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Abstract
Many systems under control with an applied field also interact with the surrounding environment. Understanding the control

mechanisms has remained a challenge, especially the role played by the interaction between the field and environment. In order
to address this need, here we expand the scope of the Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-
OD was originally introduced as a theoretical and experimental tool for revealing the mechanism induced by control fields in
closed quantum systems. The results of open system HE-OD analysis presented here provide quantitative mechanistic insights
about the roles played by a Markovian environment. Two model open quantum systems are considered for illustration. In
these systems, transitions are induced by either an applied field linked to a dipole operator, or Lindblad operators coupled to
the system. For modest control yields, the HE-OD results clearly show distinct cooperation between the dynamics induced by
the optimal field and the environment. Although the HE-OD methodology introduced here is considered in simulations, it has
an analogous direct experimental formulation, which we suggest may be applied to open systems in the laboratory to reveal
mechanistic insights.

I. INTRODUCTION

The control of quantum systems, particularly utiliz-
ing optimization techniques, is showing increasing suc-
cess [1–11]. Understanding the underlying mechanisms
that achieve optimal control is a subject of much interest
[2, 12–17]. The Hamiltonian-encoding and observable-
decoding (HE-OD) methodology has provided a feasi-
ble means for systematic mechanism extraction in closed
quantum systems [18–26]. Within HE-OD, a quantum
pathway is defined as a set of physically relevant tran-
sitions connecting an initial to a final state(s), and the
associated pathway amplitudes each have a modulus and
phase extracted from the Dyson expansion that quanti-
fies the pathway’s importance in the underlying dynamics
[18, 27]. The mechanism extracted through the HE-OD
procedure is given as the set of pathway amplitudes of
significant magnitude. During a HE-OD experiment or
simulation, the system Hamiltonian is perturbated (en-
coded) in a specific manner such that the resultant non-
linear distortion of a recorded output signal of the system
can be analyzed (decoded) to extract the pathway am-
plitudes. In addition to mechanism extraction [25], this
technique has also been further developed into a tool to
guide the controls for the experimental or simulated ma-
nipulation of the significant pathways taken by the dy-
namics through the system’s coupled set of states [26].

In practice, many quantum systems interact with their
environment during the time that the control field is on.
To explore the control mechanism in such open quan-
tum systems, the effects of dissipative and dephasing pro-
cesses have to be considered[28–35]. As a specific exam-
ple, in the context of population transfer in multilevel
systems, Shuang and Rabitz observed that optimal con-
trol fields and decoherence processes can cooperate with
each other in the case of achieving modest control yields
utilizing a strongly interacting environment [36]. How-

ever, the detailed nature of this cooperation reflected in
the contributions of various types of quantum pathways
(i.e., either induced by the external field or by the de-
coherence terms due to the environment) were not de-
termined. Here, we revisit these circumstances to re-
veal the distinct cooperative contributions of the applied
field and decoherence processes through an extension of
HE-OD that allows for the treatment of open quantum
systems. First, the theoretical framework of HE-OD for
open quantum systems is developed. Then, two simple
model open quantum systems are considered to illustrate
the treatment of environmental effects in the expanded
open HE-OD technique. The results from application of
HE-OD quantitatively demonstrate the nature of the co-
operation between the field and environment, confirming
the previous qualitative analysis [36].

The paper is organized as follows. Section II introduces
the theoretical framework of HE-OD for open quantum
systems. Although HE-OD could be adopted to a va-
riety of system-environment models, the present treat-
ment considers the Markovian limit with a Lindblad term
added to the dynamical equations. Section III illustrates
the concepts with two multilevel quantum systems inter-
acting with the environment, and HE-OD is employed
to extract amplitudes clearly characterized as quantum
pathways induced by either (i) the dipole, (ii) mixed
dipole-environment interactions, or (iii) the environment.
A discussion of the results and concluding remarks are
given in Section IV. The latter section also provides a
sketch of how HE-OD may be applied directly in the lab-
oratory to open quantum systems.
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II. HE-OD METHODOLOGY FOR OPEN QUAN-
TUM SYSTEMS

A. The Lindblad equation in Liouville space

The state of a closed quantum system can be repre-
sented by a wavefunction |ψ(t)〉 whose evolution is gov-
erned by the Schrödinger equation:

i
d

dt
|ψ(t)〉 = [H0 − µE(t)] |ψ(t)〉 . (1)

Here H0 is the unperturbed Hamiltonian, µ is the tran-
sition dipole operator, and E(t) is the control field, and
h̄ has been absorbed into H0 and µ for convenience.

With the eigenstates of H0 as the basis set
{|n〉 , n = 1, 2 . . . , d}, the wavefunction can be expanded
as |ψ(t)〉 = ∑

n |n〉 cn (t). The corresponding density op-
erator

ρ (t) = |ψ(t)〉 〈ψ(t)| =
∑

nm

ρnm (t) |n〉 〈m| (2)

with

ρnm (t) = cn (t) c
∗
m (t)

evolves as

i
dρ (t)

dt
= [H0 − µE(t), ρ (t)] . (3)

In the absence of interactions with the environment
the evolution of the system is unitary. On the other
hand, when the environmental effects are not negligible
the system will follow non-unitary evolution. Assuming a
Markovian environment, the evolution can be described
by the Lindblad master equation [37]

∂ρ (t)

∂t
= −i [H0 − µE (t) , ρ (t)] + ηF {ρ (t)} , (4)

where

F {ρ (t)} =

d2−1
∑

j=1

(

LjρL
+
j − 1

2
L+
j Ljρ−

1

2
ρL+

j Lj

)

, (5)

with {Lj} and η being, respectively, Lindblad operators
and the system-environmental coupling strength param-
eter.

The density operator ρ can conveniently be written
with double bracket notation in Liouville space [38]

|ρ (t)〉〉 =
∑

m,n

ρmn(t) |mn〉〉 , (6)

and then Eq. (4) can be further simplified as

i
dρjk(t)

dt
=

∑

m,n

Hjk,mn(t)ρmn(t), (7)

which is similar to Eq. (1) except that the dimension here
is the square of the corresponding dimension in Hilbert
space. The structure of H will be specifically shown in
the illustrations in Section III.

B. HE-OD procedures

The definition of quantum pathways for open quan-
tum systems is analogous to that for closed systems [18–
20, 22], but with the addition of environmentally induced
transitions along with those that have the dual charac-
ter of being associated with the system (i.e., dipole) and
the environment simultaneously. In Liouville space, the
density operator |ρ (t)〉〉 at time t, evolves from the den-
sity operator |ρ (0)〉〉 at time 0, through the generally
non-unitary evolution operator U (t)

|ρ (t)〉〉 = U (t) |ρ (0)〉〉 . (8)

The time dependence of the evolution operator can be
derived from Eq. (7)

i
dU (t)

dt
= H (t)U (t) , (9)

which can be expressed through a Dyson expansion in
Liouville space

U (t) = I + (−i)
t
ˆ

0

H(t1)dt1

+ (−i)2
t
ˆ

0

H(t2)

t2
ˆ

0

H(t1)dt1dt2 + · · · (10)

The transition amplitude from the the initial state
|aa〉〉 (i.e., state |a〉 in Hilbert space) to the final
state |bb〉〉 (i.e., state |b〉 in Hilbert space) is given by
〈〈bb| U (t) |aa〉〉, which can be written as a summation of
quantum pathway amplitudes

〈〈bb| U (t) |aa〉〉 =
∑

n,{lplq,...}

Un(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′

1l1)

bb,aa (t),

(11)
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with

Un(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′

1l1)

bb,aa (t)

=(−i)n
t
ˆ

0

〈〈bb| H (tn)
∣

∣

∣
l
′

n−1ln−1

〉〉

×
tn
ˆ

0

〈〈

l
′

n−1ln−1

∣

∣

∣
H (tn−1)

∣

∣

∣
l
′

n−2ln−2

〉〉

× . . .×
t2
ˆ

0

〈〈

l
′

1l1 |H(t1)| aa〉
〉

dt1 · · · dtn−1dtn.

Here the amplitude Un(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′

1l1)

bb,aa (t) corre-

sponds to the transition from state |aa〉〉 to state |bb〉〉
through the sequence of n intermediate steps |aa〉〉 →
∣

∣

∣l
′

1l1

〉〉

→ · · · →
∣

∣

∣l
′

n−2ln−2

〉〉

→
∣

∣

∣l
′

n−1ln−1

〉〉

→ |bb〉〉,
which constitutes a nth order pathway linking state |aa〉〉
and state |bb〉〉.

Similar to the operations of HE-OD in a closed Hilbert
space, the HE-OD methodology in Liouville space also
consists of encoding the Hamiltonian H (t) → H (t, s)
in a special fashion as a function of a variable s such
that each relevant pathway amplitude in Eq.(11) has
a unique signature in the output 〈〈bb| U (t) |aa〉〉 →
〈〈bb| U (t, s) |aa〉〉 [18, 23, 25, 26]. In our simulations,
an encoding is performed with the aid of the elements in
the matrix Γ

Γ =











γ11,11 γ11,12 · · · γ11,dd
γ12,11 γ12,12 · · · γ12,dd

...
...

...
...

γdd,11 γdd,12 · · · γdd,dd











, (12)

and the detailed use of Γ will be evident below and in
the illustrations. Importantly, there is flexibility in the
choice of the elements of Γ (some of which may be zero)
in keeping with the goal of uniquely identifying the de-
sired pathway amplitudes in Eq.(11) from the output
〈〈bb| U (t, s) |aa〉〉 as a function of s.

In simulations, the HE-OD procedure consists of a se-
quence of N calculations at s = 1, 2, . . . , N , each result-
ing in an encoded system output (i.e., here, an element

of U (t, s), on the LHS of Eq.(15) below). During the en-
coding step, any desired element of the Hamiltonian ma-
trix (H)jk,mn can be modulated with an encoding func-
tion of s conveniently taken to have the Fourier form
exp(2πiγjk,mns/N) such that

(H)jk,mn → (H)jk,mn e
2πiγjk,mns/N , s = 1, 2, . . . , N.

(13)
Then Eq. (9) becomes

i
dU(t, s)
dt

=













H11,11e
2πiγ11,11s/N · · · H11,dde

2πiγ11,dds/N

...
...

...
Hdd,11e

2πiγdd,11s/N · · · Hdd,dde
2πiγdd,dds/N













U(t,s),

(14)

whose solution is given by

〈〈bb| U (t, s) |aa〉〉

=
∑

n,{lplq,...}

Un(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′

1l1)

bb,aa (t)

×Mn(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′

1l1)

bb,aa (s) (15)

with

Mn(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′

1l1)

bb,aa (s)

=exp
[

2πiγn(l′n−1ln−1,l
′
n−2ln−2,...,l

′
1l1)

s/N
]

(16)

γn(l′n−1ln−1,l
′
n−2ln−2,...,l

′
1l1)

=γbb,l′n−1ln−1
+ γl′n−1ln−1,l

′
n−2ln−2

+ . . .+ γl′1l1,aa
.

(17)

The frequencies {γjk,mn} are chosen as special positive
integers (or zero in some cases) to make the set of relevant
frequencies γn(l′n−1ln−1,l

′
n−2ln−2,...,l

′
1l1)

unique for each in-

vestigated specific pathway. As a result, the decoding

functions Mn(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′

1l1)

bb,aa are orthogonal and
unique for the investigated pathways:

1
N

∑N
s=1 M

n(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′
1l1)

bb,aa (s)∗M
n’(p

′

n−1pn−1,p
′

n−2pn−2,...,p
′
1p1)

bb,aa (s)=δ
n(l

′
n−1

ln−1,l
′
n−2

ln−2,...,l
′
1l1),n’(p

′
n−1

pn−1,p
′
n−2

pn−2,...,p
′
1p1)

(18)

Due to their orthogonality, the amplitudes Un(l
′

n−1ln−1,l
′

n−2ln−2,...,l
′

1l1)

bb,aa (t) in Eq.(15), and as a
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Figure 1: (Color online) Structure of the two quantum sys-
tems: model (a); model (b). The arrows indicate dipole al-
lowed transitions in each model.

result, those in Eq.(11), can be readily computed by the
inverse fast Fourier transform (IFFT) of the modulated
matrix elements Ubb,aa(t, s). The physical interpretation
of the extracted amplitudes can be understood through
knowledge of the relation between the frequencies
γn(l′n−1ln−1,l

′
n−2ln−2,...,l

′
1l1)

and the corresponding path-

ways driven by the structure of the Lindblad equation
and the meaning of the terms in Eq.(11).

III. ILLUSTRATIONS

In this section, the effect of the environment on the
controlled quantum dynamics will be explored in the con-
text of population transfer from an initial state |aa〉〉 to
a final state |bb〉〉. For convenience, the density operator
in Liouville space is arranged as

|ρ (t)〉〉=























ρ11
ρ12
...
ρ1d
ρ21
...
ρdd























. (19)

Two different open quantum systems are employed to
demonstrate the capabilities of the HE-OD procedure in
extracting the pathway amplitudes in Liouville space. As
shown in Fig. 1, models (a) and (b) have, respectively,
one and two routes linking the initial and target states.
The figure shows that only the nearest neighbor transi-
tions are induced by dipole coupling in these systems.
The Lindblad operators along with the numerical values
of the parameters are chosen to induce the same tran-
sitions (i.e., only between nearest neighbor levels) with
comparable amplitudes as that by corresponding terms
in the Hamiltonian. In this case, the environmental cou-
pling is strong, consistent with the systems explored ear-
lier [36]. The control fields E (t) are taken to have the

form

E (t) = e−
(t−T/2)2

2σ2

∑

l

Al cos (υlt+ θl) , (20)

where T = 8268.221 (200 fs) and σ = 1240.23 (30 fs).
Unless otherwise noted, all the quantities in this paper
are given in atomic units. In the following simulations,
only resonant frequencies{υl} of the allowed transitions
are included in the control fields, and the corresponding
amplitudes {Al} and phases {θl} are optimized with a ge-
netic algorithm [39]. The objective functional subjected
to minimization is

J [E (t)] = |O [E (t) , η]−OT |2 + βF (21)

with

O[E(t),η]=Tr[ρ(Tf )|b〉〈b|]=〈b|ρ(Tf )|b〉, F=
∑

l(Al)
2, (22)

Here OT is the target yield, and η is the coupling strength
between the quantum system and environment (see Eq.
(4)). By projecting the density matrix ρ(Tf) at final time
Tf onto the target state |b〉, we can obtain the outcome
O [E (t) , η] produced by the laser field E(t) along with
coupling to the environment of strength η. F is the flu-
ence of the control field weighted by a positive constant
β. Therefore, the minimization of the objective func-
tional J [E(t)] aims to achieve the target yield with a
bias towards lower laser intensity. In our previous work
[36], cooperation between environmental processes and
laser fields was found when seeking modest control yields
OT with a strongly interacting environment. The mech-
anistic origin of this finding was hidden in the overall
dynamics, and HE-OD will be employed here to reveal
its nature.

A. Model (a)

The first model (a) in Fig. 1 is a three-level system
with target state |3〉, and the corresponding matrices in
Eq. (4) are

H0 =





0 0 0
0 ω2 0
0 0 ω3



 , µ =





0 µ12 0
µ12 0 µ23

0 µ23 0



 ,

L1 = L+
2 =





0
√
α12 0

0 0 0
0 0 0



 , L3 = L+
4 =





0 0 0
0 0

√
α23

0 0 0



 ,

where only Lindblad operators associated with the near-
est neighbor transitions are considered.

The matrix form in Liouville space of the Hamiltonian
H (t) in Eq.(9) is

4



H (t) =



























β1 ε12 0 −ε12 iηα12 0 0 0 0
ε12 β2 ε23 0 −ε12 0 0 0 0
0 ε23 β3 0 0 −ε12 0 0 0

−ε12 0 0 β4 ε12 0 −ε23 0 0
iηα12 −ε12 0 ε12 β5 ε23 0 −ε23 iηα23

0 0 −ε12 0 ε23 β6 0 0 −ε23
0 0 0 −ε23 0 0 β7 ε12 0
0 0 0 0 −ε23 0 ε12 β8 ε23
0 0 0 0 iηα23 −ε23 0 ε23 β9



























(23)

with

β1 = −iηα12, β2 = −ω2 − iη
(

α12 +
α23

2

)

, β3 = −ω3 −
i

2
η (α12 + α23) , β4 = ω2 − iη

(

α12 +
α23

2

)

,

β5 = −iη (α12 + α23) , β6 = ω2−ω3−iη
(α12

2
+ α23

)

, β7 = ω3−
i

2
η (α12 + α23) , β8 = ω3−ω2−iη

(α12

2
+ α23

)

, β9 = −iηα23,

and εij = µijE (t). The parameters in the simulations
are ω2 = 0.0365493, ω3 = 0.0651164, µ12 = 0.0690611,
µ23 = 0.0834985, α12 = 0.0895 and α23 = 0.1942.

With the target yield OT being 5% and the spectral
amplitudes {Al} each having an upper limit 0.005, nu-
merical simulations are performed to seek optimal laser
fields for different decoherence strengths (η) and cir-
cumstances. As shown in Table I, there is clear ev-
idence for cooperation between the dynamics induced
by laser field and the environment. For example, when
η = 4.8378× 10−8, the yield of the field optimized with
the environment present (O [Eop (t) , η] = 5.00%) is much
larger than either through the environment acting alone
(O [E (t) = 0, η] = 2.07%) or the case of the field alone
(O [Eop (t) , η = 0] = 0.92%) ; and the cooperative result
of 5.00% is larger than the sum of the latter two yields
(2.99%). The cooperation effect for modest control yields
is consistent with the previous study [36], while the co-
operatively effect will generally be absent when seeking
high yields where the environment will often fight against
the influence of the field. In the following, the case of
η = 4.8378×10−8 giving the yield O [Eop (t) = 0, η] = 5%
will be taken as the example to quantitatively identify the
cooperation mechanism.

In order to illustrate the flexibility of HE-OD and its
ability to give different perspectives on the mechanism,
two types of encoding schemes are adopted for this open
quantum system, and the encoding matrices are, respec-

tively, taken to be

Γ1 =



























0 1 0 5 17 0 0 0 0
1 0 21 0 33 0 0 0 0
0 21 0 0 0 41 0 0 0
5 0 0 0 59 0 68 0 0
17 33 0 59 0 77 0 83 101
0 0 41 0 77 0 0 0 109
0 0 0 68 0 0 0 111 0
0 0 0 0 83 0 111 0 127
0 0 0 0 101 109 0 127 0



























,

and

Γ2 =



























0 1 0 1 23 0 0 0 0
1 0 7 0 1 0 0 0 0
0 7 0 0 0 1 0 0 0
1 0 0 0 1 0 7 0 0
23 1 0 1 0 7 0 7 97
0 0 1 0 7 0 0 0 7
0 0 0 7 0 0 0 1 0
0 0 0 0 7 0 1 0 7
0 0 0 0 97 7 0 7 0



























.

The original Hamiltonian H (t) is non-Hermitian as
will be the case for its modulated form H (t, s). Despite
the non-Hermitian nature of H (t) and H (t, s), both ma-
trices are bounded such that the respective Dyson ex-
pansions converge in Eqs.(11) and (15). However, some
numerical stability concerns can arise when solving the
dynamical equations for U (t) and U (t, s). A similar spe-
cial case of non-Hermetian modulation was treated in
closed system dynamics [18]. The diagonal elements of Γ
are all taken to be zero corresponding to no modulation
of the diagonal elements of H (t), and this was done to
avoid numerical stability issues. These missing modula-
tion terms correspond to “elastic” transitions of the type
〈〈ii| U |ii〉〉 at one or more places possibly occurring in
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η O [Eop (t) , η] (%) O [E (t) = 0, η] (%) O [Eop (t) , η = 0] (%) F

0.00 2.68 0.00 2.68 5.00 × 10−5

1.20945 × 10−8 5.02 0.61 2.55 4.875 × 10−5

2.4189 × 10−8 5.02 1.14 1.7 3.981 × 10−5

4.8378 × 10−8 5.00 2.07 0.92 2.850 × 10−5

Table I: Yields (in percent) of model (a) from various laser fields with different environmental strengths for a low objective
yield of OT = 5.0%. The column O [Eop (t) , η] gives the yield from the optimal field Eop (t) determined in the presence of
the environment of strength η; the column with O [E (t) = 0, η] is the yield obtained with the system exclusively driven by
the environmental Lindblad term; the column O [Eop (t) , η = 0] is the yield from the control field alone, where the field is
determined in the presence of Lindblad term at the specified value of η (i.e., the field is taken from the corresponding cases
in column labelled O [Eop (t) , η]). The yield with Eop (t) at η = 0 is only 2.68% due to the limitation on the field amplitudes
in Eq.(20). The collective results show clear cooperation between the coherent dynamics and the environment, as explained in
the text. The last column presents the fluence F determined from the optimal fields in the cases O [Eop (t) , η], clearly showing
that a diminished fluence is sufficient when the field cooperates with the environment.

the individual Dyson terms in Eq.(11). Although their
presence will be hidden in the extracted pathway am-
plitudes, the lack of diagonal modulation will still per-
mit determination of all key “inelastic” transitions (e.g.,
〈〈ii| U |jj〉〉), including any relevant elastic contributions,
in the mechanism. This conclusion will be evident later
from the fact that the extracted Dyson amplitudes sum
up to the true value obtained by directly solving the Lind-
blad equation. In the first type of encoding scheme Γ1,
each independent non-zero and non-diagonal element of
the Hamiltonian H (t) (i.e., Hii′,jj′ ) will be modulated by
a specially chosen frequency (i.e., γii′,jj′ ). In particular,
as mentioned in Section II, we select γii′,jj′ carefully so
that each pathway of potential interest has a unique mod-
ulating frequency γn(l′n−1ln−1,l

′
n−2ln−2,...,l

′
1l1)

in Eq. (17) .

Table II shows the pathways extracted by HE-OD with
amplitudes having magnitudes larger than 0.001. These
significant pathway amplitudes all have essentially zero
phase, thereby demonstrating a high degree of construc-
tive interference regardless of the physical origin of the
pathway leading to the target state. The pathways can be
classified as three types: (i) dipole-induced pathways, (ii)
dipole-environment-induced pathways and (iii) exclusive
environment-induced pathways. For example, the dipole-
induced pathway |11〉〉 → |12〉〉 → |13〉〉 → |23〉〉 → |33〉〉
utilizes the two dipole operators (µ12 and µ23) accord-
ing to Eq. (23); the dipole-environment-induced path-
way |11〉〉 → |12〉〉 → |22〉〉 → |33〉〉 exploits both
the dipole operator µ12 and Lindblad coupling term
α23, while the exclusive environment-induced pathway
|11〉〉 → |22〉〉 → |33〉〉 is only related to the two Lind-
blad coupling terms α12 and α23. We also note that sym-
metric pathways have the same magnitude and phases of
opposite sign, although the latter difference is small. For
example, pathways |11〉〉 → |22〉〉 → |23〉〉 → |33〉〉 and
|11〉〉 → |22〉〉 → |32〉〉 → |33〉〉 only differ in the symmet-
ric intermediate states |23〉〉 and |32〉〉. All of the ampli-
tudes in Table II add up to give ∼ 5.68%, and the differ-
ence with the correct total value of O [Eop (t) , η] = 5%
comes from a large set of other pathways (not shown
here) with much smaller amplitudes but with opposite
phases ∼ π. For example, the magnitudes for pathways

|11〉〉 → |22〉〉 → |12〉〉 → |22〉〉 → |33〉〉 (pathway fre-
quency 184) and |11〉〉 → |22〉〉 → |21〉〉 → |22〉〉 → |33〉〉
(pathway frequency 236) are both ∼ 0.6× 10−3 with re-
spective phases ∼ π ± 0.1× 10−1. Similarly, the respec-
tive magnitudes and phases of pathways |11〉〉 → |22〉〉 →
|23〉〉 → |22〉〉 → |33〉〉 (pathway frequency 272) and
|11〉〉 → |22〉〉 → |32〉〉 → |22〉〉 → |33〉〉(pathway fre-
quency 284) are ∼ 0.75× 10−3 and ∼ π ± 0.066× 10−1.
The collective set of additional pathways have a slight
destructive interference contribution to finally yield the
correct total amplitude of 5%. Thus, the dominant pic-
ture is one of constructive cooperative interactions be-
tween the dynamics induced by the field E(t) and the
environment.

With the first encoding scheme Γ1, symmetric tran-
sitions associated with the same dipole matrix element
(i.e., |11〉〉 → |12〉〉 and |11〉〉 → |21〉〉 are both induced
by µ12) can be distinguished. However, this is not the
case in the second type of encoding scheme Γ2, which
produces a reduced image of the mechanism. The fre-
quencies for µ12, µ23, α12 and α23 are 1, 7, 23 and 97,
respectively. Table III shows the extracted pathways and
magnitudes of the amplitudes that are larger than 0.001.
Their cooperative behavior can be clearly seen in their
phases all essentially being zero. The sum of the am-
plitudes of each separate class of pathways in Table II
coincide with those corresponding summed values shown
in Table III. This confirmation supports the freedom in
choosing encoding schemes.

B. Model (b)

The second model (b) in Fig. 1 is a double-route
open quantum system. We assume different decoherence
strengths along the two routes leading to the Lindblad
equation having the form

∂ρ (t)

∂t
= −i [H0 − µE (t) , ρ (t)]+ηLFL {ρ (t)}+ηRFR {ρ (t)} ,

(24)
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Type Pathway pathway frequency Magnitude Phase

dipole-induced

|11〉〉 → |12〉〉 → |13〉〉 → |23〉〉 → |33〉〉 172 1.222 × 10−3 1.683 × 10−2

|11〉〉 → |21〉〉 → |31〉〉 → |32〉〉 → |33〉〉 311 1.225 × 10−3 −1.692× 10−2

|11〉〉 → |12〉〉 → |22〉〉 → |32〉〉 → |33〉〉 244 1.216 × 10−3 6.861 × 10−2

|11〉〉 → |21〉〉 → |22〉〉 → |23〉〉 → |33〉〉 250 1.221 × 10−3 −6.776× 10−2

|11〉〉 → |12〉〉 → |22〉〉 → |23〉〉 → |33〉〉 220 1.195 × 10−3 2.428 × 10−2

|11〉〉 → |21〉〉 → |22〉〉 → |32〉〉 → |33〉〉 274 1.197 × 10−3 −2.417× 10−2

dipole-environment-induced

|11〉〉 → |12〉〉 → |22〉〉 → |33〉〉 135 9.069 × 10−3 8.126 × 10−2

|11〉〉 → |21〉〉 → |22〉〉 → |33〉〉 165 9.069 × 10−3 −8.126× 10−2

|11〉〉 → |22〉〉 → |23〉〉 → |33〉〉 203 5.526 × 10−3 −5.462× 10−2

|11〉〉 → |22〉〉 → |32〉〉 → |33〉〉 227 5.525 × 10−3 5.466 × 10−2

exclusive environment-induced |11〉〉 → |22〉〉 → |33〉〉 118 2.045 × 10−2 6.638 × 10−15

Table II: Magnitudes and phases of significant quantum pathway amplitudes of model (a) when η = 4.8378 × 10−8 in Table I
with the encoding matrix Γ1.

Type Pathway pathway frequency Magnitude Phase

dipole-induced

|11〉〉 → |12〉〉 → |13〉〉 → |23〉〉 → |33〉〉

16 7.258 × 10−3 −4.312 × 10−17

|11〉〉 → |21〉〉 → |31〉〉 → |32〉〉 → |33〉〉
|11〉〉 → |12〉〉 → |22〉〉 → |32〉〉 → |33〉〉
|11〉〉 → |21〉〉 → |22〉〉 → |23〉〉 → |33〉〉
|11〉〉 → |12〉〉 → |22〉〉 → |23〉〉 → |33〉〉
|11〉〉 → |21〉〉 → |22〉〉 → |32〉〉 → |33〉〉

dipole-environment-induced

|11〉〉 → |12〉〉 → |22〉〉 → |33〉〉
99 1.808 × 10−2 −2.033 × 10−14

|11〉〉 → |21〉〉 → |22〉〉 → |33〉〉
|11〉〉 → |22〉〉 → |23〉〉 → |33〉〉

37 1.103 × 10−2 −2.537 × 10−15

|11〉〉 → |22〉〉 → |32〉〉 → |33〉〉

exclusive environment-induced |11〉〉 → |22〉〉 → |33〉〉 120 2.045 × 10−2 3.294 × 10−14

Table III: Magnitudes and phases of significant quantum pathway amplitudes of model (a) with the encoding matrix Γ2 for
η = 4.8378 × 10−8 in Table I. The amplitudes in each case reflects the sum of all terms of a particular pathway type; taking
a sum of the amplitudes is meaningful as the phases are all essentially zero. The results are in accord with summing the like
pathway types in Table II.

with

FL {ρ (t)} =
∑

j=1,··· ,4

(

LjρL
+
j − 1

2
L+
j Ljρ−

1

2
ρL+

j Lj

)

,

(25)

and

FR {ρ (t)} =
∑

j=5,··· ,8

(

LjρL
+
j − 1

2
L+
j Ljρ−

1

2
ρL+

j Lj

)

.

(26)

The distinctions in Eqs.(25) and (26) reflect the prospect
that different states can interact in particular ways with
the environment with accordingly distinct Lindblad op-
erators and associated strengths ηL and ηR along the two
routes (i.e., respectively, left and right in Fig.1(b)). The
target state is |4〉, and the corresponding model matrices
in Eq. (24) are

H0 =







0 0 0 0
0 ω2 0 0
0 0 ω3 0
0 0 0 ω4






, µ =







0 µ12 µ13 0
µ12 0 0 µ24

µ13 0 0 µ34

0 µ24 µ34 0






, L1 = L+

2 =







0
√
α12 0 0

0 0 0 0
0 0 0 0
0 0 0 0






,

L3 = L+
4 =







0 0 0 0
0 0 0

√
α24

0 0 0 0
0 0 0 0






, L5 = L+

6 =







0 0
√
α13 0

0 0 0 0
0 0 0 0
0 0 0 0






, L7 = L+

8 =







0 0 0 0
0 0 0 0
0 0 0

√
α34

0 0 0 0






,
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where only Lindblad operators associated with the nearest neighbor transitions are included.
The Hamiltonian H (t) in Liouville space is the following 16× 16 matrix,

H (t) =





















































β1 ε12 ε13 0 −ε12 iηLα12 0 0 −ε13 0 iηRα13 0 0 0 0 0
ε12 β2 0 ε24 0 −ε12 0 0 0 −ε13 0 0 0 0 0 0
ε13 0 β3 ε34 0 0 −ε12 0 0 0 −ε13 0 0 0 0 0
0 ε24 ε34 β4 0 0 0 −ε12 0 0 0 −ε13 0 0 0 0

−ε12 0 0 0 β5 ε12 ε13 0 0 0 0 0 −ε24 0 0 0
iηLα12 −ε12 0 0 ε12 β6 0 ε24 0 0 0 0 0 −ε24 0 iηLα24

0 0 −ε12 0 ε13 0 β7 ε34 0 0 0 0 0 0 −ε24 0
0 0 0 −ε12 0 ε24 ε34 β8 0 0 0 0 0 0 0 −ε24

−ε13 0 0 0 0 0 0 0 β9 ε12 ε13 0 −ε34 0 0 0
0 −ε13 0 0 0 0 0 0 ε12 β10 0 ε24 0 −ε34 0 0

iηRα13 0 −ε13 0 0 0 0 0 ε13 0 β11 ε34 0 0 −ε34 iηRα34

0 0 0 −ε13 0 0 0 0 0 ε24 ε34 β12 0 0 0 −ε34
0 0 0 0 −ε24 0 0 0 −ε34 0 0 0 β13 ε12 ε13 0
0 0 0 0 0 −ε24 0 0 0 −ε34 0 0 ε12 β14 0 ε24
0 0 0 0 0 0 −ε24 0 0 0 −ε34 0 ε13 0 β15 ε34
0 0 0 0 0 iηLα24 0 −ε24 0 0 iηRα34 −ε34 0 ε24 ε34 β16





















































with

β1 = −i (ηLα12 + ηRα13) , β2 = −ω2 − i

(

ηLα12 +
ηRα13 + ηLα24

2

)

, β3 = −ω3 − i

(

ηRα13 +
ηLα12 + ηRα34

2

)

,

β4 = −ω4−
i

2
(ηLα12 + ηRα13 + ηLα24 + ηRα34) , β5 = ω2− i

(

ηLα12 +
ηRα13 + ηLα24

2

)

, β6 = −iηL (α12 + α24) ,

β7 = ω2 − ω3 −
i

2
(ηLα12 + ηRα13 + ηLα24 + ηRα34) , β8 = ω2 − ω4 − i

(

ηLα24 +
ηLα12 + ηRα34

2

)

,

β9 = ω3−i
(

ηRα13 +
ηLα12 + ηRα34

2

)

, β10 = ω3−ω2−
i

2
(ηLα12 + ηRα13 + ηLα24 + ηRα34) , β11 = −iηR (α13 + α34) ,

β12 = ω3 − ω4 − i

(

ηRα34 +
ηRα13 + ηLα24

2

)

, β13 = ω4 −
i

2
(ηLα12 + ηRα13 + ηLα24 + ηRα34) ,

β14 = ω4−ω2−i
(

ηLα24 +
ηLα12 + ηRα34

2

)

, β15 = ω4−ω3−i
(

ηRα34 +
ηRα13 + ηLα24

2

)

, β16 = −i (ηLα24 + ηRα34) ,

and εij = µijE (t). The parameters of the system are
ω2 = 0.0583965, ω3 = 0.0573139, ω4 = 0.1171, µ12 =
4.2275, µ13 = 2.9931, µ24 = 1.0216, µ34 = 0.9, α12 =
0.0895, α24 = 0.1942, α13 = 0.1164 and α34 = 0.0885.

In the optimizations, the target yield OT and upper
limit of the spectral amplitudes {Al} are, respectively,
set to 5% and 0.00005. The results are listed in Table
IV, and there is evidence for cooperation between the
dynamics induced by the optimum field and the environ-
ment. For example, when ηL = ηR = 2.4189 × 10−8,

the yield of the field determined in the presence of the
environment is O [Eop (t) , ηL, ηR] = 5.00%, which is
much larger than either the environment acting alone
(O [E (t) = 0, ηL, ηR] = 1.68%) or the field acting alone
(O [Eop (t) , ηL = ηR = 0] = 0.45%); the sum of the latter
two cases (2.13%) is also much smaller than the situation
producing 5.00% where the field and environment coop-
erate. This latter case of O [Eop (t) , ηL, ηR] = 5.00% at
ηL = ηR = 2.4189 × 10−8 will be subject to HE-OD
mechanism analysis below.
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ηL ηR O [Eop (t) , ηL, ηR] (%) O [E (t) = 0, ηL, ηR] (%) O [Eop (t) , ηL = ηR = 0] (%) F

0.00 0.00 1.05 0.00 1.05 9.803 × 10−9

2.4189 × 10−8 0.00 5.00 1.14 0.662 8.911 × 10−9

0.00 2.4189 × 10−8 1.72 0.718 0.683 9.997 × 10−9

2.4189 × 10−8 2.4189 × 10−8 5.00 1.68 0.45 9.153 × 10−9

Table IV: Yields (in percent) of model (b) from various laser fields with different decoherence strengths for a low objective yield
of OT = 5.0%. Due to the imposed constraints of pulse amplitudes {Al}, the yield induced by the optimal field determined
at ηL = ηR = 0 can only reach a value of 1.05%. The column O [Eop (t) , ηL, ηR] gives the yield from the optimal field Eop (t)
determined in the presence of the environment of strengths ηL and ηR; the column with O [E (t) = 0, ηL, ηR] is the yield obtained
with the system exclusively driven by the environmental Lindblad terms; the column O [Eop (t) , ηL = ηR = 0] is the yield from
the control field without system-environmental coupling, but the control field is determined in the presence of Lindblad term
at specified values of ηL and ηR (i.e., the field comes from the corresponding cases in the column O [Eop (t) , ηL, ηR]). The
collective results show clear cooperation between the coherent dynamics and the environment, as explained in the text. The
last column gives the fluence F determined from the optimal fields in the cases O [Eop (t) , ηL, ηR], showing a modest reduction
in fluence is still sufficient when the field cooperates with the environment.

Type Pathway pathway frequency Magnitude Phase

dipole-induced

|11〉〉 → |12〉〉 → |14〉〉 → |24〉〉 → |44〉〉

8 2.279 × 10−3 1.085 × 10−16

|11〉〉 → |21〉〉 → |41〉〉 → |42〉〉 → |44〉〉
|11〉〉 → |12〉〉 → |22〉〉 → |42〉〉 → |44〉〉
|11〉〉 → |21〉〉 → |22〉〉 → |24〉〉 → |44〉〉
|11〉〉 → |12〉〉 → |22〉〉 → |24〉〉 → |44〉〉
|11〉〉 → |21〉〉 → |22〉〉 → |42〉〉 → |44〉〉

dipole-environment-induced

|11〉〉 → |12〉〉 → |22〉〉 → |44〉〉
44 3.443 × 10−2 1.476 × 10−14

|11〉〉 → |21〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |12〉〉 → |11〉〉 → |12〉〉 → |22〉〉 → |44〉〉

46 5.009 × 10−3 π + 4.441 × 10−15

|11〉〉 → |12〉〉 → |11〉〉 → |21〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |12〉〉 → |22〉〉 → |12〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |12〉〉 → |22〉〉 → |21〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |21〉〉 → |22〉〉 → |12〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |21〉〉 → |22〉〉 → |21〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |21〉〉 → |11〉〉 → |12〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |21〉〉 → |11〉〉 → |21〉〉 → |22〉〉 → |44〉〉

|11〉〉 → |12〉〉 → |11〉〉 → |22〉〉 → |44〉〉

77 2.641 × 10−3 π − 2.857 × 10−14|11〉〉 → |21〉〉 → |11〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |22〉〉 → |21〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |22〉〉 → |12〉〉 → |22〉〉 → |44〉〉

|11〉〉 → |13〉〉 → |11〉〉 → |12〉〉 → |22〉〉 → |44〉〉

78 1.848 × 10−3 π + 5.136 × 10−15|11〉〉 → |31〉〉 → |11〉〉 → |12〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |13〉〉 → |11〉〉 → |21〉〉 → |22〉〉 → |44〉〉
|11〉〉 → |31〉〉 → |11〉〉 → |21〉〉 → |22〉〉 → |44〉〉

|11〉〉 → |13〉〉 → |33〉〉 → |44〉〉
102 4.670 × 10−3 1.778 × 10−14

|11〉〉 → |31〉〉 → |33〉〉 → |44〉〉

exclusive environment-induced
|11〉〉 → |22〉〉 → |44〉〉 75 1.031 × 10−2 3.945 × 10−15

|11〉〉 → |33〉〉 → |44〉〉 127 6.336 × 10−3 −7.565× 10−15

Table V: Magnitudes and phases of significant quantum pathways of model (b) with the encoding matrix Γ3 when ηL = ηR =
2.4189 × 10−8. Only a sum of amplitudes is shown for each type of mechanism. Cooperation, including constructive and
destructive interference, is evident with the pathway phases being either ∼ 0 or ∼ π.

For simplicity of presentation, only the second type of
encoding scheme described in Section III A is adopted

here
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Γ3 =





















































0 1 17 0 1 33 0 0 17 0 59 0 0 0 0 0
1 0 0 3 0 1 0 0 0 17 0 0 0 0 0 0
17 0 0 21 0 0 1 0 0 0 17 0 0 0 0 0
0 3 21 0 0 0 0 1 0 0 0 17 0 0 0 0
1 0 0 0 0 1 17 0 0 0 0 0 3 0 0 0
33 1 0 0 1 0 0 3 0 0 0 0 0 3 0 42
0 0 1 0 17 0 0 21 0 0 0 0 0 0 3 0
0 0 0 1 0 3 21 0 0 0 0 0 0 0 0 3
17 0 0 0 0 0 0 0 0 1 17 0 21 0 0 0
0 17 0 0 0 0 0 0 1 0 0 3 0 21 0 0
59 0 17 0 0 0 0 0 17 0 0 21 0 0 21 68
0 0 0 17 0 0 0 0 0 3 21 0 0 0 0 21
0 0 0 0 3 0 0 0 21 0 0 0 0 1 17 0
0 0 0 0 0 3 0 0 0 21 0 0 1 0 0 3
0 0 0 0 0 0 3 0 0 0 21 0 17 0 0 21
0 0 0 0 0 42 0 3 0 0 68 21 0 3 21 0





















































,

where the modulating frequencies for µ12, µ24, µ13, µ34,
α12, α24, α13 and α34 are 1, 3, 17, 21, 33, 42, 59 and 68,
respectively.

Table V lists the extracted pathway amplitudes whose
magnitudes are larger than 0.001; only the amplitude
sums are shown for each class of pathway. The dipole-
environment-induced pathways have two types with
phases either near 0 or near π. There is overall con-
structive interference with the pathway amplitudes hav-
ing phases near 0 being dominant, although the ampli-
tudes near π destructively interfere with the latter ones.
As both types simply have phases of ∼ 0 or ∼ π, we
may conclude clear balanced cooperation in the dynami-
cal mechanism, regardless of its origin being either in the
system and/or environment. We also note that the path-
ways modulated at frequencies 75 and 77, which are along
the left route in Fig.1(b), have the same net transition
|11〉〉 → |22〉〉 → |44〉〉 and thus can be assigned to the
“composite pathway” ( |11〉〉 → |22〉〉 → |44〉〉)∗, in accord
with the analogous terminology in closed system HE-OD
analysis[18]. There are extra Rabi-like transitions along
the pathways with frequency 77. For example, the mech-
anistic pathway |11〉〉 → |12〉〉 → |11〉〉 → |22〉〉 → |44〉〉
involves a transition from |11〉〉 to |12〉〉 and then a re-
turn from |12〉〉 back to |11〉〉. This Rabi flop is induced
by the transition dipole operator µ12. A related situation
is along the right path in Fig.1(b). The composite path-
ways of ( |11〉〉 → |33〉〉 → |44〉〉)∗ have smaller amplitude
than those of ( |11〉〉 → |22〉〉 → |44〉〉)∗ (not shown in Ta-
ble V). In summary, although mechanistic contributions
along the left and right routes in Fig.1(b) are not equal
(i.e., due to distinctions in the dipole elements and Lind-
blad coefficients), they still cooperate to achieve the con-
trol goal. Similar behavior has been found in the optimal
quantum control of a like closed system [24].

IV. CONCLUSIONS AND DISCUSSION

The nature of control mechanisms in open system dy-
namics is of much interest in a variety of physical circum-
stances, and this paper extended the HE-OD methodol-
ogy to allow for the treatment of such systems. The
open system HE-OD procedure that was illustrated here
to analyze the population transfer in two simple multi-
level systems may be easily generalized to more complex
open systems, environments, observables, and especially
non-Markovian models. In the present work, three types
of pathways were studied: (i) dipole-induced pathways,
(ii) dipole-dissipation-induced pathways and (iii) exclu-
sive dissipation-induced pathways. Under the conditions
studied with a strongly interacting environment, the ex-
tracted pathway amplitudes show that the three types
of pathways generally interfere constructively when seek-
ing modest control yields. The detailed cooperation be-
tween optimal laser fields and the environment identified
by HE-OD is consistent with the previous conclusion [36],
although the origin of the phenomenon was not under-
stood before. Naturally, upon seeking high yields coop-
eration may likely break down, but HE-OD may be ap-
plied as well in these circumstances to reveal the detailed
nature of the mechanism. In our work, only Lindblad
operators associated with nearest neighbor transitions
are considered. Moreover, the dephasing effect associ-
ated with diagonal Lindblad operators is absent in the
present model. For simulations of non-Markovian quan-
tum systems, master equations involving memory terms
appear, and even more complex models may be necessary
in some cases. Nevertheless, the general HE-OD princi-
ples and procedures may be appropriately extended to
analyze the mechanistic pathway dynamics for any such
models.

HE-OD for open systems could be amenable to ex-
perimental implementation with appropriate operations.
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Experimental demonstration of HE-OD in closed systems
has already been realized by modulating the field, and the
same procedure would apply to the system (i.e., Hamil-
tonian) portion of the dynamical mechanism analysis of
open dynamics. For a fuller picture of the mechanism,
access to environmental modulation will also need to be
available. In many situations, the sample temperature
or pressure can be readily manipulated as a partial form
of environmental modulation. In this circumstance, the
environmental modulation consists in dialing the overall
strength of the environmental interactions by modulat-
ing η in Eq.4 (e.g., in the context of a gas phase sys-
tem colliding with the atoms or molecules of a buffer
gas, an increase in pressure results in a corresponding
increase of the collision rate). It is also possible to per-
form a series of experiments in which the types of atoms
or molecules that make up the environment are system-
atically changed (i.e., similar to changing the “solvent”
containing the system under study). This situation may
allow addressing some specific matrix elements of the
Lindblad operator (e.g., by systematically choosing en-
vironmental atoms or molecules with increasing environ-
mental medium polarizability that could strengthen the
coupling to the system’s electronic states). It is simi-
lar to the modulation introduced in this paper, but with
only a discrete number of points (i.e., there is no contin-
uous way of modulating the environment in this fashion).
On the other hand, in some situations it may be feasible

to dynamically modulate the environment (e.g., through
separate encoded field excitation that has a negligible di-
rect effect on the system) in much the same fashion as
done with the control interacting with the system itself.
In this case there may be continuous access over some of
the matrix elements of the Lindblad operator, allowing
for environmental modulation similar to the ones outlined
in this paper.

In conclusion, we have introduced a practical tool
for the study of environmental interactions and demon-
strated its application in the context of numerical simu-
lations of the Lindblad equation. The versatility of HE-
OD can enable a variety of additional analyses of open
system dynamics simulations as well as the prospect of
direct implementation in the laboratory.
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