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We present quantum fidelity benchmarks for continuous-variable (CV) quantum devices to outper-
form quantum channels which can transmit at most k-dimensional coherences for positive integers k.
We determine an upper bound of an average fidelity over Gaussian distributed coherent states for
quantum channels whose Schmidt class is k. This settles fundamental fidelity steps where the known
classical limit and quantum limit correspond to the two endpoints of k = 1 and k = ∞, respectively.
It turns out that the average fidelity is useful to verify to what extent an experimental CV gate can
transmit a high dimensional coherence. The result is further extended to be applicable to general
quantum operations or stochastic quantum channels. While the fidelity is often associated with het-
erodyne measurements in quantum optics, we can also obtain similar criteria based on quadrature
deviations determined via homodyne measurements.

I. INTRODUCTION

It is a fundamental question how to generate and char-
acterize higher dimensional entanglement on quantum
systems [1, 2]. A central tool to identify higher dimen-
sional entanglement is the Schmidt number [3]. It is a
convex roof extension of the Schmidt rank for pure bi-
partite quantum states, i.e., the rank of marginal density
operators. A quantum state of a Schmidt-class k implies
the state can be expressed as a mixture of pure states
whose Schmidt rank is at most k for k = 1, 2, 3, · · · . On
the level of quantum channels, the Schmidt-class k im-
plies that there exists a Kraus representation in which
the maximum rank of Kraus operators is at most k [4–
6]. A channel of Schmidt-class k is also referred to as
k-partially entanglement breaking (k-PEB) since it rep-
resents an important class of completely positive (CP)
maps called entanglement breaking in the case of k = 1
[7, 8]. The notion of the Schmidt number tells us a pre-
cise meaning of the dimensionality in quantum object,
and enables us to demonstrate multi-level coherences of
quantum gates [9] as well as to verify higher order entan-
glement in practical conditions [10–18].

Quantum continuous-variable (CV) systems play a
central role in quantum optics and experimental quan-
tum information science [19–21]. They are described by
a set of bosonic field operators and capable of simulat-
ing any finite dimensional quantum information process
in principle. However, their versatility could be limited
due to various imperfections in experiments, and is not
necessarily accessible in the original form of the theoret-
ical model. Hence, it is natural to ask to what extent a
given CV system is capable of simulating a higher dimen-
sional quantum information process in practice. Notably,
a verification scheme of higher dimensional entanglement
of CV quantum states has been proposed [15, 17]. How-
ever, it has little been studied how to verify higher di-
mensional gate coherences in CV quantum gates.

A practical measure to show a basic performance of
CV gates [22–24] is an average fidelity over an input en-
semble of Gaussian distributed coherent states [25–28].

As an ultimate limitation of gate performance, the quan-
tum limit fidelity was determined in Refs. [29, 30]. On
the other hand, the entanglement-breaking limit fidelity,
which is normally referred to as the classical limit fidelity,
was determined in Ref. [26, 27, 30–33], and established
a practical quantum benchmark for CV gates. Similarly
to other quantum benchmarks [34–39], the fidelity-based
benchmark enables us to eliminate the possibility that
the process is described by entanglement-breaking maps
when the experimental fidelity is higher than the clas-
sical limit. Therefore, it can ensure the existence of the
coherence in the lowest order of k = 2, but could not pro-
vide an evidence of substantially higher order coherences
expected in CV gates.
Typically, we consider a higher fidelity implies a bet-

ter gate performance, and it is likely that a higher fidelity
suggests a higher Schmidt number and a higher order co-
herence. Therefore, an essential question is how high the
fidelity need to be in order to outperform a wider class of
lower dimensional processes which belong to the Schmidt
class of a given Schmidt number k. Although the known
Schmidt-number benchmarks [9, 33] could be usable in
general, it is crucial to observe the gate performance us-
ing more accessible quantum optical measurements [40].
There are other possibility to assess the gate coherence
quantitatively by using different measures of entangle-
ment [40–43].
In this paper, we present Schmidt-number benchmarks

for CV quantum devices based on an average fidelity over
Gaussian distributed coherent states. We show an upper
bound of the average fidelity achieved by k-PEB chan-
nels for any given integer k. It gives general fidelity steps
that reproduce the classical limit and quantum limit for
k = 1 and k = ∞, respectively. Surpassing the k-th limit
assesses the existence of (k+1)-dimension coherences on
quantum channels and operations. We also provide a
simple conjectural form of the tight k-th limit. This con-
jectured bound is partly achieved by a quantum channel
with Schmidt-class k and fully achievable by a proba-
bilistic gate with Schmidt-class k, for every k. Further,
the fidelity bound is utilized to provide a different form
for Schmidt-number benchmarks testable by using homo-
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dyne measurements.

The remainder of this paper is organized as follows. In
Sec. II, we define the Schmidt-class-k limit of the aver-
age fidelity for Gaussian distributed coherent states, and
show how to find an upper bound. In Sec. III, we extend
the resultant fidelity-based benchmarks for probabilistic
quantum channels. In Sec. IV, we show a lower bound of
an average quantum noise of canonical quadrature vari-
ables to outperform k-PEB operations as well as k-PEB
channels. In Sec. V, we conclude this paper with remarks.

II. SCHMIDT-CLASS-k FIDELITY LIMITS FOR
QUANTUM CHANNELS

A. Ansatz

We consider transmission of coherent states |α〉 :=

D(α) |0〉 = e−|α|2/2
∑∞

n=0 α
n |n〉 /

√
n! through a quan-

tum channel E . Let us consider a transformation task
on coherent states {|α〉} → {

∣

∣

√
ηα
〉

} with η > 0, and de-
fine the average fidelity for Gaussian distributed coherent
states as [25–27]

Fη,λ(E) :=
∫

pλ(α) 〈
√
ηα| E (|α〉〈α|) |√ηα〉 d2α, (1)

where pλ(α) =
λ
π exp(−λ|α|2) with λ > 0. We define the

Schmidt-class-k fidelity limit of quantum channels by

F (k)(η, λ) := max
E∈Ok

Fη,λ(E), (2)

where Ok is the set of k-PEB channels [4–6]. This set can

be defined in terms of Kraus operators
∑

iK
†
iKi = 11 as

Ok =

{

E
∣

∣

∣ E(ρ) =
∑

i

KiρK
†
i ∧ ∀i, rank(Ki) ≤ k

}

.

(3)

Note that O1 represents the set of entanglement-breaking
channels and F (1) corresponds to the classical limit fi-
delity [26, 27]. Note also that O∞ forms the set of whole
trace-preserving CP maps and F (∞) corresponds to the
quantum limit fidelity [29]. Therefore, F (k) of Eq. (2)
presents unified fidelity steps which include the classical
limit and quantum limit as the two endpoints, k = 1 and
k = ∞. Our main goal is to find a non-trivial upper
bound of F (k) for every integer k ∈ [2,∞).

Note that there is a general definition of PEB channels
for CV systems [44]. How to incorporate this general
definition into our approach is beyond the scope of this
paper.

B. Fidelity bounds

In order to find an upper bound of the fidelity F (k),
we introduce a pair of two-mode states [29, 31] as

ρE :=E ⊗ I (|ψξ〉〈ψξ|) , (4)

M :=

∫

ps(α) |α〉〈α| ⊗ |κα∗〉〈κα∗| d2α, (5)

where I denotes the identity process, |ψξ〉 =
√

1− ξ2
∑∞

n=0 ξ
n |n〉 |n〉 is a two-mode squeezed state

with ξ ∈ (0, 1), and we assume s, κ > 0. Using the rela-

tion 〈α|ψξ〉 =
√

1− ξ2e−(1−ξ2)|α|2/2 |ξα∗〉 we can find a
state-based representation of the fidelity in Eq. (1) as

F1/N,τ/N (E) = s+ (1 − ξ2)κ2

s(1− ξ2)
Tr(ρEM), (6)

where the parameters (N, τ) in the fidelity function are
determined by

τ = s+ (1− ξ2)κ2, N = κ2ξ2. (7)

From Eqs. (2) and (6) we have

F (k)(1/N, τ/N) =
s+ (1− ξ2)κ2

s(1− ξ2)
max
E∈Ok

Tr(ρEM). (8)

If E is a k-PEB channel, ρE = E ⊗ I (|ψξ〉〈ψξ|) is a
state of Schmidt-class k. This implies that the term
maxE∈Ok

Tr(ρEM) in Eq. (8) can be upper bounded as

max
E∈Ok

Tr(ρEM) ≤max
φ∈Sk

〈φ|M |φ〉 , (9)

where Sk denotes the set of pure states whose Schmidt
rank is k or less than k.
To proceed, we use the fact that M is invariant under

the collective rotation eiθ(n̂b−n̂a). Here, n̂a (n̂b) stands for
the number operator of the first (second) mode. This im-
plies thatM can be decomposed into the direct-sum form
associated with the eigenspaces of the relative photon-
number operator n̂b − n̂a =

∑

J J11
(J) as

M =

∞
∑

J=−∞

11(J)M11(J) =:

∞
⊕

J=−∞

M (J), (10)

where the identities of the orthogonal subspaces can

be written as 11(J) =
∑∞

n=0

∣

∣

∣e
(J)
n

〉〈

e
(J)
n

∣

∣

∣ with
∣

∣

∣e
(J)
n

〉

:=

|n〉 |n+ J〉 for J ≥ 0 and
∣

∣

∣
e
(J)
n

〉

:= |n− J〉 |n〉 for J < 0.

As a consequence, an explicit form for M (J) is given by

M (J) =
s

(1 + s+ κ2)

∞
∑

n,m=0

γ(J)n,m

∣

∣

∣e(J)n

〉〈

e(J)m

∣

∣

∣ , (11)

where we define

γ(J)n,m :=
(n+m+ |J |)! · κJxn+m+|J|

√

n!m!(n+ |J |)!(m+ |J |)!
(12)
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and

x =
κ

1 + s+ κ2
≤ 1

2
. (13)

From this decomposition and theorem 2 of Ref. [15], we

can see that a Schmidt-number k vector |φ〉 =∑ an|e(J)n 〉
in support ofM (J) solves the Schmidt-number-eigenvalue
problem ofM . This implies that an upper bound is given
by comparing the maximum on each subspace:

max
ψ∈Sk

〈φ|M |φ〉 = max
J

max
φ∈Sk

Tr(M (J) |φ〉〈φ|). (14)

Now, concatenating Eqs. (8, 9, 11, 14) and taking the
limit s→ 0 with the help of Eq. (7) we obtain

F (k)(1/N, τ/N) ≤ N + τ

1 +N + τ
max
J

max
φ∈Sk

〈φ|A(J) |φ〉 ,
(15)

where

A(J) :=
∞
∑

n,m=0

γ(J)n,m

∣

∣

∣
e(J)n

〉〈

e(J)m

∣

∣

∣
(16)

and γ(J) is given by Eq. (12) with κ =
√
N + τ and

x =
√
N + τ/(1 + N + τ). Note that, for κ ≥ 1 (κ <

1), the optimization over J ≥ 0 (J ≤ 0) is sufficient

due to the relation κ−Jγ
(J)
n,m = κJγ

(−J)
n,m or equivalently

κ−JA(J) = κJA(−J).
Since A(J) of Eq. (16) is essentially the same form

as L of Eq. (63) in Ref. [15], we can evaluate
maxφ∈Sk

〈φ|A(J) |φ〉 by the maximal eigenvalue of all

k × k-principal submatrices of A(J). This enables us to
determine an upper bound of F (k) as follows. Let us
write a k × k principal submatrix of A(J) by

A
(J)
~n :=

∑

n,m∈~n

∣

∣

∣
e(J)n

〉〈

e(J)n

∣

∣

∣
A(J)

∣

∣

∣
e(J)m

〉〈

e(J)m

∣

∣

∣
(17)

where ~n = {n1, n2, · · · , nk} is a set of non-negative in-
tegers in increasing order, nl < nl′ with l < l′, and the
number of elements is denoted by |~n| = k. Then, we can
formally express the fidelity bound as

F (k)(1/N, τ/N) ≤ N + τ

1 +N + τ
max
J

max
|~n|=k

‖A(J)
~n ‖ =: Uk,

(18)

where ‖ · ‖ denotes the maximum eigenvalue.
The right-hand-side formula of Eq. (18) still involves

optimizations over the integer J and the choice of the k-
tuple ~n. Fortunately, we can find the maximum by check-
ing a finite set of finite-size matrices once the parameters
(k,N, τ) are fixed. This is because {A(J)}J is essentially
equivalent to the density matrix for the Gaussian state
M in the number basis, and the contribution involving
sufficiently large photon-number elements is negligible.
A practical process to determine the maximum is given

FIG. 1. (Color online) Our upper bound of the Schmidt-

class-k fidelity F (k)(η, λ) [Uk of Eq. (18)] for λ = 0.01
and η ∈ {0.5, 0.75, 1.0, 1.5, 2.0}. If an experimental fidelity
Fη,λ(E) stays above the k-th bound, the experimental CV gate
E cannot be described by a k-PEB channel. This certificates
an existence of the (k+1)-th coherence in the CV gate E . The
classical limit fidelity of the fundamental quantum benchmark
corresponds to the bound of k = 1. In the inset, the classical
limit fidelity (k = 1) and the fidelity bound for k = 2 due
to right-hand side of Eq. (20) are shown as a function of the
Gaussian inverse width λ for the case of unit-gain condition
η = 1. The dots represent the average fidelity F1,λ given
in Fig. 5 of Ref. [24]. This experimental fidelity is not high
enough to give an evidence to outperform arbitrary qubit gate
with regard to our criterion.

in Appendices. Eventually, we can find the maximum by
filtering out the submatrices whose maximal eigenvalue is
smaller than that of another submatrix. In Appendix A,
the optimal set ~n is identified for a couple of smaller k in
the case of J = 0. Appendix B generalizes the approach
presented in Appendix A, and gives a systematic process
to determine the maximum over general (J, ~n) for any
given integer k ∈ [1,∞).

C. Numerical results and application

Based on the method described in Appendix B, we
can numerically determine the upper bound of F (k) in
Eq. (18). Figure 1 shows our bound of F (k)(η, λ) for
k = {1, 2, · · · , 10} and η ∈ {0.5, 0.75, 1.0, 1.5, 2.0} with



4

λ = 0.01. For each pair of the parameters {η, λ}, surpass-
ing the bound of k implies that the channel E outperforms
k-PEB channels of Eq. (3), and is capable of transmitting
entanglement of Schmidt-rank k+1. It certifies the quan-
tum coherence unachievable by any teleportation-based
quantum gate employing entanglement of Schmidt-class
k [6]. The fidelity steps agree with our intuition that
a higher fidelity means an existence of stronger entan-
glement in terms of the Schmidt number, and would be
widely useful to evaluate the performance of CV quan-
tum gates.
Lobino et al., [24] showed an experimental average fi-

delity as a function of λ for unit gain η = 1. In the inset
of Fig. 1 we find that the experimental fidelities are lo-
cated in between the lines k = 1 and k = 2, and not high
enough to demonstrate k = 3 or higher dimensional co-
herences. This suggests that CV experiments are rather
in behind to demonstrate genuinely higher dimensional
coherences compared with experiments for multi-qubit
channels [9]. It might be worth noting that the current
fidelity record 83% for an experiment of a unit-gain tele-
portation protocol is a fidelity for an input of the vacuum
state [45, 46]. This corresponds to the case λ = ∞ in our
footing, and is useless for a verification of the multi-level
coherence.

D. Conjecture and attainability

From the numerical results, it has been observed that
the largest eigenvalue is given by the first k × k sub-

matrix A
(0)
{0,1,2,··· ,k−1}, namely, maxJ max|~n|=k ‖A(J)

~n ‖ =

‖A(0)
{0,1,2,··· ,k−1}‖. Moreover, we can reproduce the ex-

pressions of the classical limit [27, 31] and the quantum
limit [29] from the subspace of J = 0 for k = 1 and
k = ∞. To be concrete, it holds that

F (1)(1/N, τ/N) =
N + τ

1 +N + τ
‖A(0)

{0}‖ =
N + τ

1 +N + τ
,

F (∞)(1/N, τ/N) ≤ N + τ

1 +N + τ
‖A(0)‖

=
(N + τ + 1)− |N + τ − 1|

2
. (19)

We thus make a conjecture that the general limit is given
by a significantly simple form:

F (k)(1/N, τ/N) ≤ N + τ

1 +N + τ
‖A(0)

{0,1,2,··· ,k−1}‖. (20)

Regarding the tightness of this conjectured bound, we
present a k-PEB channel which saturates the inequality
of Eq. (20) when τ → 0. Let us define a k-PEB channel

E(k)(ρ) =
∫

d2αK
(k)
α ρ(K

(k)
α )

†
with Kraus operators of

rank k or less-than k

K(k)
α :=

1√
π
D

( √
ηα

1 + λ

)

(

k−1
∑

n=0

a(k)n |n〉〈n|
)

D†(α). (21)

It fulfills
∫

d2α(K
(k)
α )

†
K

(k)
α = 11 by imposing the condi-

tion
∑k−1

n=0 a
2
n = 1 and gives a simple form of the fidelity

lim
λ→0

Fη,λ(E(k)) =

k−1
∑

n,m=0

anam
√
ηn+m

n!m!

(−∂
∂η

)n+m
1

1 + η

=
1

1 + η

k−1
∑

n,m=0

anγ
(0)
n,mam =: f (k), (22)

where γ
(0)
n,m is given by Eq. (12) with x =

√
η/(1 + η).

This implies max{an} f
(k) = (1−η)−1‖A(0)

{0,1,··· ,k−1}‖, and
E(k) achieves the conjectured bound of Eq. (20) for τ =
0. It was shown that E(1) achieves the classical limit
in Ref. [27]. For k = 2 and k = 3, we have observed
numerically that E(k) could not achieve the limit when
τ > 0. Interestingly, we can generally show that the
conjectured fidelity bound in Eq. (20) is achievable by a
probabilistic quantum gate of Schmidt-class k for every
k (See Sec III B).

III. EXTENSION FOR GENERAL QUANTUM
OPERATIONS

Our benchmarks can be extended for general quan-
tum operations, namely, trace-non-increasing class of
CP maps (See Ref. [33] for a general framework). In
Sec. III A we show that the bound Uk of Eq. (18) holds
for CP maps of Schmidt-class k with a modified form of
the fidelity. Notably, the bound Uk is tight when general
quantum operations are taken into account. An interest-
ing example of trace-decreasing CP maps for CV states
is the so-called noiseless linear amplifier or probabilistic
amplifiers [30, 40, 47–50]. In Sec. III B, we prove that
such a stochastic quantum channel achieves the conjec-
tured bound of Eq. (20).

A. Fidelity bounds for CP maps

Suppose that E is a quantum operation, namely, a
trace-non-increasing CP map. We may modify the defi-
nition of the fidelity in Eq. (1) as [30]

Fη,λ(E) := P−1
s

∫

pλ(α) 〈
√
ηα| E (|α〉〈α|) |√ηα〉 d2α,

(23)

where pλ(α) = λ
π exp(−λ|α|2) with λ > 0, and Ps :=

Tr
∫

pλ(α)E(|α〉〈α|)d2α is the probability that E gives an
output state for the ensemble {pλ(α), |α〉〈α|}. Note that
Eq. (23) reduces to Eq. (1) for the trace-preserving case,
i.e., for quantum channels. In fact, Tr[E(|α〉〈α|)] = 1 for
all α ∈ C implies Ps = 1.
Similarly to Eq. (2), let us define the Schmidt-class-k

fidelity limit with the renormalized fidelity in Eq. (23) as

F (k)(η, λ) := max
E∈Ok

Fη,λ(E), (24)
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where Ok denotes the set of k-PEB maps described by

E(ρ) =∑iKiρK
†
i . Here, operators {Ki} have rank k or

less than k (We do not impose trace-preserving condition
∑

iK
†
iKi = 11).

In order to show that the same fidelity bound Uk in
Eq. (18) holds for quantum operations [33], the key is to
employ the normalized state:

ρE : =
E ⊗ I (|ψξ〉 〈ψξ|)

Tr [E ⊗ I (|ψξ〉 〈ψξ|)]
. (25)

By using this formula, instead of Eq. (4), the procedure
in Sec. II B leads to the fidelity bound for general CP
maps:

F (k)(η, λ) ≤ Uk(η, λ) =
1 + λ

1 + η + λ
max
J

max
|~n|=k

‖A(J)
~n ‖,

(26)

where ‖ · ‖ denotes the maximum eigenvalue and A
(J)
~n is

defined through Eqs. (12), (16), and (17) with

x =

√

η(1 + λ)

1 + η + λ
, κ =

√

1 + λ

η
. (27)

Note that Eq. (26) is tight, namely, it holds that

F (k)(η, λ) = Uk(η, λ). (28)

This can be confirmed from the fact that Uk is a solution
of the Schmidt-number-eigenvalue problem [15] together
with the property of k-PEB maps that ρE of Eq. (25) can
be any pure state of Schmidt-number k. For quantum
channels (trace-preserving CP maps), it remains open
how to find tight limit except for the classical limit k = 1
[27] and quantum limit k = ∞ [29, 30].
By comparing an experimentally observed fidelity and

our upper bound of the k-th fidelity limit F (k), one can
verify a genuine multi-dimensional coherence for general
quantum operations as well as for quantum channels. To
be concrete, we can eliminate the possibility that the
physical process E is described as a k-PEB map if it
holds that Fη,λ(E) > Uk(η, λ). This establishes an in-
finite sequence of quantitative quantum benchmarks for
general single-mode physical processes with respect to
the Schmidt number, k. The fidelity steps Uk(η, λ) would
give distinctive milestones to assess the closeness between
an experimental amplifier and an ideal quantum limited
amplification process [30, 40] by simultaneously observ-
ing the Schmidt number and the fidelity.

B. Proof of attainability of the conjectured bound

In Sec. II D, we have conjectured that the simple form
in Eq. (20) gives a tighter bound. Here, we will show
that a probabilistic quantum channel of Schmidt-class k
achieves the conjectured bound:

F (k)(η, λ) ≤ 1 + λ

1 + η + λ
‖A(0)

{0,1,2,··· ,k−1}‖. (29)

Proof.— Let us consider the following filtering operator

Qk =
√
N

k−1
∑

n=0

ang
n |n〉〈n| (30)

where (N , g) is a pair of positive constants and we assume
∑k−1
n=0 |an|2 = 1. We can readily calculate its action onto

coherent states as

Qk |α〉 =
√
N e−|α|2/2

k−1
∑

n=0

an(gα
2)n√
n!

|n〉 . (31)

Evidently, Qk is rank k or less than k. This implies

that the probabilistic quantum gate E(ρ) = QkρQ
†
k be-

longs to Schmidt-class k. From these expressions we have
∫

pλ(α) 〈
√
ηα| E (|α〉〈α|) |√ηα〉 d2α

=Nλ

k−1
∑

n,m=0

(n+m)!

n!m!

(
√
ηg)m+mana

∗
m

(1 + η + λ)n+m+1

=
Nλ

1 + η + λ

k−1
∑

n,m=0

γ(0)n,mana
∗
m, (32)

where we use
∫

pλ(α)e
−(1+η)|α|2 |α|2kd2α =

λk!/(1 + η + λ)k+1 for calculating the integration.
Moreover, the final expression is obtained by substi-

tuting g =
√
1 + λ and using the definition of γ

(0)
n,m in

Eq. (12) where the parameter x is given by Eq. (27).

Note that, from the definition of the submatrix A
(J)
~n

given through Eqs. (12), (16), and (17), we can write

max

(

k−1
∑

n,m=0

γ(0)n,mana
∗
m

)

= ‖A(0)
{0,1,2,··· ,k−1}‖, (33)

where the maximum is taken over
∑k−1
n=0 |an|2 = 1.

On the other hand, the relation in Eq. (31) and the
condition g =

√
1 + λ yield the following expression:

Ps = Tr

∫

pλ(α)E(|α〉〈α|)d2α

= Nλ
k−1
∑

n=0

|an|2g2n
(1 + λ)n

=
Nλ

1 + λ

k−1
∑

n=0

|an|2 =
Nλ

1 + λ
. (34)

From Eqs. (23), (32), and (34) we obtain

Fη,λ(E) =
1 + λ

1 + η + λ

k−1
∑

n,m=0

γ(0)n,mana
∗
m. (35)

Finally, optimizing the coefficient {an} of the filter Qk as
in Eq. (33) we can conclude that the right-hand side of
Eq. (29) [Eq. (20)] is achievable by a probabilistic quan-
tum gate of Schmidt-class k. �

Note that the normalization factor N of Qk in Eq. (30)
can be positive as long as k is finite. This fact confirms
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the attainability with a finite success probability Ps >
0. In the limit of k → ∞, however, N could be zero

so as to fulfill the physical condition Q†
kQk ≤ 11 (See

Refs. [30, 40]).

IV. SCHMIDT-CLASS-k LIMITATION ON
QUANTUM NOISE OF CANONICAL

VARIABLES

In this section, we present a Schmidt-class-k limit on
an average of Bayesian mean-square deviations for canon-
ical variables. We introduce a basic relation between
the fidelity and quantum noise in Sec. IVA. Resultant
Schmidt-number benchmarks are given in Sec. IVB.

A. Canonical quantum noise and fidelity

Let x̂ and p̂ be canonical quadrature variables with
the canonical commutation relation [x̂, p̂] = i. The field

operator â is given as â = (x̂+ ip̂)/
√
2, and satisfies the

bosonic commutation relation, [â, â†] = 1. For notation
convention we write the mean quadratures for coherent
states as

xα := 〈α| x̂ |α〉 = α+ α∗

√
2

, pα := 〈α| p̂ |α〉 = α− α∗

√
2i

.

(36)

Let E be a quantum operation. We define the mean-
square deviations for canonical quadratures [27, 39, 40]
as

V̄z := P−1
s Tr

[∫

pλ(α)(ẑ −
√
ηzα)

2E(|α〉〈α|)d2α
]

, (37)

where z ∈ {x, p}, pλ(α) := λ
π exp(−λ|α|2), and Ps :=

Tr
∫

pλ(α)E(|α〉〈α|)d2α. With the help of the property

of the displacement operator D(α)âD†(α) = â − α and
the cyclic property of the trace, we can write

V̄z =P
−1
s Tr

[∫

pλ(α)D(
√
ηα)ẑ2D†(

√
ηα)E(|α〉〈α|)d2α

]

=P−1
s Tr[z2σ], (38)

where we defined

σ :=

∫

pλ(α)D
†(
√
ηα)E(|α〉〈α|)D(

√
ηα)d2α. (39)

Note that we can readily confirm the following relations:

Tr[σ] =Tr

∫

pλ(α)E(|α〉〈α|)d2α = Ps,

〈0|σ |0〉 =
∫

pλ(α) 〈
√
ηα| E(|α〉〈α|) |√ηα〉 d2α. (40)

From Eq. (38) and the well-known expression for the
harmonic oscillator, x̂2 + p̂2 = 2â†â + 1, the sum of the
mean-square deviations can be expressed as

V̄x + V̄p =
1

Ps
(2Tr[â†âσ] + Tr[σ]). (41)

On the other hand, we can show the following inequality
for any positive semidefinite operator ρ:

Tr[â†âρ] =Tr

(

∞
∑

n=1

n |n〉〈n| ρ
)

≥Tr

(

∞
∑

n=1

|n〉〈n| ρ
)

= Tr[ρ]− 〈0| ρ |0〉 . (42)

Concatenating Eqs. (40), (41), and (42) with ρ = σ, we
obtain the relation between the sum quantum noise and
the average fidelity [27]

V̄x + V̄p − 1 ≥ 2

Ps
(Tr[σ]− 〈0|σ |0〉) = 2 (1− Fη,λ) , (43)

where Fη,λ is defined in Eq. (23). From Eq. (43), we
can see that a smaller value of quantum noise ensures a
higher fidelity. To be concrete, Eq. (43) implies that the
fidelity is bounded from below by using the mean-square
deviations

Fη,λ ≥3

2
− V̄x + V̄p

2
. (44)

In particular, we can observe that F = 1 if Vx + Vp = 1.

B. Schmidt-number benchmarks via quantum noise

Now, we can find a lower bound of the Schmidt number
by using the sum of the mean-square deviations Vx and
Vp. We can show that Fη,λ(E) > F (k)(η, λ) holds if the
following condition is satisfied

V̄x + V̄p − 1 < 2(1− F (k)(η, λ)). (45)

Proof.— Suppose Eq. (45) holds. From
Eqs. (43) and (45), we have

2 (1− Fη,λ) ≤ V̄x + V̄p − 1 < 2(1− F (k)(η, λ)). (46)

Comparing the left-end and right-end expressions, we ob-
tain Fη,λ(E) > F (k)(η, λ). Hence, Eq. (45) is a sufficient
condition that E outperforms any k-PEB maps. �

For a practical use, one can replace the term F (k) in
Eq. (45) with the upper bound Uk given in Eq. (18). We
thus have the following quantum benchmark:

V̄x + V̄p − 1 < 2(1− Uk(η, λ)). (47)

This condition can be readily tested by plugging-in an
experimentally observed value of V̄x + V̄p. Hence, one
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can verify that the Schmidt number of the process E is
at least k + 1 if the inequality of Eq. (47) is fulfilled.
Note that the condition of Eq. (45) is not tight when

k = 1 (See, Corollary 1 of [39]), and unlikely to be tight
for other choice of k ≥ 2. How to find a better link
between the Schmidt class and the quadrature deviations
for an improvement of our approach should be addressed
elsewhere.

V. CONCLUSION AND REMARKS

In conclusion, we have presented Schmidt-number
benchmarks for CV quantum devices using the average
fidelity for Gaussian distributed coherent states. Our
benchmarks give everlasting fidelity steps towards higher
dimensional quantum-gate coherence, and successfully
generalize the known classical and quantum limits by re-
casting them into the two endpoints of these steps. Our
result refines the meaning of “high fidelity” for CV quan-
tum gates, and the numerically determined fidelity steps
would be useful to demonstrate genuinely higher dimen-
sional coherence for experimental implementations. It
is fundamentally important to show a stronger evidence
that CV systems have a potential superiority in deal-
ing with higher dimensional quantum signals. In this
respect, distinctive experimental progress could be regu-
larly quantified and recorded based on the Schmidt class
determined by the fidelity steps. We have also conjec-
tured a simple formula for the fidelity bound. This bound
is achievable by a probabilistic quantum gate of the cor-
responding Schmidt class. Further, we have presented a
lower bound of an average quantum noise to outperform
k-PEB processes. This bound is directly related to ho-
modyne measurements and could provide wider options
for an experimental verification of higher dimensional co-
herences.
While our results are readily available as a type of en-

tanglement verification tools for experiments, there are
several open possibilities to improve the fidelity bound
and the bound for the canonical quantum noise. We re-
mark the following three aspects for an outlook.
(i) Our fidelity bound Uk is tight for quantum oper-

ations, yet we have not identified what operation can
achieve this bound (In Sec. III B we have provided a
concrete form of a probabilistic gate that achieves the
conjectured bound. If the conjectured bound is proven
equivalent to Uk, we can immediately settle this prob-
lem).
(ii) It remains open how to improve the fidelity bound

Uk for the case of quantum channels and how to identify
the optimal k-PEB channel which maximizes the fidelity,
for k ∈ [2,∞). In this regards, it has been known [30]
that there is a gap between the quantum limit fidelities
(k → ∞) for probabilistic gates and deterministic gates,
whereas there is no gap for the classical fidelity limits
(k = 1). An existence of the gap would be useful to
demonstrate an advantage of probabilistic gates [40].

(iii) Aside from the fidelity-based approach, exploring
a feasible method based on the statistical moments of
canonical variables would be important. As well as im-
proving our bound for the sum of the mean-square devia-
tions in Sec. IVB, an interesting problem is to determine
the trade-off relation between the mean-square deviations
under the constraint of Schmidt class. Hopefully, we
could prove a general sequence of uncertainty relations
for Vx and Vp, which reproduces the uncertainty relation
over Entanglement-breaking maps for k = 1 [39] and ap-
proaches the amplification uncertainty relation [40] in the
limit k → ∞.
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Appendix A: Rigorous result for the maximization
in Eq. (18) for J = 0

As a first step to estimate the maximization in
Eq. (18), we consider the case of J = 0. In the case
of J = 0 we can show that the exact maximum for k = 1,
2, and 3 is given by

max
|~n|=k

‖A(0)
~n ‖ = ‖A(0)

{0,1,2,··· ,k−1}‖. (A1)

In order to verify this relation, we use the following two
properties for γ defined through Eqs. (12) and (13):

(i) γ
(0)
n+1,n−l+1 − γ

(0)
n,n−l ≤ 0 holds for n ≥ 1

2 (l + 2)(l− l).

(ii) γ
(0)
n+1,m − γ

(0)
n,m ≤ 0 holds for m ≤ n− 1.

First, Property (i) with l = 0 implies that the diagonal

elements are in decreasing order, namely, γ
(0)
0,0 ≥ γ

(0)
1,1 ≥

γ
(0)
2,2 ≥ · · · . This proves Eq. (A1) for k = 1. Note that

Property (i) with l = 1 implies that the first off-diagonal
elements are in decreasing order, namely, it holds that

γ
(0)
0,1 ≥ γ

(0)
1,2 ≥ γ

(0)
2,3 ≥ · · · . Similarly, Property (i) with

l = 2 implies that the second off-diagonal elements are

in decreasing order, namely, it holds that γ
(0)
0,2 ≥ γ

(0)
1,3 ≥

γ
(0)
2,4 ≥ · · · .
Next, to prove Eq. (A1) for k = 2 we show

(

γ
(0)
n,n γ

(0)
n,n+1

γ
(0)
n+1,n γ

(0)
n+1,n+1

)

−
(

γ
(0)
n+1,n+1 γ

(0)
n+1,n+2

γ
(0)
n+2,n+1 γ

(0)
n+2,n+2

)

≥ 0,

(

γ
(0)
n,n γ

(0)
n,n+1

γ
(0)
n+1,n γ

(0)
n+1,n+1

)

−
(

γ
(0)
n,n γ

(0)
n,n+n′

γ
(0)
n+n′,n+n′ γ

(0)
n+n′,n+n′

)

≥ 0,

(A2)
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where each inequality for matrices indicates all elements
are non-negative. The first inequality suggests the de-
creasing order on shift in the diagonal direction associ-
ated with the schematics of Fig. 2(a); The second inequal-
ity suggests the decreasing order on spread in the vertical-
and-horizontal direction associated with the schematics
of Fig. 2(b). The first inequality of Eqs. (A2) is proven
from the decreasing order on the diagonal elements and
the first off-diagonal elements. The second inequality of
Eqs. (A2) is proven by using the decreasing order on the
diagonal elements and Property (ii). From the inequal-

ities in Eqs. (A2) we have ‖A(0)
{n,n+1}‖ ≥ ‖A(0)

{n+1,n+2}‖
and ‖A(0)

{n,n+1}‖ ≥ ‖A(0)
{n,n+n′}‖ since ‖a‖ ≤ ‖b‖ holds for

non-negative matrices a and b with 0 ≤ a ≤ b (See, Corol-
lary 8.1.19. of [51]). Using these two relations recursively
we can conclude Eq. (A1) for k = 2. Note that, from the
order of the diagonal elements and Property (ii), we can
generally obtain such a matrix inequality when the posi-
tion of the final row and column is shifted as in Fig. 2c.

FIG. 2. (Color online) Orders of principal submatrices.

Finally, similar to this proof, we proceed to the
proof of k = 3 by comparing the corresponding

submatrix elements associated with ‖A(0)
{n,n+1,n+2}‖ ≥

‖A(0)
{n+1,n+2,n+3}‖ for the diagonal direction shift and

‖A(0)
{n,n+1,n+2}‖ ≥ ‖A(0)

{n,n+n′,n+n′′}‖ for the spreading

shift. For the diagonal shift of the 3× 3 matrix, the ma-
trix inequality can be confirmed by the decreasing order
on the diagonal elements, the first off-diagonal elements,
and the second off-diagonal elements, coming from Prop-
erty (i) with l = 0, 1, and 2. For the spreading of the 3×3
matrix, we have three possibilities to divide the elements
(2:1), (2:1), and (1:1:1) as in Fig. 2(d). For the case of
(2:1), the inequality can be proven by Property (ii) and
the decreasing order on the diagonal elements. For the
case of (1:2), the inequality can be proven by Property (ii)
and the decreasing order on the diagonal shift of 2×2 ma-
trix. Then, the first inequality of Eq. (A2) on 2×2 matrix
and the decreasing order on the diagonal elements again
enable us to show the decreasing order on the spreading
shift from (1:2) to (1:1:1). Therefore, we can conclude

that the relation Eq. (A1) holds for k ∈ {1, 2.3}.
For k = 4, we can show the inequality for the spread-

ing shift ‖A(0)
{n,n+1,n+2,n+3}‖ ≥ ‖A(0)

{n,n+n′,n+n′′,n+n′′′}‖
by using Property (ii) and the results of the 2 × 2 and
3 × 3 matrices above. Similarly, from Property (i) and

the results of k ≤ 3 above we have ‖A(0)
{n,n+1,n+2,n+3}‖ ≥

‖A(0)
{n+1,n+2,n+3,n+4}‖ when n ≥ 2. However, the matrix

inequality for the diagonal shift cannot hold for the first

two submatrices, A
(0)
{0,1,2,3,} and A

(0)
{1,2,3,4}. Therefore, the

maximum is obtained by comparing the first three cases

of the matrices, i.e. maxn∈{0,1,2} ‖A(0)
{n,n+1,n+2,n+3}‖. In

this manner, we can eventually determine the maximum
by comparing the maximum eigenvalues of a relatively
small number of submatrices for a couples of small k.
We present a general systematic approach to determine
the maximum of Eq. (18) in the following section.

Appendix B: General recipe to determine the
maximum in Eq. (18)

In the previous section, we use the following two prop-
erties to make (matrix) inequalities on submatrices of
A(0) defined through Eqs. (12) and (13):

(i) γ
(0)
n+1,n−l+1 − γ

(0)
n,n−l ≤ 0 holds for n ≥ 1

2 (l + 2)(l− l).

(ii) γ
(0)
n+1,m − γ

(0)
n,m ≤ 0 holds for m ≤ n− 1.

In this section, we develop this method and present
a systematic approach to determine the maximum in
Eq. (18). An essential fact to generate matrix inequali-
ties is that ‖a‖ ≤ ‖b‖ holds for non-negative matrices a
and b with 0 ≤ a ≤ b (See, Corollary 8.1.19. of [51]).
Let us note general properties of A(J). (a) A(J) is a

non-negative matrix and symmetric, i.e., for any n,m,

γ
(J)
n,m ≥ 0 and γ

(J)
n,m = γ

(J)
m,n. (b) If n ≥ 1

2 (|J |−2)(|J |+1),

we have γ
(J)
n+1,n+1 − γ

(J)
n,n ≤ 0. (c) The sequence of the

diagonal elements {γ(J)n,n}n is at most single peaked and
the largest element is located around n ∼ 1

2 (|J |2−|J |−2).
From these properties and the fact that eigenvalues of a
positive semidefinite matrix are upper bounded by its
trace, we can neglect the contribution from sufficiently
large n when we determine the maximum in Eq. (18),
numerically.

1. Derivation of the properties (i) and (ii)

From Eqs. (12) and (13) we have

γ
(J)
n+1,m+1 − γ(J)n,m ≤ γ(J)n,m

×
(

(n+m+ |J |+ 2)(n+m+ |J |+ 1)
√

(n+ 1)(m+ 1)(n+ |J |+ 1)(m+ |J |+ 1)

1

4
− 1

)

.

(B1)

Suppose that m = n − l ≤ n. If we set J = 0 we obtain
Property (i). In our approach, a key observation is that
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TABLE I. The integer t
(J)
l in which l-th off-diagonal elements

become decreasing order for |J | ≤ 4. The superscript index

“(J)” of t
(J)
l is omitted through the text.

l J = 0 |J | = 1 |J | = 2 |J | = 3 |J | = 4

0 0 0 0 2 5

1 1 1 2 4 7

2 2 3 4 6 9

3 5 6 7 9 12

4 9 10 11 13 16

5 14 15 16 18 21

6 20 21 22 24 27

7 27 28 29 31 34

8 35 36 37 39 42

9 44 45 46 48 51

10 54 55 56 58 61

any l-th off-diagonal element gradually gives a decreas-
ing sequence. We define an integer tl to utilize this fact.

The integer tl that fulfills γ
(J)
n+1,m+1 − γ

(J)
n,m ≤ 0 is sum-

marized in Table I for l ≤ 10. The row of l = 0 shows
all diagonal elements are in decreasing order for |J | ≤ 2.
The row of l = 1 shows all first off-diagonal elements are
in decreasing order for |J | ≤ 1. Note that the values in
Table I are determined by taking the worst case of x = 1

2
(Better bounds would be obtained when a specific value
of x < 1

2 is given).
Suppose that m ≤ n− 1. From Eqs. (12) and (13) we

have

γ
(J)
n+1,m − γ(J)n,m ≤ γ(J)n,m

(

n+m+ |J |+ 1
√

(n+ 1)(n+ |J |+ 1)

1

2
− 1

)

≤ γ(J)n,m

(

n+ |J |/2
√

(n+ 1)(n+ |J |+ 1)
− 1

)

.

(B2)

This implies γ
(J)
n+1,m − γ

(J)
n,m ≤ 0 for |J | ≤ 4. For |J | > 4,

γ
(J)
n+1,m − γ

(J)
n,m ≤ 0 is fulfilled when

n ≥ (−4− 4|J |+ J2)/8 =: u(J). (B3)

As a consequence, the case of J = 0 gives Property (ii).
Notably, the expressions derived here suggest that we can
use modified versions of Properties (i) and (ii) for J 6= 0.
Our main residual task is to make matrix inequalities

systematically based on the general properties of {γ(J)n,m}.

2. Inequalities for the diagonal shift

From Table I, we can determine the index n of the
diagonal elements of A(J) so that the k×k principle sub-
matrices starting from [A(J)]n,n become decreasing order

associated with the diagonal shift of Fig. 3(a). From the
rows of l = 0 in Table I, we can confirm that the diagonal
elements are in decreasing order for |J | ≤ 2. The diag-
onal elements of A(3) and A(4) are in decreasing order
whenever n ≥ 2 and n ≥ 5, respectively. From the rows
of l = 0 and l = 1 in Table I, we can confirm that the
relation on the 2× 2 submatrices,
(

γn,n γn,n+1

γn+1,n γn+1,n+1

)

−
(

γn+1,n+1 γn+1,n+2

γn+2,n+1 γn+2,n+2

)

≥ 0,

holds for n ≥ t1 − 1 = 0 in the case of |J | ∈ {0, 1}.
Moreover, this matrix inequality holds for n ≥ t1− 1 = 1
in the case of |J | = 2 and for n ≥ t1 − 1 = 3 in the case
of |J | = 4. Note again that the inequality for matrices
indicates all elements are non-negative.
Similarly, from the rows of l ∈ {0, 1, 2} in Table I, we

can confirm that the relation on the 3× 3 submatrices,






γn,n γn,n+1 γn,n+2

γn+1,n γn+1,n+1 γn+1,n+2

γn+2,n γn+2,n+1 γn+2,n+2







−







γn+1,n+1 γn+1,n+2 γn+1,n+3

γn+2,n+1 γn+2,n+2 γn+2,n+3

γn+3,n+1 γn+3,n+2 γn+3,n+3






≥ 0, (B4)

holds for n ≥ t2 − 2 = 0 in the case of J = 0 and for
n ≥ t2 − 2 = 1 in the case of |J | = 1. Further, the
relation of Eq. (B4) holds for n ≥ 1 in the case of |J | = 2,
n ≥ 4 − 2 = 2 in the case of |J | = 3, and n ≥ 7 − 2 = 5
in the case of |J | = 4. In this manner, we can show that
the inequality for the k × k submatrices,







γn,n · · · γn,n+k−1

...
. . .

...

γn+k−1,n · · · γn+k−1,n+k−1







−







γn+1,n+1 · · · γn+1,n+k

...
. . .

...

γn+k,n+1 · · · γn+k,n+k






≥ 0, (B5)

holds for n ≥ tl=k−1 − k + 1.

3. Inequalities for the spreading shift

Let us consider the following inequality for the spread-
ing shift depicted in Fig. 3(b)

B −B′ :=

(

M0 y

yt a

)

−
(

M0 y′

y′
t
a′

)

≥ 0, (B6)

where M0, a, and a
′ are square matrices. Suppose that

the matrices in Eq. (B6) are submatrices of A(J) of
Eq. (17) and that J = 0 so that Properties (i) and (ii)
are fulfilled. From the decreasing order on the diagonal
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FIG. 3. (Color online) To determine the order of the max-
imum eigenvalues of the different submatrices (a) a primi-
tive step is to compare submatrices which can be chosen by
shifts on the diagonal direction. (b) Another primitive step
is to compare submatrices which have the same elements but
some of the last block have higher number indices (row and
columns). (c) The case with the last one element is shifted.
(d) The case with last two elements are shifted. (e) When we
compare the submatrices which have many blocks we consider
spreading of the largest sub-block such as m2 + m3, firstly.
Then, this submatrix, say (m1;m2+m3), can be connected
with another submatrix, say (m1;m2;m3), by considering fur-
ther spreading of the second largest sub-block such as m3.

elements and Property (ii), we can show that the rela-
tion of Eq. (B6) holds when the final row and column are
shifted as in Fig. 3 (c), in which a and a′ are diagonal ele-
ments, and y and y′ are single column vectors. From the
decreasing order on the diagonal and first-off diagonal el-
ements together with Property (ii), we can show that the
relation of Eq. (B6) holds when the final two rows and
two columns are shifted as in Fig. 3(d), (here, a and a′

are 2×2 matrices). Similarly, we can generate the matrix
inequalities in the form of Eq. (B6) by using Properties
(i) and (ii) for any size of a whenever the diagonal shift
(a→ a′) is in decreasing order.
By further spreading the last lows and columns associ-

ated with the position of the square matrix a, we can gen-
erate inequalities with more separations as in Fig. 3(e).
To make three separation (m1 : m2 : m3), we consider
the diagonal shift of the column-length m2 +m3 square
matrix, firstly, and then we spread the last square ma-
trix of the column-length m3. We can reach any given
separation by repeating these process recursively.
From Properties (i) and (ii), we can see that, for suf-

ficiently larger n, the inequalities for the diagonal shift
and spreading shift always hold. This is also the case

for general J 6= 0 since similar properties hold with a
bit complicated conditions such as Eq. (B3) and Table
I (See the discussion in Appendix B 1). Hence, the set
of submatrices we need to compare the maximum eigen-
values is a finite set of smaller-n-index submatrices that
cannot be connected by the matrix inequalities obtained
by these properties. On this basis, the search of the sub-
matrices that have larger maximum eigenvalues can be
carried out by a relatively small number of calculation
steps. We will present a systematical procedure to iden-
tify relevant submatrices in the following.

4. Relevant set of submatrices

a. For J = 0 and k = 1, 2, 3, 4, 5

Let us suppose that J = 0. For k = 1, 2, 3, the matrix
inequalities both in the diagonal shift and the spreading
shift of Fig. 3 (a) and (b) hold for any n ≥ 0. This leads

to ‖A(0)
{0}‖ ≥ ‖A(0)

{n}‖ for k = 1, ‖A(0)
{0,1}‖ ≥ ‖A(0)

{n,n′}‖ for

k = 2, and ‖A(0)
{0,1,2}‖ ≥ ‖A(0)

{n,n′,n′′}‖ for k = 3.

For k = 4, we can show the inequality for the spread-

ing shift ‖A(0)
{n,n+1,n+2,n+3}‖ ≥ ‖A(0)

{n,n+n′,n+n′′,n+n′′′}‖
by using Property (ii) and the inequalities in the diago-
nal shift of the 2× 2 and 3× 3 matrices above. From the
row of l = 3 in Table I, the inequalities for the diagonal
shift is fulfilled whenever n ≥ tl − l = 2. Hence, the only
submatrices that cannot be connected by the inequali-

ties are A
(0)
{0,1,2,3,}, A

(0)
{1,2,3,4}, and A

(0)
{2,3,4,5}. Therefore,

the maximum in Eq. (18) is obtained by comparing the

first three matrices, i.e. maxn∈{0,1,2} ‖A(0)
{n,n+1,n+2,n+3}‖.

For k = 5, we can show the inequality for

the spreading shift ‖A(0)
{n,n+1,n+2,n+3,n+4}‖ ≥

‖A(0)
{n,n+n′,n+n′′,n+n′′′,n+n′′′′}‖ by using Property

(ii) and the results above except for the case of
n = 0. For n = 0, we could not have the matrix

inequality for A
(0)
{0,1,2,3,4} and A

(0)
{0,2,3,4,5} because the

4 × 4 matrix inequality cannot hold for the first
two case of the diagonal shift (n ≥ t3 − 3 = 2).
From Property (i) and the results of k ≤ 4 above,
we also have the inequality for the diagonal shift

‖A(0)
{n,n+1,n+2,n+3,n+4}‖ ≥ ‖A(0)

{n+1,n+2,n+3,n+4,n+5}‖
when n ≥ t4 − 4 = 5. In this case, the matrix in-
equality for the diagonal shift cannot hold for the first
five 5 × 5 submatrices ‖A{n,n+1,n+2,n+3,n+4}‖ with
n ∈ {0, 1, 2, 3, 4}. Therefore, the optimization can be
done by taking the largest one of ‖A{0,2,3,4,5}‖ and
‖A{n,n+1,n+2,n+3,n+4}‖ with n ∈ {0, 1, 2, 3, 4, 5}.

b. For general J and k

For temporary simplicity, let us suppose |J | ≤ 4 [It
corresponds to u(J) = 0 in Eq. (B3)]. The set of sub-
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matrices which cannot be connected by the inequali-
ties for given k can be specified from tk−1, tk−2, · · · , t0
in Table I as follows: First we generate the number of
tk−1 − (k − 1) + 1 = tk−1 − k + 2 sets of ~n in which the
submatrix corresponding to A~n cannot be connected by
the inequalities with respect to the diagonal shift:

{0, 1, · · · , k − 1},

{1, 2, · · · , k − 1, k},

.

..

{tk−1 − k, · · · , tk−1 − 1},

{tk−1 − k + 1, · · · , tk−1}. (B7)

Second, we generate the sets by repeating the diagonal
shift of the last k − 1 elements of each set of Eq. (B7)
until the last index of ~n fulfills nk > tk−2 as

{0, 1, · · · , k − 1
︸ ︷︷ ︸

k−1 elements

}, {0, 2, 3, · · · , k
︸ ︷︷ ︸

→Shifted

}, {0, 3, 4, · · · , k + 1
︸ ︷︷ ︸

→Shifted

}, · · ·

{1, 2, · · · , k − 1, k
︸ ︷︷ ︸

k−1 elements

}, {1, 3, 4, · · · , k − 1, k
︸ ︷︷ ︸

→Shifted

}, {1, 4, 5, · · · , k, k + 1
︸ ︷︷ ︸

→Shifted

}, · · ·

...

{tk−1−k, · · · , tk−1−1}, {tk−1−k, tk−1 − k + 2, · · · , tk−1}, · · ·

{tk−1−k+1, · · · , tk−1}, {tk−1 −k+1, tk−1−k+3, · · · , tk−1+1}, · · ·

(B8)

Third and finally, we generate the sets by repeating
the diagonal shift of the last k− 2 elements of each set of
Eq. (B8) until the last index of ~n fulfills nk > tk−3. For
example from the elements in the first line of Eq. (B8)

we have

{0, 1, 2, · · · , k − 1
︸ ︷︷ ︸

k−2 elements

}, {0, 1, 3, 4, · · · , k
︸ ︷︷ ︸

→Shifted

}, {0, 1, 4, 5, · · · , k + 1
︸ ︷︷ ︸

→Shifted

}, · · ·

{0, 2, 3, 4, · · · , k
︸ ︷︷ ︸

k−2 elements

}, {0, 2, 4, 5, · · · , k + 1
︸ ︷︷ ︸

→Shifted

}, {0, 2, 5, 6, · · · , k + 2
︸ ︷︷ ︸

→Shifted

}, · · ·

{0, 3, 4, 5, · · · , k + 1
︸ ︷︷ ︸

k−2 elements

}, {0, 3, 5, 6, · · · , k + 2
︸ ︷︷ ︸

→Shifted

}, · · ·

... (B9)

In this manner, we can obtain the total number of, at

most,
∏k−1
l=0 (tl − l − 1) sets of indices ~n.

For the case of |J | > 4, we modify the generation pro-
cess by using u(J) of Eq. (B3) so that the diagonal shift
of the last l elements is repeated until the last index of
~n fulfills nk > max{tl−1, u

(J) + l− 1}.

5. Outline for numerical calculation

Suppose that k, κ and x are given. We first search the
set of {A(J)}J which include k × k principle submatri-
ces whose trace is grater than the conjectured maximum

value ‖A(0)
{0,1,2,··· ,k−1}‖. This process can be executed by

only using the diagonal elements of {A(J)}J .
Next, we determine the relevant submatrices according

to the process described in Appendix B 4b for relevant
J .
Lastly, the maximum eigenvalues are directly com-

pared to determine the maximum.
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[37] H. Häseler and N. Lütkenhaus, “Probing the quantum-
ness of channels with mixed states,” Phys. Rev. A 80,
042304 (2009).

[38] M. Owari, M. B. Plenio, E. S. Polzik, A. Serafini, and M.
M. Wolf, “Squeezing the limit: quantum benchmarks for
the teleportation and storage of squeezed states,” New J.
Phys. 10, 113014 (2008).

[39] R. Namiki and K. Azuma, “Quantum benchmark via an
uncertainty product of canonical variables,” Phys. Rev.
Lett. 114, 140503 (2015).

[40] R. Namiki, “Amplification uncertainty relation for prob-
abilistic amplifiers,” Phys. Rev. A 92, 032326 (2015).

[41] N. Killoran and N. Lütkenhaus, “Strong quantitative
benchmarking of quantum optical devices,” Phys. Rev.
A 83, 052320 (2011).

[42] N. Killoran, M. Hosseini, B. C. Buchler, P. K. Lam, and
N. Lütkenhaus, “Quantum benchmarking with realistic
states of light,” Phys. Rev. A 86, 022331 (2012).

[43] I. Khan, C. Wittmann, N. Jain, N. Killoran,
N. Lütkenhaus, C. Marquardt, and G. Leuchs, “Optimal
working points for continuous-variable quantum chan-
nels,” Phys. Rev. A 88, 010302 (2013).

[44] M. E. Shirokov, “Schmidt number and partially
entanglement-breaking channels in infinite-dimensional
quantum systems,” Mathematical Notes 93, 766–779
(2013).

[45] M. Yukawa, H. Benichi, and A. Furusawa, “High-fidelity
continuous-variable quantum teleportation toward mul-
tistep quantum operations,” Phys. Rev. A 77, 022314
(2008).

[46] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and
S. L. Braunstein, “Advances in quantum teleportation,”
Nature Photonics 9, 641–652 (2015).

[47] T. C. Ralph and A. P. Lund, “Nondeterministic noise-
less linear amplification of quantum systems,” Quantum
Communication Measurement and Computing Proceed-
ings of 9th International Conference, Ed. A. Lvovsky, 155
(AIP, New York 2009), arXiv:0809.0326v1.

[48] H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek,
S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam,
“Measurement-based noiseless linear amplification for
quantum communication,” Nature Photonics 8, 333–338
(2014).

[49] G. Y. Xiang, T. C. Ralph, a. P. Lund, N. Walk, and
G. J. Pryde, “Heralded noiseless linear amplification and
distillation of entanglement,” Nature Photonics 4, 316–
319 (2010).

[50] J. S. Neergaard-Nielsen, Y. Eto, C. W. Lee, H. Jeong,
and M. Sasaki, “Quantum tele-amplification with a
continuous-variable superposition state,” Nature Photon-
ics 7, 439–443 (2013).

[51] R.A. Horn and C.R. Johnson, Matrix Analysis (Cam-
bridge, NewYork, 2007).


