an experiment has been done
for the photodetachment of negative chlorine ions in a
microwave field[28, 29], and several theoretical studies
have also been reported[29–31]. However, all of the previ-
ous time-dependent treatments assumed the applied field
varied slowly enough that the electron was driven by
a constant electric field during each detachment event,
which approximately corresponds to the situation in the
reported experiment[28, 29]. In this sense, our current
work provides further insight into the general cases of a
time-dependent electric field.
In the following section, the theoretical model with a

specific single-cycle THz pulse is briefly summarized, as
well as the numerical method we used for quantum sim-
ulations. The three types of closed classical orbits are
identified in Sec. III, and their corresponding returning
waves are specified in Sec. IV. The general formulas for
the time-dependent photodetachment rate are presented
in Sec. V by extending the standard closed-orbit the-
ory for the photodetachment of negative ions in a static
electric field. Some calculations and discussions are pre-
sented in Sec. VI, followed by a brief conclusion in Sec.
VII. Atomic units are used throughout this work unless
specified otherwise.

II. THEORETICAL MODEL AND NUMERICAL
APPROACH

We choose to study the photodetachment of negative
ions (H− and F−) in a single-cycle THz pulse as a specific
system, based on several simple reasons as introduced
above. Most importantly, this system has almost all the
essential elements expected for the other general cases,
which can be seen clearly in the following sections. In
addition, a numerical solution of Schrödinger’s equation
is also possible as long as the single-cycle pulse strength
is not extremely large as in Fig. 1(b), which allows us to
examine the accuracy of closed-orbit theory.
The details of the theoretical model has been described

in Ref. [23]. Here, we give a brief summary and present
the necessary equations related to our present work. We
assume the weak laser field and the applied single-cycle
THz pulse are both linearly polarized along the z-axis.
The influence of the THz pulse is negligible on the initial
ground state of the negative ion. The much higher fre-
quency of the laser field relative to the THz pulse allows
the whole photodetachment process to be approximated
as two successive steps: the weakly-bound electron in a
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short-range potential well is first released by absorbing
one photon from the weak laser field, and then the pho-
toelectron motion after escaping from the atom center is
mainly guided by the single-cycle THz pulse.
As in our previous paper[23], we restrict the weak laser

field within a finite width as in Fig. 1(a). The specific
envelope function has the following form,

fL(t) =
1

2

[
tanh

(
t− tu
tL

)
− tanh

(
t− td
tL

)]
, (1)

where td = −tu = 4tw with tw denoting the single-cycle
pulse duration in the following Eq. (3). The parame-
ter tL is selected to be large enough so that the possible
acceleration and deceleration effects are negligible in the
outgoing electron wave when the field envelope is ramp-
ing on and off. For example, the photon energy ~ωL used
for H− is 0.8eV in Fig. 1(b), and tL = 80T0 with T0 ap-
proximately 4.6fs after the convention in Ref. [23]. For
F−, the weak-laser field frequency is chosen to give the
same electron kinetic energy E0 as for H−, allowing us
to examine effects caused by the different angular dis-
tributions of the initially-outgoing electron waves. For
those laser parameters listed above, the generated outgo-
ing wave at each initial time ti can be written as

ψ0(r, θi, φi, ti) = fL(ti)ψout(r, θi, φi)e
−iE0ti , (2)

with its amplitude following the laser-field envelope ap-
proximately, where (r, θi, φi) denote spherical coordi-
nates of the electron relative to the rest atom. The
spatial function ψout(r, θi, φi) corresponds to the time-
independent outgoing wave generated by a CW laser.
The applied single-cycle THz pulse is assumed to have

a Gaussian-shape vector potential,

A(t) = −Fmtw√
2
e
−

t
2

t2
w

+ 1

2 , (3)

which gives a time-dependent single-cycle electric field
as in Fig. 1(a) with F (t) = −dA(t)/dt. tw = 0.5 ps
in Fig. 1, and its value may be changed for the other
calculations. Both the quantum propagation approach
and the semiclassical propagation scheme have been de-
scribed in Ref. [23] for the evolution of the generated
electron wave driven by a single-cycle THz pulse. For
a sufficiently strong THz pulse as in Fig. 1(b), an exact
quantum simulation is possible. The details can be found
in Ref. [23], and the basic idea is to solve the following
inhomogeneous Schrödinger equation

[
i
∂

∂t
−
(
Ha +HF (t)− E0

)]
Ψ̃(r, t) = fL(t)Dϕi (4)

on a two-dimensional space spanned by the discretized
radial points and angular momentum basis with differ-
ent l values. The source term on the right-hand side of
Eq. (4) comes from the interaction of negative ions with
a weak laser field, whereD and ϕi represent, respectively,

the dipole operator and the initial bound state of nega-
tive ions. The atomic Hamiltonian [p2/2+V (r)] and the
interaction term [F (t)z] with a single-cycle THz pulse
are denoted, respectively, by Ha and HF (t) on the left-
hand side of Eq. (4). The specific forms of the binding
potential V (r) for H− and F− are taken from Ref. [32]
and Ref. [33], respectively. The corresponding binding
energies Eb are 0.02773 a.u. and 0.125116 a.u. for H−

and F−, respectively, by diagonalizing the atomic Hamil-
tonian matrix in a large radial box.

The wave function Ψ̃(r, t) in Eq. (4) multiplied by
a phase term exp(−iE0t) is the detached-electron wave
function at each time instant with a single-cycle THz
pulse applied. Therefore, the time-dependent photode-
tachment rate Υ(t) can be calculated as[17]

Υ(t) =
d

dt

∫
Ψ̃∗(r, t)Ψ̃(r, t)d3r . (5)

In practice, we found that quantum simulations for Υ(t)
can be done efficiently in a smaller radial box than that
in Ref. [23], by using a mask function M(r > rc) =
1− α[(r − rc)/(rm − rc)]

2δt to absorb the wave-function
part approaching a large distance after each time step
δt. The calculation of Υ(t) is done in each time step

before the wave function Ψ̃(r, t) multiplied by the mask
function. The absorbing strength α, the beginning point
rc of the mask function and the radial box boundary
rm should be adjusted carefully to make the numerical
results convergent. For our calculations in this work,
we consistently use α = 0.005. The appropriate values
of rc and rm can be chosen by referring to the classical
turning points of the possible closed orbits discussed in
the following section. For instance, rc = 6500 a.u. and
rm = 8000 a.u. for Fig. 1(b) with Fm = 40kV/cm. For
Fm = 0kV/cm and Fm = 10kV/cm in Fig. 1(b), we did
not use the mask function.

III. CLOSED CLASSICAL ORBIT

For our purpose here, we need to find all the possible
closed classical orbits returning back to the atom center.
The electron orbit equation has been obtained as[23]

ρ(t) = k0(t− ti) sin(θi) , (6)

z(t) = [k0 cos(θi)−A(ti)](t− ti) +

∫ t

ti

A(t′)dt′ (7)

in the cylindrical coordinates (ρ, z) with the atom center
at the origin, where k0 =

√
2E0. By setting ρ(t) = 0 and

z(t) = 0, we get the following condition for the possible
closed orbits:

[k0 cos(θi)−A(ti)](t− ti) = −
∫ t

ti

A(t′)dt′ (8)

with θi = 0 or π. This criteria can be expressed geo-
metrically as in Fig. 2(a), where the rectangular area
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FIG. 2: (Color online) Graphic demonstration of the possible
closed classical orbits in a strong single-cycle THz pulse. The
specific case in Fig. 1(b) for Fm = 40kV/cm is used as an
example. The panels titled by (i)-(ii) are two possible cases
for θi = 0, and (iii)-(iv) for θi = π. In each panel, the top sub-
plot is a geometric expression of Eq. (8), and the bottom one
shows the corresponding trajectory. For each trajectory, the
position of the vertical bold solid line (blue online) indicates
the starting time while, the vertical bold dashed lines (red on-
line) locates its returning time. Both the starting and return-
ing time instants are marked accordingly along each closed
orbit (solid curve) in (b), (d), (f) and (h), where the horizon-
tal bold dashed line shows the ion-center location, with the
dotted line representing the continuation of each trajectory.

below the horizontal dashed line and the shaded area
below the reversed vector-potential curve (−A(ti)) are,
respectively, the left- and right-hand sides of Eq. (8).
The solution to Eq. (8) requires an equivalent of these
two areas. Note that the crossings between the horizon-
tal dashed line and the reversed vector-potential curve
correspond to the spatial turning points (pz(t) = 0) of
each trajectory, and their corresponding time is

t0< = −t0> = −tw

√
ln

[
Am

A(ti)− k0

]
(9)

for θi = 0, and

tπ> = tw

√

ln

[
Am

A(ti) + k0

]
(10)

for θi = π with Am = −Fmtw exp(1/2)/
√
2 denoting the

amplitude of the vector potential in Eq. (3).

After a simple geometric analysis in Fig. 2, we can
easily determine the possible range of the starting and
returning time for each closed orbit. In Fig. 2(a) and
2(c) for θi = 0, the horizontal dashed line must cross the
reversed vector-potential curve, which requires

|A(ti)−Am| > k0 and ti < 0, if θi = 0. (11)

Therefore, the starting time ti of the possible closed orbit
must be negative and less than −tw

√
ln[Am/(Am + k0)].

The corresponding two returning time instants tret01 and
tret02 satisfy t0< < tret01 ≤ t0> and tret02 ≥ t0>, respec-
tively. In addition, the position of the second turning
point z(t0>) cannot be positive for the trajectory return-
ing back. In Fig. 2(e) and (g) for θi = π, the same
argument related to the crossing as for θi = 0 leads to

−A(ti)− k0 > 0 and |A(t)−Am| > k0, if θi = π. (12)

Accordingly, only the classical trajectories starting be-
tween −tw

√
ln(−Am/k0) and tw

√
ln(−Am/k0) can be

driven back to the source region. The returning time
must be positive and larger than tw

√
ln[Am/(Am + k0)].

Furthermore, the returning time should also be later than
the time of the turning point.
For each closed orbit, the exact starting and return-

ing time can be found numerically according to Eq. (8).
Figure 3(a) shows the starting time of each closed orbit
as a function of the corresponding returning instant with
Fm = 40kV/cm. To be clear, we have categorized all
the possible closed orbits into three types according to
their outgoing angle and returning direction. The first-
type closed orbit starts with θi = 0 and goes back with
θret = π, which includes the first-time returned trajectory
in Fig. 2(a)-(b) and the special case shown in Fig. 2(c)-
(d). The second-time returned trajectory as in Fig. 2(a)-
(b) is the second-type closed orbit with θi = θret = 0.
The other two cases depicted in Fig. 2(e)-(h) correspond
to the third-type closed orbit with θi = π and θret = 0.
These three types of closed orbits are distinguished in
Fig. 3(a) by the blue solid curve, the red dotted and the
black dashed lines in order. The joint point between the
blue solid curve and the red dotted line in Fig. 3(a) repre-
sents a special situation as demonstrated in Fig. 2(c)-(d),
which we call a soft return after Refs. [34, 35]. In this
case, the atom-center location is just a turning point of
the electron trajectory, and pz = 0 when the electron
returns back to the atom center.

IV. SEMICLASSICAL RETURNING WAVE

For an electron propagating along each classical tra-
jectory, the corresponding quantum wave can be con-
structed approximately in a semiclassical way. To ob-
tain the semiclassical returning wave, we first choose
an initial spherical surface of radius R centered at the
negative ion. As in the standard procedure[5, 14], the
small radius R is selected near the atom center such that
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the initially-outgoing wave is already asymptotic but not
obviously distorted by external fields. Accordingly, the
time-independent function ψout(R, θi, φi) in Eq. (2) has
the following spherically-outgoing wave form[26]

ψout(R, θi, φi) = C(k0)Ylm(θi, φi)
eik0R

R
, (13)

on the initial spherical surface. C(k0) is a complex
energy-dependent coefficient, and Ylm(θi, φi) is a spher-
ical harmonic function representing the initial angular
distribution of the generated photoelectron wave. For
instance, H− and F− considered in this work represent
a p-wave source and an s-wave source, respectively. The
semiclassical wave corresponding to each trajectory can
be written as[17, 23]

ψν(t) = fL(ti)ψout(R, θi, φi)Aνe
i(Sν−E0ti−λν

π

2
) (14)

where the subscript ν labels the considered trajectory. A
and S denote, respectively, the semiclassical amplitude
and classical action accumulated in an augmented phase
space. The Maslov index λ is determined by the number
of singularities in A along the trajectory.
When the electron wave returns back to the source

region, the returning wave behaves like a plane wave
approximately[14, 15], traveling along the returning di-
rection of the closed classical orbit. Therefore, by con-
necting the semiclassical wave in Eq. (14) to a plane
wave form, the electron returning wave along each closed
orbit can be approximated as

ψν
ret(t) = fL(ti)e

−iE0tψ̃ν
ret (15)

with the reduced function ψ̃ν
ret specifically expressed as

ψ̃I
ret = C(k0)GcoYlm(θi = 0)e−ikretz , (16)

ψ̃II
ret = C(k0)GcoYlm(θi = 0)eikretz , (17)

ψ̃III
ret = C(k0)GcoYlm(θi = π)eikretz , (18)

for the wave parts returned along the three types of closed
orbits as in Fig. 3(a), respectively. Note that the return-
ing electron momentum kret in Eq. (16)-(18) is gener-
ally different from the initial momentum k0 when a time-
dependent electric field is applied, which is different from
the case of a static field. In the above equations,

Ylm(θi = π) = (−1)lYlm(θi = 0) = (−1)lNl0δm0 , (19)

with Nl0 =
√
(2l + 1)/(4π) , and the factor

Gco =
A
R
ei(S̃−λπ

2
) (20)

representing the wave amplitude and phase accumulated

along each closed orbit. The redefined action function S̃
in Eq. (20) has the following form

S̃ = S + E0(t− ti) , (21)

−2
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FIG. 3: (Color online) (a) Returning time plot for the rele-
vant closed orbits in Fig. 1(b) and Fig. 2, giving the initial,
outgoing time ti for each possible closed orbit returning back
to the atom center at time t. The three types of closed orbits
are identified in order by the solid blue curve, the dotted and
the dashed lines. (b) Time-dependent photodetachment rate
for H−. The bold dashed curve is given by Eqs. (35), (36)
and (37) from closed-orbit theory (COT), while, the solid blue
curve is from exact quantum simulations by directly solving
the time-dependent Schrödinger equation (TDSE) in Eq. (4).
(c) Comparison between the photodetachment rates for H−

(thin and blue curve) and F− (bold and red line), obtained
from quantum simulations. All the quantum results have been
normalized using the value of the photodetachment rate at
t = 0ps without any external fields applied.

which is called an “extended action” in Ref. [17].
The general expressions for the semiclassical ampli-

tude A and classical action S have been obtained in Ref.
[23] for the electron wave propagating along any classical
trajectories in a time-dependent external field. For the
closed classical orbits involved here, we have

A
R

=
1

k0(t− ti)

∣∣∣∣
k0

k0 − F (ti)(t− ti) cos(θi)

∣∣∣∣
1/2

(22)

from Eq. (28) in Ref. [23] with θi = 0 or π, which can
be rewritten as an intuitive form (Appendix A)

A
R

=
1

k0(t− ti)

∣∣∣∣
pz(ti)dti
pz(t)dt

∣∣∣∣
1/2

(23)

with pz(ti) and pz(t) denoting, respectively, the outgoing
and returning momenta of the corresponding closed or-
bit. Note that the absolute-square-root part on the right-
hand side of Eqs. (22) and (23) becomes a unity when
the energy is conserved, and Eqs. (22) and (23) reduce to
a static-field case as in [14, 15]. Based on Eq. (23), the
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Maslov index λ can be determined from the returning-
time plot as in Fig. 3(a). For example, if θret = θi = 0
as the second-type closed orbit in Eq. (17), λ = 0 when
the slope dt/dti in Fig. 3(a) is positive, otherwise λ = 1.

From Eq. (B9) in Ref. [23], the “extended action” S̃ in
Eq. (36) can be obtained as (Appendix A)

S̃ =
[
k20+

1

2
A2(ti)−A(ti)k0 cos(θi)

]
(t−ti)−

1

2

∫ t

ti

A2(t′)dt′

(24)
by using the condition in Eq. (8) for a trajectory return-
ing back to the source region.

V. CLOSED-ORBIT THEORY

Following the general picture established in Refs. [3–
5, 17], the total photodetachment rate Υ(t) in Eq. (5)
can be decomposed as

Υ(t) = Υ0(t) +
∑

ν

Υν(t) (25)

where

Υ0(t) = −2 Im〈I(t)|ψdir(t)〉 (26)

is a smooth background representing the photodetach-
ment rate without any external fields, and

Υν(t) = −2 Im〈I(t)|ψν
ret(t)〉 (27)

is contributed by the returning electron wave ψν
ret(t) asso-

ciated with the ν-th closed orbit. The wave-source func-
tion I(t) in Eqs. (26) and (27) has the following form

I(t) = fL(t)e
−iE0tDϕi (28)

which is the source term on the right-hand side of Eq.
(4) multiplied by a phase term exp(−iE0t). The smooth
background in Eq. (26) can be worked out as

Υ0(t) = f2
L(t)k0|C(k0)|2 (29)

according to the existing formulas in Ref. [15] after in
Eq. (26) using the directly-outgoing wave ψdir(t) given
by Eq. (2) and the wave-source function I(t) in Eq. (28).
To calculate the contributed term from the returning

electron wave, we first rewrite Eq. (27) as

Υν(t) = −2fL(t)fL(ti)Im〈Dϕi|ψ̃ν
ret〉 (30)

using the expressions of the returning wave in Eq. (15)
and the wave source function in Eq. (28). The overlap
integration in Eq. (30) between a static wave source Dϕi

and a reduced returning wave ψ̃ν
ret is now in a familiar

form usually encountered when a static field is applied.
Accordingly, the same manipulations as in Ref. [15] can
be followed, and the final expression is (Appendix B)

Im〈Dϕi|ψ̃ν
ret〉 =

g
l

2
(2l+ 1)δm0Im

[
C∗(k0)C(kret)G∗

co

]

(31)

where g = 1 for a closed orbit with the same outgoing
and returning directions as in Eq. (17), and g = −1 for a
closed orbit with opposite outgoing and returning direc-
tions as in Eqs. (16) and (18). Therefore, the sinusoidal
term Υν(t) in Eq. (25) corresponding to each closed orbit
is obtained as

Υν(t) = g
lfL(t)fL(ti)(2l + 1)δm0

×C∗(k0)C(kret)
A
R

sin
(
S̃ − λ

π

2

)
(32)

by substituting Eq. (31) into Eq. (30). To write down
Eq. (32), we have assumed that the energy-dependent
coefficient C(k) is either a real function or a pure imagi-
nary function as discussed in Refs. [36, 37].
Finally, the closed-form expression for the photode-

tachment rate can be written as a product like

Υ(t) = ΥcH(t) (33)

by combining Eqs. (25), (29) and (32) together, where

Υc = k0|C(k0)|2 (34)

representing the photodetachment rate in a weak CW
laser field with fL(t) = 1, and

H(t) = f2
L(t) +

∑

ν

fL(t)fL(t
ν
i )Hν(t) (35)

containing both the possible effects induced by an exter-
nal field and the slowly-varying envelope fL(t) assumed
for the weak laser field. In the summation of Eq. (35),
one of the laser-field envelope function fL(t) is evaluated
at ti, which was brought in by the initially-outgoing wave
in Eq. (2) through the returning wave in Eq. (15). The
presence of the prefactor fL(t)fL(ti) in Eq. (35) requires
the occurrence of the laser excitations at both the instant
ti and t, as well as a quantum coherence between these
two excitation events. H(t) in Eq. (35) is usually called
a modulation function of the photodetachment rate, and
Hν(t) corresponds to the contribution from each closed
orbit, which can be explicitly written as

Hν(t) = g
l(2l + 1)δm0

C(kret)

C(k0)

A
k0R

sin
(
S̃ − λ

π

2

)
(36)

from Eqs. (32)-(35). Required by a Wigner power
law such as Υc ∝ (k0)

2l+1 near the photodetachment
threshold[38], the energy-dependent coefficient C(k) is
proportional to kl for small k. For H− especially, an an-
alytic form of C(k) needed in Eq. (36) has been given by
a well-established model in Refs. [26, 39], and

C(kret)

C(k0)
=
kret(Eb + E0)

2

k0(Eb + Eret)2
(37)

with Eret = k2ret/2. For E0 ≪ Eb and Eret ≪ Eb, Eq.
(37) reduces to that given by the Wigner threshold law.
At the end of this section, we would like to point out

that no specific profile has been assumed for the applied



7

electric field in the above derivation. All the formulas
obtained in this section are generally applicable for the
photodetachment in a time-dependent electric field oscil-
lating at low frequency, which automatically includes the
static-field case as in Refs. [14, 15]. Since the semiclassi-
cal propagation scheme and its related formulas in Ref.
[23] were also presented in a general form for the elec-
tron propagating along any classical trajectories, the es-
tablished theory, with Ref. [23] together, provides an in-
tuitive understanding for the photodetachment dynamics
driven by a slowly-varying oscillating electric field, which
depicts a clear dynamical picture from a time-dependent
viewpoint based on the classical trajectory propagation.

VI. CALCULATIONS AND DISCUSSIONS

In this section, we present some specific calculations
using Eqs. (35) and (36) for the photodetachment driven
by a single-cycle THz pulse as illustrated in Fig. 1(a), as
well as the related discussions on the possible interest-
ing effects expected from the current theory. The exact
quantum simulations are also presented for several cases
to examine the accuracy of the simple formulas in Eqs.
(35) and (36). For H− as a p-wave source, the expression
in Eq. (37) is used. For F− as an s-wave source, we con-
sistently use C(kret)/C(k0) = 1 after the Wigner power
law near the photodetachment threshold.
The photodetachment rate given by the generalized

closed-orbit theory is compared with that from exact
quantum simulations in Fig. 3(b) by taking the demon-
strated case in Fig. 1 (b) for instance. Excellent agree-
ment can be found in the time range where the elec-
tron can be classically driven back to the source region.
Near the classical boundary corresponding to the left-
most points of the solid blue line and the dashed black
curve in Fig. 3(a), the results from closed orbit theory
diverge as usual because dt/dti = 0 in the semiclassical
amplitude as in Eq. (23). Besides, as shown by the quan-
tum simulations in Figs. 3-5, the oscillatory behavior of
the photodetachment rate can also be observed in the
classically forbidden range where no closed classical or-
bit was found, and the oscillation amplitude goes to zero
gradually with time t away from the classical boundary.
The above mentioned oscillation behavior in the clas-

sically forbidden region looks similar to that observed
in Ref. [40] for a static barrier, where the continua-
tion of the cross-section oscillations beyond the standard
closed-orbit theory was explained as an effect of quan-
tum over-barrier reflection. However, our current time-
dependent system is more complicated than the static
case in Ref. [40]. To quantitatively describe those ex-
tended oscillations in the classically forbidden region, as
well as to repair the divergence near the classical bound-
ary as in Fig. 3(b), some sophisticated manipulations
are needed beyond our current treatment based on real
classical trajectories[11, 15, 40]. Nevertheless, the semi-
classical formulas obtained in Sec. V are already insight-

ful enough to understand the physics behind the com-
plicated oscillations of the photodetachment rate as in
Fig.1 (b). Therefore, in the following discussion, we will
mainly focus on the physics revealed by Eqs. (35) and
(36), instead of pursuing an appropriate way to save the
semiclassical description near the classical boundary and
in the classically forbidden region. In addition, it can be
seen from Figs. 3-5 that quantum effects in the classi-
cally forbidden region become negligible when the THz
pulse gets stronger relative to the initial electron kinetic
energy.

Beyond the specific case of H−, the established theory
in Sec. V promises an interesting discrepancy between
the oscillation behaviors of the photodetachment rates
for different negative ions. To give a general impression,
the photodetachment rate for F− is also displayed in Fig.
3(c) from quantum calculations, where both the oscilla-
tion amplitude and phase are very different from those
observed for H−. Since the oscillations in Fig. 3 are too
complicated to give any clear information, we choose to
first examine the two simpler cases in Figs. 4 and 5,
where the time ranges corresponding to the three types
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FIG. 4: (Color online) Phase dependence on a simple geome-
try of the closed orbit. (a) Returning time plot for the relevant
closed orbits. The solid blue curve, the dotted and the dashed
lines correspond to the closed orbits with (θi = 0, θret = π),
θi = θret = 0 and (θi = π, θret = 0), respectively. (b)-(c)
give the time-dependent photodetachment rate for H− and
F−, respectively. The bold dashed and the solid blue curves
are given by closed-orbit theory and quantum simulations,
respectively. (d) Comparison between the photodetachment
rates for H− (thin and red curve) and F− (bold and gray line),
obtained from quantum simulations. All the quantum results
have been normalized using the value of the photodetachment
rate at t = 0ps without any external fields applied.
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FIG. 5: (Color online) The same as Fig. 4 but for higher
photon energy and larger field strength as listed on the top.
Here, tL in Eq. (1) was set to be 50T0 as in Ref. [23].

of closed orbits are almost separated between each other,
supported qualitatively by the graphic analysis as in Fig.
2 with Eqs. (9) and (10) together. Comparing with those
parameters in Fig. 3, the field strength is smaller in Fig.
4 while the photon energy is higher in Fig. 5. For both
the two cases in Figs. 4 and 5, a good agreement be-
tween closed-orbit theory and quantum calculations can
also be found in the classically allowed range for closed
classical orbits. By comparing H− and F− in each case
as in Figs. 4(d) and 5(d), different phase relations can
be observed in different time ranges for the oscillations
of the photodetachment rates.

According to Eq. (36) for each specific closed orbit,
the modulation phase for different negative ions is only
determined by a g-coefficient associated with a simple
geometry of the closed orbit. If the contributed closed
orbit has the opposite outgoing and returning directions
as those identified by the solid and the dashed curves
in Figs. 3(a), 4(a) and 5(a), the pre-factor g

l can be 1
or −1, depending on whether the quantum number l is
even or odd. Therefore, the photodetachment-rate for
H− (p-wave source) oscillates out of phase with that for
F− (s-wave source) in the corresponding time ranges. In
contrast, if the outgoing and returning directions of the
closed orbit are the same like the second-type closed orbit
indicated by the dotted lines in Figs. 3(a), 4(a) and 5(a),
then the pre-factor g

l = 1 for all the l values. Accord-
ingly, the photodetachment rates for H− and F− oscillate
in phase in the time range of the second-type closed or-
bit. These arguments based on the g-coefficient in Eq.
(36) successfully explain the different phase relations be-
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FIG. 6: (Color online) Amplitude dependence on the return-
ing electron momentum for H−. The thin solid and red curves
in (a), (b) and (c) are reproduced from the bold dashed lines
in Figs. 3(b), 4(b) and 5(b), respectively, for comparison.
The bold gray lines are calculated from Eq. (36) without the
term C(kret)/C(k0) included.

tween the oscillatory curves for H− and F− in different
time ranges of Figs. 4(d) and 5(d).

More interestingly, near t ∼ 0.3ps in both Figs. 4
and 5 where time ranges for the first- and second-type
closed orbits overlap, the oscillation amplitude of the
photodetachment rate for H− becomes smaller but the
amplitude for F− gets larger. This is also caused by the
g-coefficient. For H−, gl = −1 and 1 for the first- and
second-type closed orbits, respectively. Therefore, the
total contributions from these two closed orbits at each
time becomes smaller because of a large-part cancelation
between each other in Eq. (35). For F−, both types
of closed orbits have g

l = 1, and accordingly their in-
coherent summation in Eq. (35) makes the oscillation
amplitude larger. Nevertheless, the same phenomenon
does not appear in Fig. 3(c), which cannot be simply
explained by the g-coefficient. Note that the closed or-
bits starting near ti = −2ps need a much longer time to
be driven back to the source region than those starting
near ti = 0ps do. Consequently, their contributions in
Eq. (35) are negligible compared with those contributed
by the closed orbits starting much later, as a result of
their associated much weaker amplitudes A according to
Eq. (22). This can be seen clearly in the overlap range
near t = 0.4ps in Fig. 3(c), where the oscillation behav-
ior is dominated by the second-type closed orbit, and the
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FIG. 7: (Color online) (a)-(c) Comparison between the time-
dependent calculations from Eq. (35) (heavy thin curves)
and a static-field approximation after Eq. (38) (light bold
lines) by increasing the single-cycle pulse duration. (d) The
returning time plot for the relevant closed orbits in (c). The
solid blue curve, the dotted and the dashed lines correspond
to the closed orbits with (θi = 0, θret = π), θi = θret = 0 and
(θi = π, θret = 0), respectively.

photodetachment rates for H− and F− oscillate in phase.
Following Eq. (36), the modulation amplitude is gen-

erally affected by both the energy-dependent coefficient
C(k) and the angular distribution of an initially outgo-
ing wave. Specifically, for an s-wave source like F−, the
effect of C(k) is negligible according to the Wigner power
law near the photodetachment threshold. However, for a
p-wave source like H−, the effect of C(k) is not negligi-
ble in principle according to Eqs. (36) and (37), and the
change of the electron returning momentum kret relative
to the initially-outgoing momentum k0 might modify the
oscillation amplitude of the photodetachment rate dra-
matically. As a demonstration, the correct semiclassical
results in Figs. 3(b), 4(b) and 5(b) are compared in Figs.
6(a)-6(c), respectively, with their modified calculations
according to Eq. (36) without the term C(kret)/C(k0)
included. Note that the modified results give an oscil-
lation amplitude only determined by the factor (2l + 1)
in Eqs. (35) and (36) for the same types of closed or-
bits. By comparing Figs. 6(a)-6(c) and Figs. 3(c),
4(d) and 5(d) correspondingly, we can conclude that the
oscillation-amplitude discrepancy between the photode-
tachment rates for H− and F− in Fig. 3(c) is mainly
caused by the different l values associated with the wave
source property, while, the almost equal oscillation am-
plitudes observed in both Figs. 4(d) and 5(d) are induced
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FIG. 8: (Color online) Comparison between the time-
dependent calculations from Eq. (35) (heavy thin curves) and
a static-field approximation after Eq. (38) (light bold lines)
by increasing the single-cycle pulse strength.

by the change of the returning momentum related to the
external time-dependent field.

A dynamic picture of the electron-momentum varia-
tion and also the difference between kret and k0 can be
obtained visually from a graphic demonstration of Eq.
(8) as in Fig. 2. The vertical vector from the reverted
vector-potential curve to the horizontal dashed line as
in Fig. 2(a) is just the electron momentum vector at
each time instant. The specific case illustrated in Fig.
2 corresponds to Fig. 3 and Fig. 6(a). There is no big
difference observed between kret and k0 in Fig. 2 for
most cases, especially for the first-time returning orbit in
Fig. 2(a) and those closed orbits as in Fig. 2(g) which
contribute dominantly to the final oscillation amplitude
because of their short durations. This explains the small
discrepancy between the modified results and the correct
calculations in Fig. 6(a). Besides the overall agreement,
an obvious discrepancy can be found near t = 0.2ps in
Fig. 6(a). This is because the electron experiences a soft
return as in Fig. 2(c) where the returning momentum
is zero. Accordingly, as shown in Fig. 6(a), the oscilla-
tion amplitude from correct calculations appears smaller
than that given by the modified results without the term
C(kret)/C(k0) included in Eq. (36).

There are mainly three differences between the cases
in Figs. 6(b) and 6(c) and that in Fig. 6(a). First, all
the closed orbits almost contribute equally to the oscilla-
tion amplitudes in Figs. 6(b) and 6(c) as a result of their
similar durations. Second, compared with those param-
eters in Fig. 6(a), the field strength is weaker in Fig.
6(b) and the photon energy is higher in Fig. 6(c). If we
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make a corresponding change in Fig. 2 after Fig. 4(a)
or Fig. 5(a), the obtained returning momenta are almost
always smaller than the initial values. This is the main
reason why the modified results give a larger amplitude
than the correct calculations in Figs. 6(b) and 6(c). The
third important difference is that the time range for the
first- and second-type closed orbits in Figs. 4(a) and 5(a)
is much more localized near the time instant of a soft re-
turn than that in Fig. 3(a). This is another origin for the
large discrepancy observed near t ∼ 0.4ps in Figs. 6(b)
and 6(c). An additional interesting effect related to the
soft return is the discontinuity of the modified results as
in Fig. 6, which is caused by the sign change of gl on the
two sides of the softly-returning time.

Another interesting aspect related to our present work
is about the static-field approximation in a long wave-
length limit of the applied oscillating field. As introduced
in Sec. I, it has been found that the static-field approxi-
mation for each photodetachment event works very well
for an experiment in a strong microwave field[28, 29].
Our current theory has already allowed us to examine
this simple quasi-static picture from a time-dependent
viewpoint. For this purpose, we take H− for instance,
and compare the time-dependent photodetachment rate
given by Eq. (35) with the quasi-static result obtained
from[14, 15]

HF (t) = f2
L(t)

[
1 +

1

SF
cos(SF )δm0

]
, (38)

where SF = 4
√
2E

3/2
0 /(3|F (t)|) denoting the classical ac-

tion of an electron returned back to the source region
along the unique closed orbit in a static electric field.
Some specific calculations are shown in Figs. 7 and 8
by varying the single-cycle pulse duration and strength,
respectively. It can be found that the time-dependent
calculations indeed approximate the quasi-static results
gradually when the field oscillation period gets longer
or the field strength becomes larger. The agreement
observed in Figs. 7 and 8 is best near the field peak
position and worst near the zero-field locations. How-
ever, the contribution in the time-averaged observations
mainly comes from the oscillations near the field peak
position because both the oscillation amplitude and pe-
riod near the zero-field locations are too small to give a
finite averaged signal, which confirms the validity of the
static field approximation used before. In Fig. 7(d), the
returning-time plot is given for the relevant closed or-
bits in Fig. 7(c), which illustrates the physics behind the
agreement observed in Figs. 7 and 8. Although the three
types of closed orbits as in Fig. 2 are all being there,
only those closed orbits located near the line t = ti in
Fig. 7(d) have an observable effect in the oscillation am-
plitude of the photodetachment rate, because their du-
rations t − ti are much shorter than the others, and the
associated returning-wave amplitudes A in Eqs. (22) and
(23) are large enough.

VII. CONCLUSION

Motivated by our recent studies on the temporal inter-
ferences in the photodetachment of negative ions driven
by a single-cycle THz pulse[23], we examined the possi-
ble influences of a single-cycle THz pulse on the time-
dependent photodetachment rate. We found that a weak
THz pulse cannot change the total photodetachment
rate. However, if the applied THz pulse gets strong
enough, the photodetachment rate oscillates complicat-
edly. On the other hand, we noticed that some classi-
cal trajectories of the photoelectron can be driven back
to the source region by a strong single-cycle THz pulse.
These observations remind us of a general picture al-
ready recognized in the standard closed-orbit theory[3–5],
which addresses the correspondence between the oscilla-
tory photoionization (or photodetachemnt) rate and the
possible closed classical orbits embedded in the system.

To quantitatively understand the complex structures
observed in the time-dependent photodetachment rate,
the standard closed-orbit theory for the photodetach-
ment in a static electric field has been generalized to a
time-dependent form which agrees well with exact quan-
tum simulations. The established formulas reveal a sim-
ple dependence of the photodetachment-rate oscillations
on the properties of both the wave source and the closed
classical orbits existing in the system. Depending on the
relative direction of the returning orbit with respect to its
initially-outgoing direction, the photodetachment rates
for different negative ions such as H− and F− might
oscillate in phase or out of phase. In contrast to the
case of a static electric field[14, 15], the oscillation am-
plitude of the photodetachment rate contributed by each
closed orbit has an additional term determined by the
electron returning momentum which is usually different
from the initially-outgoing momentum. As the applied
electric field gets stronger or its oscillation period be-
comes longer, the oscillatory behavior of the photode-
tachment rate is more and more like that obtained from
the static-field approximation as in Refs. [28, 29].

The presented theory provides a clear and intuitive
picture for the photodetachment dynamics driven by a
general time-dependent electric field. Benefiting from
the correlation between the electron launch time and its
later-returning time, a similar pump-probe technique as
in Ref. [41] may be a possible candidate in future experi-
ments for exploring the quantum effect of closed classical
orbits from a time-dependent viewpoint. An immediate
application of the current theory would be the photode-
tachment of negative ions in a static electric field plus a
strong oscillating electric field, where the averaged pho-
todetachment rate can be detected as in Ref. [16]. For a
weak oscillating field, the perturbation formulas in Ref.
[17] can be used. More interesting physics can be ex-
pected when the oscillating field amplitude is comparable
to or even larger than the static field strength, which is
also an interesting topic in future studies.
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Appendix A: THE DERIVATION OF EQS. (23) and
(24)

The electron motion equation can be formally written
as

ρ = ρ(ti, θi, t) and z = z(ti, θi, t) (A1)

in the cylindric-coordinate frame. If we fix the elec-
tron final destination (ρ, z) but let the other parameters
change, the following partial differential equation can be
obtained,
(
∂ρ

∂t

)

ti,θi

(
∂t

∂ti

)

ρ,z

+

(
∂ρ

∂θi

)

ti,t

(
∂θi
∂ti

)

ρ,z

= −
(
∂ρ

∂ti

)

t,θi

(A2)
which can be explicitly written as

sin θi

(
∂t

∂ti

)

ρ,z

+ (t− ti) cos θi

(
∂θi
∂ti

)

ρ,z

= sin θi (A3)

using Eq. (6). Similarly, we have

[
k0 cos θi +A(t) −A(ti)

]( ∂t

∂ti

)

ρ,z

− k0(t− ti) sin θi

×
(
∂θi
∂ti

)

ρ,z

= k0 cos θi − F (ti)(t− ti) (A4)

from Eq. (7). After eliminating the partial derivative(
∂θi
∂ti

)
ρ,z

in Eqs. (A3) and (A4), we get

(
∂t

∂ti

)

ρ,z

=
k0 − F (ti)(t− ti) cos θi
k0 + [A(t) −A(ti)] cos θi

. (A5)

For the closed orbits returning back to the atom center,
the partial derivative

(
∂t
∂ti

)
ρ,z

becomes dt/dti, and Eq.

(23) is obtained by combining Eqs. (A5) and (22) and
also using pz(t) = k0 cos θi +A(t) −A(ti) with θi = 0 or
π.
The classical action S along an arbitrary trajectory has

been obtained as[23]

S = E0(t− ti) + z(t)∆pz(t)−
1

2

∫ t

ti

[∆pz(t
′)]2dt′ (A6)

with the momentum transfer

∆pz(t) = A(t)−A(ti) . (A7)

For the closed orbits, z(t) = 0, and the action S can be
unfolded as

S = E0(t− ti)−
1

2
A2(ti)(t− ti)

+A(ti)

∫ t

ti

A(t′)dt′ − 1

2

∫ t

ti

[A(t′)]2dt′ (A8)

by substituting Eq. (A7) into the last integration in Eq.
(A6). The closed-orbit condition in Eq. (8) allows the
above equation to be further simplified as

S =
[
E0+

1

2
A2(ti)−A(ti)k0 cos θi

]
(t−ti)−

1

2

∫ t

ti

A2(t′)dt′

(A9)
which gives Eq. (24) after the definition in Eq. (21).

Appendix B: THE DERIVATION OF EQ. (31)

To be clear, we write the oscillatory term Υν(t) in Eq.
(30) as the following form

Υ±z(t) = −2fL(t)fL(ti)Im〈Dϕi|ψ̃(±z)
ret 〉 (B1)

where the notation ±z is used to indicate the returning
direction of the closed orbit. Specifically,

ψ̃
(+z)
ret = C(k0)GcoYlm(θi, φi)e

ikretz (B2)

representing the returning electron wave along the
positive-z direction, and

ψ̃
(−z)
ret = C(k0)GcoYlm(θi, φi)e

−ikretz (B3)

denoting the returning wave along the negative-z direc-
tion. In both Eq. (B2) and Eq. (B3), θi can be 0 or π,
and the complex term Gco is given by Eq. (20).

The overlap integration 〈Dϕi|ψ̃(±z)
ret 〉 in Eq. (B1) has

almost the same form as that studied in Ref. [15] ex-
cept that the electron returning momentum kret is not
conserved in our current system. On the other hand, we
note that the inhomogenous Schrödinger equation

(1
2
∇2 +

1

2
k2 − V (r)

)
ψ̃
(k)
out = Dϕi (B4)

should be valid for any values of the momenta k, where

the related outgoing wave ψ̃
(k)
out has the same asymptotic

form as in Eq. (13) but with a different momentum value.
Therefore, the same idea used in Appendix A of Ref. [15]
can also be implemented, and the imaginary part of the
overlap integration in Eq. (B1) can be converted to

Im〈Dϕi|ψ̃ret〉 =
1

2
Im

∫ (
ψ̃out∇rψ̃

∗

ret − ψ̃∗

ret∇rψ̃out

)
dsr

(B5)
after replacing the source term Dϕi by the outgoing wave

function ψ̃
(kret)
out with k = kret in Eq. (B4). The integra-

tion in Eq. (B5) is on a spherical surface with a radius r
centered at the negative ion.
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Following Appendix B in Ref. [15], the two relevant
integrations in Eq. (B5) can be worked out as,

∫
ψ̃out∇r

[
ψ̃
(±z)
ret

]∗
dsr

=
1

2
(±1)lClm

√
4π(2l+ 1)

[
1 + ei(2kretr−lπ)

]
δm0 (B6)

and
∫ [

ψ̃
(±z)
ret

]∗∇rψ̃outdsr

= −1

2
(±1)lClm

√
4π(2l + 1)

[
1− ei(2kretr−lπ)

]
δm0, (B7)

where

Clm = C(kret)C
∗(k0)G∗

coY
∗

lm(θi, φi) . (B8)

The expression in Eq. (31) is obtained by substituting
Eqs. (B6) and (B7) into Eq. (B5) with Eqs. (B8) and
(19) together. Note that the r-dependent terms in Eqs.
(B6) and (B7) cancel each other.
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[34] A. Kästner, U. Saalmann, and J. M. Rost, Phys. Rev.

Lett. 108, 033201 (2012).
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