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Positronium energy levels at order mα
7: Product contributions in the

two-photon-annihilation channel.

Gregory S. Adkins,∗ Lam M. Tran, and Ruihan Wang
Franklin & Marshall College, Lancaster, Pennsylvania 17604

Ongoing improvements in the measurement of positronium transition intervals motivate the cal-
culation of the O(mα7) corrections to these intervals. In this work we focus on corrections to the
spin-singlet parapositronium energies involving virtual annihilation to two photons in an interme-
diate state. We have evaluated all contributions to the positronium S-state energy levels that can
be written as the product of a one-loop correction on one side of the annihilation event and another
one-loop correction on the other side. These effects contribute ∆E = −0.561971(25)mα7/π3 to the
parapositronium ground state energy.

PACS numbers: 36.10.Dr, 12.20.Ds

I. INTRODUCTION

Positronium, the exotic atom composed of an electron and its antimatter partner the positron, plays a crucial part
in our understanding of binding in quantum field theory. Positronium has several interesting properties that, taken
together, set it apart from other Coulombic two-body bound states. The constituents of positronium are pointlike
particles with no complicating internal structure. The dynamics of positronium is governed almost completely by
QED–strong and electromagnetic effects are negligible at current levels of precision. Recoil effects in positronium are
maximal–the mass ratio of the constituents is one. Finally, positronium is subject to real and virtual annihilation
into photons. Positronium is accessible to high precision measurements of energy levels, decay rates, branching ratios,
etc., and so forms an ideal system for testing relevant theories, calculational methods, and experimental techniques.
Positronium was first produced in 1951 by Deutsch [1], who with Dulit made the first measurement of a transition

energy–the ground state hyperfine splitting (hfs) [2]. (Details about the discovery of positronium along with reflections
and background material are given in [3].) Numerous measurements of the ground state hfs, the n = 2 fine structure
intervals, and the 2S-1S interval were made over the years as summarized in a number of reviews [4–11]. The highest
precision results for the n = 1 hfs [12–15], n = 2 fine structure [16–19], and 2S-1S interval [20] all have uncertainties
near the 1MHz level. Recently there have been vigorous efforts to develop new approaches to the measurement of
the various energy intervals and to improve their precision [11, 21–31], raising the promise of significant progress in
the not-too-distant future.
The corrections to the Bohr energy levels of positronium can be expressed as a double series in α and L ≡ ln (1/α):

∆E = mα4
{

C0 ++C11αL + C10α+ C21α
2L+ C20α

2 + C32α
3L2 + C31α

3L+ C30α
3 + · · ·

}

. (1)

All positronium energies through terms of order mα6 = 18.7MHz are known [32–35] along with the leading log
correction of order mα7L2 = 3.30MHz [36–38]. The subleading log correction of order mα7L = 0.67MHz is known
for the hfs [39–41]. Several of the pure order mα7 = 0.14MHz corrections are known as well. Some, those involving
“ultrasoft” photons (those having energy and momentum of order mα2) give contributions as large as several tenths
of a MHz [42, 43]. Corrections at O(mα7) can be classified as either annihilation (involving intermediate states
consisting only of photons) or non-annihilation, and the annihilation contributions can be organized by the number
of intermediate-state photons. Some non-annihilation corrections have been calculated [42, 44, 45]. All terms having
a one-photon intermediate state are known [43], as are all terms having a three-photon intermediate state [46]. Terms
involving a two-photon intermediate state are the subject of this paper.
Contributions to the parapositronium energies at O(mα7) that involve virtual annihilation to two photons can be

organized into four groups. Contributions that contain a light-by-light scattering subgraph as in Fig. 1(a) have been
evaluated [47] as have those involving vacuum polarization corrections to the annihilation photons as in Fig. 1(b) [48].
In the present work we give the result for all contributions containing one-loop corrections on either side of the virtual
annihilation process as in Fig. 1(c). We call these terms the “product” contribution as they involve the product of
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FIG. 1: Representatives of the four classes of two-photon-annihilation corrections that contribute to the parapositronium
energy levels at O(mα7). They are (a) light-by-light corrections, (b) terms involving vacuum polarization corrections to the
annihilation photons, (c) terms containing the product of two one-loop corrections, one on each side of the virtual annihilation,
and (d) terms with a two-loop correction on one side of the virtual annihilation.

two one-loop self energy, vertex, or ladder corrections. Terms that involve two-loop corrections either before or after
the virtual annihilation as in Fig 1(d) remain to be done.
This work is organized as follows. In Sec. II we give some details of the calculation of the O(mα5) and O(mα6)

two-photon-annihilation contributions. Important aspects of the calculational procedure and notation are introduced
in this section. In Sec. III we describe our calculation of the O(mα7) product terms. Sec. IV contains our results.

II. LOWER ORDER CONTRIBUTIONS

In this section we evaluate the two-photon-annihilation (2γA) contributions at orders mα5 (done originally by
Karplus and Klein [49]) and mα6 (see [50, 51]) in order to illustrate our calculational method and set notation. We
are free to use any convenient bound state formalism because, for the calculation at hand, the energy levels depend
only on the spin structure of the wave function and its value at spatial contact but not on more detailed aspects of
the formalism. We use the formalism of [52] in which the energy shift is the expectation value

∆E = iΨ̄δKΨ. (2)

of a two-particle-irreducible interaction kernel taken between appropriate wave functions. The positronium states can
be approximated as

Ψ → φ0

(

0 χ
0 0

)

Ψ̄T → φ0

(

0 0
χ† 0

)

, (3)

where χ = 1/
√
2 is the spin-singlet 2× 2 matrix and φ0 =

√

m3α3/(8πn3) is the wave function at spatial contact for
a state of principal quantum number n and orbital angular momentum ℓ = 0.
The graphs making leading-order (LO) 2γA energy contributions of O(mα5) are pictured in Fig. 2. The energy

shift due to the graph of Fig. 2(a) is

∆Ea = (−1)iφ2
0

∫

d4p

(2π)4
−i

p2
−i

(P − p)2
tr
[

(

0 0
χ† 0

)

(−ieγµ)
i

γ(P/2− p)−m
(−ieγν)

]

× tr
[

(−ieγν)
i

γ(P/2− p)−m
(−ieγµ)

(

0 χ
0 0

)

]

(4)

where P = (2m, 0) is the approximate positronium 4-momentum in the center-of-mass frame and the initial (−1) is a
fermionic sign factor required for annihilation graphs. We can simplify this expression by using projection operators
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FIG. 2: The LO 2γA contributions. Both (a) uncrossed and (b) crossed photons are included to account for Bose symmetry.
The wave functions bracketing these kernels on the left and right are implicit.

to write the spin matrices in terms of gamma matrices (in the Dirac representation) [53]:

(

0 χ
0 0

)

=
1

2
√
2
(γn+ 1)γ5, (5a)

(

0 0
χ† 0

)

=
1

2
√
2
(−γn+ 1) γ5 (5b)

where n = (1,~0 ) is the timelike unit vector. We also scale a factor of the electron mass m out of each momentum
vector and give the dimensionless momentum p/m the same name p as before. The LO contribution is

∆ELO = ILO
mα5

π
(6)

where

ILO = 4

∫ ∞

0

d|~p |
∫

dp0
2πi

~p 2T

p2(p− 2n)2
(7)

with

T ≡ 1

4
tr
[

γν [γ(n− p)− 1]
−1

γµ(γn+ 1)γ5

]1

4
tr
[

γµ [γ(n− p)− 1]
−1

γν(−γn+ 1)γ5

]

. (8)

It is easy to see that the contributions of both parts of Fig. 2 are equal, and the factor of 2 has been included
in (7). The |~p | integral is over the magnitude of the 3-vector ~p and runs from 0 to ∞. The trace evaluates to
T = −2~p 2/((n− p)2 − 1)2, and so

ILO = −8

∫ ∞

0

dp p4
∫

dp0
2πi

{

(p20 − p2 + iǫ)[(p0 − 2)2 − p2 + iǫ][(p0 − 1)2 − ω2
p + iǫ]2

}−1
(9)

where now p stands for |~p |, ωp ≡ (p2+1)1/2, and we have reinserted the iǫ factors that were implicit up until now. We
use the residue theorem to evaluate the p0 integral after closing the contour with an infinite semicircle in either the
upper or lower half plane, yielding a result of the form A(p)/(p−1−iǫ)+B(p). The singularity at p = 1 represents the
possibility that the annihilation photons could be real [54], and leads to an imaginary part of ∆E that is connected
to the parapositronium decay rate according to

Γ = −2Im∆E. (10)

We extract the imaginary part using the identity

∫ ∞

0

dp
A(p)

p− 1− iǫ
=

∫ 2

0

dp

(

A(1)

p− 1− iǫ
+

A(p)− A(1)

p− 1

)

+

∫ ∞

2

dp
A(p)

p− 1
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FIG. 3: The four types of one-loop radiative corrections in the 2γA channel that contribute at NLO: vacuum polarization
(a), self energy (b), vertex (c), and ladder (d). Additional contributions having crossed annihilation photons and with the
radiative corrections acting on different parts of the graphs give contributions equal to those shown and are included by means
of appropriate symmetry factors.

= iπA(1) +

∫ ∞

0

dp
A(p̃)

p− 1
, (11)

where

A(p̃) =

{

A(p)−A(1) if 0 < p < 2

A(p) if 2 < p
(12)

as in earlier related calculations [47, 55]. The LO energy shift is

ILO =
1

2
ln 2− 1

2
− iπ

4
(13)

in units of mα5/π.
The next-to-leading-order (NLO) graphs that contribute O(α) corrections to ∆ELO are shown in Fig. 3. Each of

these graphs comes with a symmetry factor giving the number of identical contributions represented by the graph.
For the vacuum polarization (VP) contribution of Fig. 3(a), the symmetry factor is 4, coming from the two photons
that the vacuum polarization correction could act on and the two configurations of annihilation photons: uncrossed
and crossed. The symmetry factors for the self energy (SE) of Fig. 3(b), the vertex (V) of Fig. 3(c), and the ladder
(lad) of Fig. 3(d) corrections are 4, 8, and 4, respectively.
Our approach is to start with the LO expression (7) and insert a vacuum polarization, self energy, or vertex

correction or a ladder photon. We give our O(α) corrections in units of mα6/π2. The vacuum polarization correction
has the value [48, 51]

IV P = −1

6
ζ(2). (14)

We used the Feynman gauge versions of the one-loop self energy and vertex parts from [56]. The renormalized electron
self energy function corrects the bare electron propagator of 4-momentum p according to

1

γp− 1
→ α

π

[

S1 + S2(p)
] 1

γp− 1
(15)

where

S1 = lnλ+
1

2
(16)

and

S2 =

∫

dxdufSE(u)
N(p)

D(p)
(17)

with fSE(u) = −1/(2u), N(p) = {2 − (1 − x)γp}(γp + 1), and D(p) = p2 − 1 − x/[(1 − x)u]. A photon mass λ
was introduced in the course of mass-shell renormalization to regularize the infrared divergence, and all parametric
integrals run from 0 to 1. The renormalized vertex function corrects the bare vertex γµ according to the replacement

γµ → α

π

{

V µ
1 + V µ

2 (p′, p) + V µ
3 (p′, p)

}

(18)
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where

V µ
1 = γµ

(

− lnλ− 5

4

)

, (19a)

V µ
2 (p′, p) =

∫

dxdu
−Nµ

4H
, (19b)

V µ
3 (p′, p) = γµ

∫

dxdudz
−x(H − x)

2H
, (19c)

with

Nµ = γλ [γ(p′ +Q) + 1] γµ [γ(p+Q) + 1] γλ, (20a)

H = (1 − x)
[

u(1− p′2) + (1− u)(1− p2)
]

− xu(1− u)(p′ − p)2 + x, (20b)

H = x+ z(H − x), (20c)

where p and p′ are the incoming and outgoing momenta (as in Fig. 1c of [56]) and Q = −x[up′ + (1 − u)p]. Finally,
the ladder correction as applied to, say, the right hand side of (8) has the form:

γµ 1

γ(n− p)− 1
γν →

∫

d4q

(2π)4
(−ieγκ)

i

γ(−n+ q)− 1
γµ 1

γ(n+ q − p)− 1
γν i

γ(n+ q)− 1
(−ieγκ)

−i

q2 − λ2
. (21)

Using the techniques described above, the one-loop self energy and vertex corrections to the parapositronium
energies are straightforward to obtain. The results are shown in Table I. Separate contributions for each part of the
self energy and vertex functions are shown along with the totals. The ladder contribution from (21) is a bit more
involved, having the form

F (p) ≡ −i(4πα)2
∫

d4q

(2π)4
N(p, q)

D(q)Z(p, q)
(22)

where

D(q) = [(n− q)2 − 1][(n+ q)2 − 1](q2 − λ2), (23a)

Z(p, q) = [(n+ q − p)2 − 1], (23b)

N(p, q) = γκ[γ(−n+ q) + 1]γµ[γ(n+ q − p) + 1]γν[γ(n+ q) + 1]γκ. (23c)

The ladder correction has a binding singularity that is regulated by the photon mass. This singularity is present
because we are working just at the threshold for real production of the electron-positron pair and have set the relative
momentum to zero and the positronium mass to 2m. The singularity can be isolated by writing

N(p, q)

D(q)Z(p, q)
=

N(p, 0)

D(q)Z(p, 0)
+

N(p, 0)

D(q)

(

1

Z(p, q)
− 1

Z(p, 0)

)

+
N(p, q)−N(p, 0)

D(q)Z(p, q)
. (24)

We label these terms 1, 2, and 3. The first contains the singularity and its trace factor is proportional to the LO
trace:

tr
[

N(p, 0)(γn+ 1)γ5

]

= −4tr
[

γµ[γ(n− p) + 1]γν(γn+ 1)γ5

]

. (25)

In this term the whole q dependence is isolated in D(q), and the integral of 1/D(q) is given by [57]

∫

d4q

iπ2

−1

D(q)
=

π

λ
+ lnλ− 1 +O(λ). (26)

The linear binding singularity is the photon mass regularization scheme version of the “Sommerfeld Factor” that
represents the effect of Coulombic binding and should be removed from the radiative correction [58–61]. It can also
be interpreted as an infrared effect that is cancelled in the course of the matching procedure in the context of an
effective non-relativistic field theory approach to the problem [57, 62, 63]. The net result is that the ladder correction
acts as the sum of three terms, (α/π) (L1 + L2 + L3), where

L1 = lnλ− 1 (27)
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TABLE I: NLO corrections to the parapositronium energy levels in the 2γA channel. These energy shifts include all multiplicity
factors and are given in units of mα6/π2. The “IR div” part should be multiplied by ln(λ)ILO, and the “Imaginary Part” must
be multiplied by iπ. The results for SE1, V1, and lad1 were obtained analytically in the current work, while those for SE2, V2,
V3, lad2, and lad3 were obtained numerically in the current work. Analytic results for the total SE, V, and lad contributions
were taken from [51] and are consistent with the numerical values obtained here.

Term IR div Real Part Imaginary Part

VP 0 −

1

6
ζ(2) 0

SE1 2 1

2
ln 2− 1

2
−

1

4

SE2 0 -0.092016(4) − ln 2
SE total 2 −

1

2
ζ(2) + ln2 2 + 1

2
ln 2− 1

4
− ln 2− 1

4

V1 -4 −

5

2
ln 2 + 5

2

5

4

V2 0 0.7628944(2) −

3

4
ζ(2) + ln 2 + 1

4

V3 0 0.5594205(7) 3

8
ζ(2)− 1

2

V total -4 21

16
ζ(3)− 3

2
ζ(2) ln 2 −

3

8
ζ(2) + ln 2 + 1

−

1

4
ζ(2)− ln2 2− 2 ln 2 + 9

2

lad1 2 1− ln 2 1

2

lad2 0 −0.9739264(4) 0.346573594(6)
lad3 0 −0.5822406(3) −0.346573594(4)

lad total 2 −

5

4
ζ(2)− ln 2 + 3

2

1

2

total 0 21

16
ζ(3)− 3

2
ζ(2) ln 2 −

3

8
ζ(2) + 5

4

−

13

6
ζ(2)− 5

2
ln 2 + 23

4

and multiplies the LO contribution, while L2 and L3 come from the final two terms of (24).
The values for the NLO energy corrections are shown in Table I. We note that the total infrared divergence vanishes,

as it must. The real parts for SE2, V2, V3, lad2, and lad3 were obtained numerically. They are consistent with known
analytic results [51] that are listed in table as “total” contributions for the SE, V, and lad corrections. The NLO
energy correction is ∆ENLO = INLO(mα6/π2) where

INLO =

(

21

16
ζ(3)− 3

2
ζ(2) ln 2− 13

6
ζ(2)− 5

2
ln 2 +

23

4

)

+ iπ

(

−3

8
ζ(2) +

5

4

)

. (28)

This result is consistent with the known O(α) energy correction [50, 51]. The imaginary parts for the various
contributions are related to decay rate contributions as discussed above and are in agreement with the results of
[58, 64].
The only NLO contribution that was problematic to evaluate numerically was SE2. The problem was in the large-p

region of the integration space. The integral was clearly convergent for large p but could only be evaluated to relatively
low precision before numerical difficulties set in. Our solution was to break the large-p region up into smaller pieces
and integrate them separately. Specifically, we used the change of variables p = xp/(1 − xp), dp = (1 + p)2dxp with
0 ≤ xp < 1 to map the infinite p range onto a finite interval. Then we broke the region 0 ≤ xp < 1 up into subintervals

1, 2, 3, · · · where the nth interval covers 1− sn−1 < xp < 1− sn with s =
√

1/10. Regions 1 and 2 made the largest
contributions but were not problematic to integrate, while the contributions of the higher n regions decreased rapidly
with n and were readily integrable to the desired precision.

III. THE “PRODUCT” CONTRIBUTIONS

The “product” corrections have a one-loop correction–self energy, vertex, or ladder–on each side of the central
annihilation event. These next-to-next-to-leading-order (NNLO) contributions are shown in Fig. 4. The symmetry
factors associated with these seven graphs are {2, 8, 4, 4, 4, 8, 2 } respectively coming from uncrossed and crossed
annihilation photons and the possible positions of the one-loop parts in the diagram, all of which contribute equal
energy corrections. Figs. 4(d) and 4(e) represent the two types of vertex–vertex corrections–those acting on the same
annihilation photon (“type A”) and those acting on different photons (“type B”).
Numerical results for the various produce corrections are shown in Table II. The real parts were the result of

straightforward, if sometimes extremely time-consuming, numerical integration using the adaptive Monte Carlo inte-
gration routine Vegas [65]. All contributions that involved the SE2 correction were done by separation into regions as
for the one-loop SE2 contribution described above. The imaginary parts were done numerically and checked against
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FIG. 4: The seven types of NNLO terms in the 2γA channel having a one-loop correction on each side of the annihilation
event. The contributions are: (a) self energy–self energy, (b) self energy–vertex, (c) self energy–ladder, (d) vertex–vertex (type
A), (e) vertex–vertex (type B), (f) vertex–ladder, and (g) ladder–ladder. Each of these diagrams represents two configurations
of annihilation photons (uncrossed and crossed); additional factors have been included to account for the various places in the
diagram where the corrections could act.

analytic results obtained by the following considerations. The imaginary part of the energy correction is related to
the decay rate correction according to (10). There is only one independent amplitude for the decay of pseudoscalar

ℓ = 0 parapositronium to two real photons: k̂ · ǫ̂∗1 × ǫ∗2, where k̂ represents the direction of the momentum of one
of the photons (in the center of mass frame) and ǫ̂i is the polarization vector of the ith photon. It follows that the
amplitude for one-loop corrections to the decay can be written as

A = ALO

{

1 +
α

π
(B + C + · · · )

}

(29)

where ALO is the LO decay amplitude and B and C represent one-loop corrections. Then the decay rate, as corrected
by B and C (coming from SE2 and V2 for example), is

Γ = ΓLO

{

1 +
2α

π
(B + C + · · · ) + α2

π2
(B + C + · · · )2

}

(30)

where ΓLO = mα5/2 is the LO rate. On conversion into an expression for the imaginary part of the energy correction,
(30) becomes

Im(∆E) =
(

−π

4

)mα5

π
+
(

−π

2
(B + C + · · · )

)mα6

π2
+
(

−π

4
(B + C + · · · )2

)mα7

π3
+ · · · (31)

so that, for the one-loop correction due to B, for instance,

Im(IB) = −π

2
B, (32)

while for two-loop corrections with a B correction on each side one has

Im(IBB) = −π

4
B2 = − 1

π
Im(IB)

2 (33)

and for a two-loop correction with a B on one side and a C on the other, one has

Im(IBC) = −π

2
BC = − 2

π
Im(IB)Im(IC). (34)

So all NNLO imaginary parts of the product type can be expressed analytically in terms of the known NLO imaginary
parts. The numerical results we obtained for the NNLO imaginary parts are in accord with these analytic results.
The total imaginary part from the contributions listed in Table II is −π(π2 + 4)2/256.
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TABLE II: Contributions to the p-Ps energy levels coming from products of one-loop corrections, one on either side of the
annihilation event. The one-loop parts are the self energy (SE2), vertex (V2 and V3), and ladder (lad2 and lad3) corrections.
For type A vertex corrections the two vertex parts act on the same photon, while for type B corrections they act on different
photons. The energy shifts are given in units of mα7/π3.

Term Figure Real Part Imaginary Part

SE2-SE2 3a 0.188882(5) -1.509388
SE2-V2 3b 1.384328(5) -1.265410
SE2-V3 3b 0.700844(8) 0.508903
SE2-lad2 3c -1.795766(8) 1.509388
SE2-lad3 3c -0.582731(4) -1.509388
V2-V2 (A) 3d 1.024802(6) -0.132609
V2-V3 (A) 3d 0.056872(3) 0.106661
V3-V3 (A) 3d -0.113306(3) -0.021448
V2-V2 (B) 3e -0.344233(4) -0.132609
V2-V3 (B) 3e -0.079219(3) 0.106661
V3-V3 (B) 3e -0.117118(3) -0.021448
V2-lad2 3f -1.854200(8) 0.632705
V2-lad3 3f 0.379183(3) -0.632705
V3-lad2 3f -0.063542(8) -0.254452
V3-lad3 3f 0.609061(8) 0.254452
lad2-lad2 3g 1.241728(7) -0.377347
lad2-lad3 3g -0.422514(3) 0.754694
lad3-lad3 3g -0.371805(8) -0.377347

total -0.158734(25) -2.360685

We can now work out the total NNLO correction to the parapositronium energy levels coming from product
contributions. It is useful to write the NLO corrections as

ISE = 2S1ILO + ISE2, (35a)

IV = 4V1ILO + IV23, (35b)

Ilad = 2L1ILO + Ilad23 (35c)

where S1 is given in (16), V1 = − lnλ− 5/4, L1 is given in (27), and

ISE2 =
(

−1

2
ζ(2) + ln2 2 +

1

4

)

+ iπ
(

− ln 2
)

, (36a)

IV23 =
(21

16
ζ(3)− 3

2
ζ(2) ln 2− 1

4
ζ(2)− ln2 2 +

1

2
ln 2 + 2

)

+ iπ
(

−3

8
ζ(2) + ln 2− 1

4

)

, (36b)

Ilad23 =
(

−5

4
ζ(2) +

1

2

)

. (36c)

Finally, the NNLO contribution from all “product” contributions is given by the sum of the following six terms

ISE−SE = S2
1ILO + S1ISE2 + ISE2−SE2, (37a)

ISE−V = 4S1V1ILO + S1IV23 + 2V1ISE2 + ISE2−V23, (37b)

ISE−lad = 2S1L1ILO + S1Ilad23 + L1ISE2 + ISE2−lad23, (37c)

IV−V = 4V 2
1 ILO + 2V1IV23 + IV23−V23, (37d)

IV−lad = 4V1L1ILO + L1IV23 + 2V1Ilad23 + IV23−lad23, (37e)

Ilad−lad = L2
1ILO + L1Ilad23 + Ilad23−lad23, (37f)

where ISE2−SE2, etc., are taken from Table II, V 23 and lad23 include both parts 2 and 3, and IV−V is the sum of the
six V −V contributions including both parts A and B. Upon adding up the contributions of (37) we obtain the total
product contribution

Iproduct = 9ILO − 3 (ISE2 + IV23 + Ilad23) + IXY (38)

where we have used

S1 + 2V1 + L1 = −3 (39)
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and IXY is the total from Table II:

IXY = −0.158734(25)− iπ
(π2

16
+

1

4

)2

. (40)

In all, then, the final “product” result is

Iproduct = −0.561971(25)− iπ
(π2

16
− 5

4

)2

. (41)

IV. RESULTS

On combining the light-by-light contribution of Fig. 1(a) [47] and the vacuum polarization contribution of Fig. 1(b)
[48] with the new product contribution of Fig. 1(c) given in (41), we have for the NNLO 2γA energy corrections the
results

∆ELbyL =
{

1.58377(8)− 1.016262(15)i
}mα7

π3
, (42a)

∆Evac.pol. =
{

−0.153095(3)
}mα7

π3
, (42b)

∆Eproduct =
{

−0.561971(25)− 1.259397i
}mα7

π3
, (42c)

with the NNLO contribution of Fig. 1(d) not yet known. These make a net contribution to the real part of the
parapositronium energy levels of

Re
(

∆Enet

)

= 0.86870(9)
mα7

π3
= 3.81kHz. (43)

Numerically, this is significantly below the present experimental precision of order 1MHz. Expression (43) applies to
all S states, although an additional factor of 1/n3 must be applied to states with higher principal quantum number
n.
Our results are also applicable to true muonium, the µ+µ− bound state. Even though true muonium has not

yet been detected it has interesting properties and is the subject of current searches. Some recent discussions with
references to earlier works include Refs. [66–71]. All of the positronium corrections considered in this paper apply as
well to true muonium with the electron mass m replaced by the muon mass mµ ∼ 206.8m. The net energy shift for
true muonium from known 2γA contributions, the analog of (43), is

Re
(

∆Eµ+µ−

net

)

= 0.86870(9)
mµα

7

π3
= 0.79MHz. (44)

This results takes into account light-by-light and vacuum polarization contributions with muons both in the bound
state and in the virtual fermion loops. Additional contributions analogous to the light-by-light and vacuum polariza-
tion ones but with electrons in the fermion loops instead of muons also exist but aren’t calculated here.
In summary, we have obtained the third of four classes of NNLO 2γA contributions to the parapositronium energies

at order mα7 (and the analogous corrections to the energies of true muonium). Much work remains to be done before
these results have experimental relevance. The contributions of Fig. 1(d), those from four-photon virtual annihilation,
and most of the non-annihilation corrections must first be completed in order to obtain the full O(mα7) result that
can be compared with experiment. The contributions obtained in the present work form an essential part of that
eventual complete result.
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