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The resource theory of asymmetry is a framework for classifying and quantifying the symmetry-
breaking properties of both states and operations relative to a given symmetry. In the special case
where the symmetry is the set of translations generated by a fixed observable, asymmetry can be
interpreted as coherence relative to the observable eigenbasis, and the resource theory of asymmetry
provides a framework to study this notion of coherence. We here show that this notion of coherence
naturally arises in the context of quantum speed limits. Indeed, the very concept of speed of
evolution, i.e., the inverse of the minimum time it takes the system to evolve to another (partially)
distinguishable state, is a measure of asymmetry relative to the time translations generated by the
system Hamiltonian. Furthermore, the celebrated Mandelstam-Tamm and Margolus-Levitin speed
limits can be interpreted as upper bounds on this measure of asymmetry by functions which are
themselves measures of asymmetry in the special case of pure states. Using measures of asymmetry
that are not restricted to pure states, such as the Wigner-Yanase skew information, we obtain
extensions of the Mandelstam-Tamm bound which are significantly tighter in the case of mixed
states. We also clarify some confusions in the literature about coherence and asymmetry, and show
that measures of coherence are a proper subset of measures of asymmetry.

PACS numbers:

I. INTRODUCTION

Quantum Speed Limits (QSL) are fundamental bounds
on the minimum time that it takes a quantum system to
evolve to a different state. QSLs have many applications,
for instance, in quantum control, quantum computation,
communication, and metrology. The most famous exam-
ples are the Mandelstam-Tamm [1] and Margolus-Levitin
bounds [2], which have led to numerous extensions and
applications [3–18]. Let τ⊥(ρ) be the minimum time that
it takes, under Hamiltonian H, for the state ρ to evolve to
a perfectly distinguishable state. Then, the Mandelstam-
Tamm bound asserts that

τ⊥(ρ) ≥ π

2∆E(ρ)
, (1.1)

where ∆E(ρ) ≡
√

tr(ρH2)− tr2(ρH) is the energy un-
certainty in state ρ (throughout this paper we take ~ =
1). According to the Margolus-Levitin bound,

τ⊥(ρ) ≥ π

2 [Eav(ρ)− Emin(ρ)]
(1.2)

where Eav(ρ) = tr(ρH) is the average energy of state
ρ and Emin(ρ) is the minimum energy level of Hamil-
tonian H in which state ρ has a nonzero component
[2]. Several generalizations of these bounds have been
found (See, e.g., [3–19]). In particular, Giovannetti et
al. [9] generalized these bounds by finding the lower
bounds on the minimum time it takes for the system to
evolve to a state having fidelity δ with the initial state.
These lower bounds are basically the same as the orig-
inal Mandelstam-Tamm and Margolus-Levitin bounds,

Eq.(1.1) and Eq.(1.2) up to a multiplicative factor that
only depends on the fidelity δ.

Although both the Mandelstam-Tamm and the
Margolus-Levitin QSL bounds are attainable for pure
states, for a general mixed state they can be rather loose.
For instance, if the state is incoherent in the energy eigen-
basis, i.e., diagonal in this basis, then it does not evolve.
So, τ⊥ is infinite, and therefore τ−1⊥ , the speed of evolu-
tion, is zero. However, in this case the lower bounds on
τ⊥ implied by Mandelstam-Tamm and Margolus-Levitin
QSLs can be arbitrarily small. In other words, in the case
of states that are incoherent in the energy eigenbasis, the
quantities ∆E and Eav(ρ)−Emin(ρ) do not contain any
information about the speed of evolution. All of this sug-
gests that we might be able to find tighter quantum speed
limits by quantifying the coherence of states relative to
the energy eigenbasis.

In recent years, two different approaches for quanti-
fying the coherence of states have been proposed in the
literature. The first approach defines coherence as asym-
metry relative to a translational symmetry, such as time-
translations or phase-shifts[20–24], while the second ap-
proach, proposed by Baumgratz et. al. [25] defines co-
herence as a resource which cannot be generated under
incoherent operations. (See Sec.(II A) for a short review).

In this paper, we will show that formalizing the notion
of speed of evolution naturally leads us to the notion of
coherence as asymmetry relative to time translations. In-
deed, we will show that any notion of speed of evolution
of a closed system is a measure of asymmetry relative
to time translations generated by the system Hamilto-
nian. Interestingly, it turns out that Mandelstam-Tamm
and Margolus-Levitin QSLs can both be interpreted as
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upper bounds on this measure of asymmetry by func-
tions which are themselves measures of asymmetry in the
case of pure states. The variance of energy, ∆E2, for in-
stance, is a measure of time-translation asymmetry on
pure states. A genuine measure of asymmetry, however,
is one that applies to all states, not just pure states.
Several of these have been recently constructed. The
Wigner-Yanase skew information is an example [21, 26].
We here show that by considering genuine measures of
asymmetry in the case of time-translations, we can obtain
extensions of the Mandelstam-Tamm bound which are
significantly tighter in the case of mixed states. Note that
throughout this paper we only consider time-independent
Hamiltonians.

We start with a short review of the resource theory of
asymmetry and a discussion of the different approaches
for quantifying coherence. We also clarify some confu-
sions in the literature about concepts of asymmetry and
coherence (See [22] for further discussions).

II. QUANTIFYING COHERENCE

In recent years, two slightly different approaches have
been proposed for treating coherence as a resource.

The first approach defines coherence as asymmetry rel-
ative to a group of translations, such as phase shifts or
time translations [20, 21, 24, 27]. As we will see in the
following, this is the notion of coherence which naturally
appears in the context of QSLs. This notion of coherence
has also been extensively used in the context of quantum
thermodynamics, (See e.g. [24, 27]) quantum optics and
reference frames (See e.g. [23, 26, 28, 29]), and quan-
tum metrology (See [22] for further discussions). Indeed,
the study of coherence as a resource has been one of the
primary motivations for the developments of the theory
of quantum reference frames and the resource theory of
asymmetry [20, 23]. In all these physical examples, there
is a fundamental or an effective translational symmetry
in the problem, or there is an additive conserved observ-
able, such as energy, momentum, angular momentum or
total photon number. For instance, as is discussed in
detail in a recent paper by Lostaglio et. al. [24], this
notion of coherence naturally shows up in the context of
quantum thermodynamics, where the only free unitaries
are the energy-conserving ones. In Sec.(II A) we briefly
review the resource theory of asymmetry for the special
case of translational symmetries.

On the other hand, Baumgratz et al. have proposed a
different approach for quantifying coherence [25]. Given
some preferred basis, it is natural to define the set of
incoherent states as those that are diagonal in this ba-
sis. Baumgratz et al. define the set of incoherent opera-
tions as those quantum operations for which there exists
a Kraus decomposition E(·) =

∑
µKµ(·)K†µ such that

for each Kraus operator Kµ and any incoherent state ρ,
KµρK

†
µ/tr(KµρK

†
µ) is also an incoherent state. In this

approach, coherence is defined as the resource relative

to the set of incoherent operations. Specifically, accord-
ing to this proposal, measures of coherence are functions
over the states that are non-increasing under incoherent
operations.

In the rest of this section, we give a short review of
the resource theory of asymmetry for the special case of
time-translations and we study the relation between the
notion of coherence as translational asymmetry and the
notion proposed by Baumgratz et al.

A. Coherence as asymmetry relative to translations

The resource theory of asymmetry is a framework for
quantifying and classifying asymmetry of states and op-
erations [21, 26, 28–31] (See [32–34] for a general discus-
sion of resource theories). In the special case where the
symmetry group is the set of translations generated by
a fixed observable, asymmetry can be interpreted as co-
herence relative to the eigenbasis of this observable, and
the resource theory of asymmetry provides a framework
to study this notion of coherence [20, 21, 23, 24, 27].

To characterize coherence relative to the eigenbasis of
an observable, say a time-independent Hamiltonian H,
we consider the one-parameter group of unitaries gen-
erated by this observable, the set of time translations
{e−iHt : t ∈ R}. If the eigenvalues of the generator H
are all separated from each other by a constant times
integers, then the group of translation is isomorphic to
U(1), the group of phases.1 This happens, for instance, in
the case of total photon number, which generates phase
shifts, or equivalently, in the case of the Hamiltonian for
a harmonic oscillator.

In this resource theory, free states are defined as the
states with no asymmetry, i.e., states which are invariant
under all time translations,

e−iHtρTIe
iHt = ρTI , ∀t ∈ R . (2.1)

Here the subscript TI stands for Translationally Invari-
ant. Clearly these consist of all and only the states which
are diagonal in the Hamiltonian eigenbasis, i.e.,

ρTI ∈ IH ⇐⇒ e−iHtρTIe
iHt = ρTI : ∀t ∈ R , (2.2)

where IH is the set of incoherent states in the energy
eiegnbasis. In other words, incoherence relative to the
Hamiltonian eigenbasis is equivalent to invariance under
time-translations.

Similarly, a trace-preserving completely positive map,
i.e., a quantum operation, is a free operation in the re-
source theory of time-translation asymmetry if it is in-
variant under all time translations, that is, if it satisfies

e−iHtETI(ρ)eiHt = ETI

(
e−iHtρeiHt

)
, ∀t ∈ R, (2.3)

1 In this case sometimes asymmetry is called U(1)-asymmetry.
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for any input state ρ. Translationally invariant quantum
operations are termed TI operations in this paper. As we
discuss in Sec.V, any TI operation can be implemented by
applying an energy-conserving unitary on the system and
an environment, which is initially in an incoherent state
(See also [35]). In other words, TI quantum operations
consist of all and only those operations which can be
implemented on the system under the restriction to time-
invariant resources.

Clearly TI quantum operations cannot create coher-
ence in the energy eigenbasis,

ρTI ∈ IH =⇒ ETI(ρTI) ∈ IH . (2.4)

Motivated by this observation, in this approach, coher-
ence relative to the eigenbasis of H is defined as the re-
source under TI operations, and therefore is quantified
using measures of asymmetry for the group of transla-
tions generated by H; i.e., functions satisfying the fol-
lowing definition

Definition 1 A function f from states to real numbers
is a measure of asymmetry with respect to translations
generated by a given observable H, if it satisfies
(i) For any TI quantum operation ETI, and any state ρ
it holds that f(ETI(ρ)) ≤ f(ρ).
(ii) For any incoherent state ρTI ∈ IH , it holds that
f(ρTI) = 0.

Note that the second condition is simply a convention
which fixes the value of function f on incoherent states,
and guarantees that it is a non-negative function of
states. This is true because for any incoherent state there
is a TI operation which maps its input to that incoherent
state2, and so any function which satisfies condition (i)
should take the same value on all incoherent states, and
this should be the minimum value that function takes on
all states. Therefore, by shifting the function by a con-
stant, one can always make sure that it satisfies condition
(ii) as well and is non-negative.

Also, note that for closed-system dynamics under
Hamiltonian H, any measure of asymmetry (relative to
time translation) remains constant, i.e.,

∀t ∈ R : f(ρ) = f(e−iHtρ eiHt) , (2.5)

for any state ρ. This follows from the fact that at any
time t the map ρ → e−iHtρeiHt is a TI quantum op-
eration, and it can be inverted by another TI quantum
operation, namely ρ→ eiHtρe−iHt.

In recent years, many examples of measures of asym-
metry have been studied in the literature (See e.g.
[20, 21, 26, 29, 30, 36–41]). In particular, [21, 26] propose
a general recipe for constructing measures of asymmetry.

2 For instance, the quantum operation which discards the input
state and prepares the desired incoherent state.

Using this recipe, for instance, it is shown that the func-
tion

FH(ρ) ≡ ‖[H, ρ]‖1 (2.6)

is a faithful measure of asymmetry [21, 26], where faith-
fulness means that it vanishes if and only if the state is
incoherent (In this paper ‖ · ‖1 denotes the l1-norm, i.e.,
the sum of singular values of the operator). Later, we
will present some interesting properties of this measure
of asymmetry and show that it is indeed relevant in the
context of quantum speed limits.

B. Relation between the two approaches

In this section, we study the relation between under-
standing coherence as asymmetry relative to a group of
translations and understanding coherence in the manner
proposed by Baumgratz et al. [25] and we briefly discuss
the applications of the first approach (See [22] for fur-
ther discussion). Notice that although in this paper we
often assume that the generator of the translations is the
system’s Hamiltonian, the following discussion holds for
any other observable, such as photon number or linear
momentum or angular momentum.

According to Eq.(2.4) under TI quantum operations
any state which is incoherent in the eigenbasis of the
generator of translations evolves to a state which is still
incoherent in this basis. Moreover, as is shown in the
appendix (See also [35]),

Proposition 2 All TI operations are incoherent opera-
tions (in the sense defined by Baumgratz et al. [25]).
Therefore, any measure of coherence in the sense of
Baumgratz et al. [25], i.e., a function that is non-
increasing under incoherent operations, is also a measure
of translational asymmetry.

As a matter of fact, it turns out that almost all mea-
sures of coherence which have been found recently, have
been previously studied in the resource theory of asym-
metry. For instance, the function called relative entropy
of coherence by Baumgratz et. al. [25] has been ex-
tensively studied as a measure of asymmetry under the
names of G-asymmetry and relative entropy of asymme-
try [29, 32, 39, 41], and it has been generalized to a family
of measures of asymmetry, called Holevo asymmetry mea-
sures [21, 26] (See also [20, 26] for measures of asymmetry
based on l1 norm).

On the other hand, there are incoherent operations
(unitaries) which are not translationally invariant. For
instance, consider permutations of the eigenvectors of the
generator H, i.e., unitaries in the form

Uσ =
∑
i

|σ(i)〉〈i| , (2.7)

where σ is an arbitrary permutation of the elements of
the eigenbasis of H. It can be easily seen that, while all
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these unitaries are incoherent operations, in general they
are not TI operations. Thus, TI quantum operations are
a proper subset of incoherent operations (See Fig. 1).

Incoherent operations Asymmetry measures 

Coherence 
measures 

TI operations 

FIG. 1: Translationally invariant operations are a proper sub-
set of incoherent operations. Consequently, measures of co-
herence (in the sense defined by Baumgratz et al. [25]), i.e.
functions which are non-increasing under incoherent opera-
tions, are a proper subset of measures of asymmetry.

Moreover, it turns out that there are measures of trans-
lational asymmetry which are not measures of coherence
in the sense of Baumgratz et al., i.e., they can increase
under incoherent operations. In particular, any function
fH which is a measure of coherence according to the def-
inition of [25] should satisfy

fH(ρ) = fH
(
UσρU

†
σ

)
, (2.8)

for any unitary Uσ of the form (2.7), and any state ρ,
and, remarkably, condition (2.8) is not necessarily satis-
fied by all measures of asymmetry. In particular, it is not
satisfied by measures of asymmetry which are relevant in
the context of QSLs, such as the function FH introduced
above, or the Wigner-Yanase skew information (See sec-
tion II C).

This fact is related to an important distinction between
the two approaches for quantifying coherence: unlike the
first approach based on the notion of asymmetry, in the
approach of Baumgratz et. al. [25] the eigenvalues of the
observable which defines the preferred basis relative to
which coherence is defined are irrelevant.

However, in many physical applications where the no-
tion of coherence is important, the eigenvalues of the ob-
servable which defines the preferred basis play an impor-
tant role.

As a simple example, consider the problem of phase es-
timation, where light in a particular mode is sent through
an optical element that generates an unknown phase shift
eiθ, and the goal is to estimate this phase shift. In this
context, coherence between states with different numbers
of photons is an essential resource: incoherent states are
useless for phase estimation. Let us now consider the
two states |0〉 + |1〉 and |0〉 + |N〉 where N > 1, which
both contain coherence. From the point of view of the
resource theory of coherence proposed by Baumgratz et.
al. [25], these states are equivalent resources, because
they can be interconverted to each other by incoherent
operations of the form (2.7), and therefore any measure
of coherence takes the same value on them. In spite of

this fact, in the above phase estimation task, the infor-
mation one can obtain about the unknown phase eiθ will
be different for these two states: in one case the relative
phase shift of the two terms in the state is eiθ, and in the
other it is eiNθ. Thus, in this context, these states are
not equivalent resources, and therefore their usefulness
for the task of phase estimation cannot be quantified us-
ing the measures of coherence proposed by Baumgraz et
al. On the other hand, measures of translational asym-
metry , for instance, FH in Eq. (2.6), can capture the
difference between these two states. Moreover, it turns
out that any function which quantifies the performance
of states for the task of phase estimation is automatically
a measure of asymmetry relative to phase shifts [22].

Not only in quantum metrology, but in physical con-
texts such as quantum thermodynamics and quantum
reference frames and QSLs, which will be studied in this
paper, the particular eigenvalues of the observable which
defines the preferred basis are also significant. In such
cases, the measures of coherence (in the sense of [25])
provide a very limited characterization of coherence of
states; to find a complete characterization one needs to
use measures of translational asymmetry, which form a
larger set of functions. In this paper, we study the case of
QSLs, where the notion of coherence naturally shows up,
and we show that, while measures of coherence (in the
sense of [25]) cannot capture any information about the
speed of evolution, any natural notion of speed of evolu-
tion is automatically a measure of asymmetry (See also
[22] for further discussions on other physical examples).

C. Is Wigner-Yanase skew information a measure
of coherence?

In 1963, Wigner and Yanase [42] introduced the func-
tion

SH(ρ) ≡ 1

2
‖[H,√ρ]‖22 = −1

2
tr
(
[H,
√
ρ]2
)

(2.9a)

= tr
(
H2ρ

)
− tr(

√
ρH
√
ρH) , (2.9b)

now called the Wigner-Yanase skew information, and
proved that it had certain interesting properties, such
as convexity and additivity.3. Notice that if ρ is a pure
state, then ρ =

√
ρ and SH(ρ) reduces to the variance

of H. Later, Dyson generalized this to the function
−tr([ρs, H][ρ1−s, H]) for 0 ≤ s ≤ 1, which is sometimes
called the Dyson-Wigner-Yanase skew information, and
Lieb famously proved the convexity of this function for
0 < s < 1 [43].

Wigner and Yanase proposed SH(ρ) as a measure of
information and, equivalently, −SH(ρ) as a measure of
entropy for the situations where the observable H is an

3 The l2 norm is defined by ‖X‖2 =
√

tr(X†X)
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additive conserved quantity such as charge or compo-
nents of linear or angular momenta [42]. Alternatively,
SH(ρ) is sometimes regarded as a measure of the non-
commutativity of the state ρ and the observable H (See,
e.g., [44]).

In [21, 26] a new interpretation of this function was un-
veiled. It was shown that Wigner-Yanase skew informa-
tion is a measure of asymmetry, and therefore quantifies
symmetry-breaking relative to translations generated by
H. In fact, even more generally, in [21, 26] it was shown
that the Dyson-Wigner-Yanase skew information is also
a measure of asymmetry for s ∈ (0, 1) ∪ (1, 2].

Recently, Girolami [45] proposed an experimental
method for measuring the Wigner-Yanase skew informa-
tion, and argued that this function is a good candidate for
quantifying coherence. Furthermore, he claimed that this
function is a measure of coherence according to the defi-
nition of Baumgratz et. al. [25], that is, he claimed that
it is non-increasing under incoherent operations. How-
ever, the latter claim is incorrect. This can be seen, for
instance, by noting that in the case of pure states this
function is equal to the variance of the observable H,
but variance obviously is not invariant under operations
(2.7), i.e., it violates Eq.(2.8) 4.

To summarize, the Wigner-Yanase skew information
SH is a measure of asymmetry relative to the group
of translations generated by the observable H, that is,
{e−iHt : t ∈ R}. Furthermore, as we discussed before,
any such measure of asymmetry can be used to quantify
the coherence of a state relative to the eigenbasis of H
and this quantification of coherence has nontrivial appli-
cations, for instance, in the context of quantum metrol-
ogy, quantum reference frames, and quantum speed limits
(as will be shown in this paper). However, this function
does not satisfy the definition of a measure of coherence
according to Baumgratz et al. [25], as it can increase
under incoherent operations.

In the following, we show that measures of time-
translation asymmetry naturally arise in the context of
quantum speed limits, and, in particular, the skew in-
formation has a very natural interpretation as instanta-
neous acceleration. Indeed, we show that the very notion
of the speed of evolution can be interpreted as a measure
of time-translation asymmetry.

III. SPEED OF EVOLUTION

The standard quantum speed limits in Eq.(1.1) and
Eq.(1.2) are lower bounds on τ⊥(ρ), the minimum time
it takes, under Hamiltonian H, for state ρ to evolve to a
perfectly distinguishable state ρ(t) ≡ e−iHtρ eiHt. Con-
sequently, the function τ−1⊥ can be interpreted as the (av-

4 The increase of skew information under incoherent operations is
also observed in [46], by looking through an explicit example.

erage) speed of evolution. It is useful to consider gener-
alizations of the function τ⊥ to cases where the states ρ
and ρ(t) are only partially distinguishable.

A. Measures of distinguishability

Quantum information theory provides different tools
for quantifying the distinguishability of a pair of states.
In particular, we are interested in functions from pairs
of states to the real numbers, with the following three
properties:
(i) monotone under information processing, i.e., satisfy-
ing Eq.(3.1),
(ii) vanishing when the two input states are the same,
i.e., satisfying Eq.(3.2), and
(iii) jointly quasi-convex, i.e., satisfying Eq.(3.3).
In the following we provide the formal definition and dis-
cuss the significance of each of these properties. We also
review some examples of functions satisfying all of these
properties.

The most important property of measures of distin-
guishability is monotonicity under information process-
ing. This means that for any quantum operation E and
for any pair of states σ1 and σ2, a measure of distin-
guishability D should satisfy the information processing
inequality,

D (E(σ1), E(σ2)) ≤ D(σ1, σ2) . (3.1)

Note that set of quantum operations, i.e., the completely
positive trace-preserving maps, include all and only the
physical transformations that one can implement on a
quantum system without any prior information about its
initial state. Thus, satisfying this bound is the mini-
mum requirement that any measure of distinguishability
should satisfy.

In this paper we also assume that measures of distin-
guishability vanish when the two input states are the
same

D (σ, σ) = 0 . (3.2)

Notice that this assumption is basically just a conven-
tion: any function satisfying the information processing
inequality, Eq. (3.1), can be shifted by a constant to sat-
isfy Eq.(3.2) as well.5 It follows from Eqs. (3.1) and
(3.2) that the function D is non-negative. Finally note
that D, contrary to a true distance measure, does not
have to be symmetric in its arguments, i.e., in general
D (σ1, σ2) 6= D (σ2, σ1).

5 For any function D which satisfies the information processing
inequality, the value of D(σ, σ) is independent of the state σ,
because for any pair of states σ1 and σ2 there is a quantum op-
eration that maps one to the other, and so according to Eq.(3.1),
D(σ1, σ1) = D(σ2, σ2).
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In this paper we are are going to focus on measures
of distinguishability D which are jointly quasi-convex,
meaning that for all 0 ≤ p ≤ 1 and any two pairs of
states, (ρ1, σ1) and (ρ2, σ2), D satisfies the following in-
equality

D
(
pρ1 + (1− p)ρ2 , pσ1 + (1− p)σ2

)
≤ max

{
D (ρ1, σ1) , D (ρ2, σ2)

}
. (3.3)

This inequality is a weakening of joint convexity, which
is defined as

D
(
pρ1 + (1− p)ρ2 , pσ1 + (1− p)σ2

)
≤ pD (ρ1, σ1) + (1− p)D (ρ2, σ2) . (3.4)

Joint quasi-convexity of a measure of distinguishabil-
ity ensures that the pair of states obtained by taking
the mixture of a collection of pairs of states (where the
mixing weights are the same for each element of the pair)
are never more distinguishable than the most distinguish-
able pair in the collection. Joint convexity, on the other
hand, asserts that the pair of states obtained by mix-
ing a collection of pairs has distinguishability no greater
than the weighted average of the distinguishabilities of
the pairs in the collection. Clearly, joint convexity is
a much stronger requirement than joint quasi-convexity.
The intuitive notion that a measure of distinguishability
should be non-increasing under mixing, which is often
given as an argument in favour of joint convexity, in fact
only justifies quasi-convexity.

As noted earlier, defining a speed of evolution in terms
of the time to reach a partially distinguishable state re-
quires one to choose a measure of distinguishability for
pairs of states. As we will discuss in section III D, assum-
ing that the measure of distinguishability satisfies joint
quasi-convexity ensures that the speed of evolution of a
state that is the mixture of some set of states is no greater
than the fastest speed of evolution of any state in that
set.

Trace distance, relative entropy, Renyi relative entropy
and infidelity (1−F where F is the fidelity) are all exam-
ples of measures of distinguishability which satisfy prop-
erties (i), (ii) and (iii). In this paper, we focus on the two
particular examples of trace distance and Renyi relative
entropy.

The trace distance between two quantum states, ρ1
and ρ2, is defined as ‖ρ1 − ρ2‖1, where ‖ · ‖1 is the 1-
norm. As Helstrom has shown [47], the trace distance
determines the maximum probability of successfully de-
termining which of the states in the pair was prepared,
given a single copy, when the states have equal prior prob-
ability of having been prepared. It immediately follows
that trace distance is non-increasing under information
processing [48]. Furthermore, the triangle inequality for
the l1-norm implies that the trace distance is jointly con-
vex, and hence jointly quasi-convex.

The second example of a measure of distinguishability
that we use in this paper is the Renyi quantum relative

entropy, introduced by Petz as one of the quantum gen-
eralizations of (classical) Renyi relative entropy [48, 49].
6 For s ∈ (0, 1) ∪ (1,∞), this function is defined as

Ds(ρ1, ρ2) ≡ 1

s− 1
log
(
tr(ρs1ρ

1−s
2 )

)
, (3.5)

and it satisfies both Eq. (3.1) and Eq. (3.2) for s ∈ (0, 1)∪
(1, 2] [52]. Also the function is jointly convex for s ∈ (0, 1)
[43, 49, 52]. In this paper, we focus on the case of s = 1/2,
i.e., D1/2(ρ1, ρ2) ≡ −2 log tr(

√
ρ1
√
ρ2), though the idea

can be generalized.

B. Definition of speed of evolution

Given any measure of distinguishability satisfying con-
ditions (i), (ii) and (iii), we can define a notion of speed
of evolution, which generalizes the function 1/τ⊥ that
appears in the standard quantum speed limits. For
ε > 0, let τDε (ρ) be the minimum time it takes for a
state ρ to evolve, under Hamiltonian H, to another state
ρ(t) ≡ e−iHtρ eiHt which is at least ε-distinguishable
from state ρ relative to D, i.e. D (ρ, ρ(t)) ≥ ε. If this
never happens for t > 0, we define τDε (ρ) to be infinity.
So, to summarize

τDε (ρ) ≡

{
∞ , if ∀t ∈ R+ : D (ρ, ρ(t)) < ε

min{t : t ∈ R+ , D (ρ, ρ(t)) ≥ ε} , otherwise,

(3.6)
or equivalently, τDε (ρ) ≡ sup{t : D (ρ, ρ(t′)) < ε, ∀t′ ∈
(0, t)}. Therefore, for any ε > 0 and any measure of
distinguishabilityD which satisfies conditions (i), (ii) and
(iii), the function 1/τDε (ρ) (or ε/τDε (ρ)) defines a natural
notion of (average) speed of evolution.

A simple example of a measure of distinguishability
that satisfies conditions (i), (ii), and (iii) is the function
D⊥(ρ, σ), defined to be one if and only if the two states ρ
and σ are perfectly distinguishable (which requires them
to have orthogonal supports) and zero otherwise. Start-
ing from this measure of distinguishability, and using the
definition (3.6) for ε = 1, one obtains the function τ⊥ that
appears in the Mandelstam-Tamm and Margolus-Levitin
bounds Eqs.(1.1 and 1.2). Thus, the corresponding speed
of evolution, τ−1⊥ , satisfies the above definition. Later, we
will consider two other examples of functions τDε which
are obtained based on the trace distance and Renyi rela-
tive entropy, as measures of distinguishability.

C. Speed of evolution is a measure of asymmetry

Next, we present our first result on the connection be-
tween quantum speed limits and measures of asymme-

6 Note that this definition is different from the “sandwiched” Renyi
relative entropy [50, 51].
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try. Recall that any incoherent state in the Hamiltonian
eigenbasis, i.e., any member of IH , commutes with the
Hamiltonian, and so it remains invariant under the evo-
lution generated by this Hamiltonian. Therefore, relative
to any measure of distinguishability D, its corresponding
speed 1/τDε is zero. Intuitively, one may expect that hav-
ing a higher speed of evolution corresponds to being less
invariant under time-translation, which is to say having a
higher amount of asymmetry relative to time-translation,
or equivalently, a higher amount of coherence relative to
the eigenbasis of H. The following theorem confirms this
intuition.

Theorem 3 For any measure of distinguishability D
that satisfies the information processing inequality,
Eq.(3.1) and vanishes when the two states are the same,
Eq.(3.2), and for any ε > 0, the function 1/τDε is a mea-
sure of asymmetry relative to the time-translations (gen-
erated by the system Hamiltonian H).

Proof. First consider the case where τDε (ρ) < ∞ for
the given state ρ. In this case there is a finite time t at
which ρ and ρ(t) are at least ε-distinguishable relative
to D, i.e., D(ρ, ρ(t)) ≥ ε . Let ETI be an arbitrary TI
quantum operation. Then, it holds that

τDε (ETI(ρ))

= min{t : t ≥ 0 , D
(
ETI(ρ), e−iHtETI(ρ) eiHt

)
≥ ε}

= min{t : t ≥ 0 , D
(
ETI(ρ), ETI(e

−iHtρ eiHt)
)
≥ ε}

≥ min{t : t ≥ 0 , D (ρ, ρ(t) ) ≥ ε}
= τDε (ρ) , (3.7)

where to get the third line, we have used the time-
translational symmetry of ETI, i.e., Eq.(2.4), and to get
the fourth line we have used the information processing
inequality (3.1), which implies that for any time t,

D (ρ, ρ(t)) ≥ D (ETI(ρ), ETI(ρ(t)) ) , (3.8)

and so the minimum t in the third line should be
larger than or equal to the minimum t in the fourth
line. Using a similar argument one can easily see that
if τDε (ρ) = ∞, i.e., if the distinguishability of ρ and
ρ(t) is always less than ε, then the distinguishability
of ETI(ρ) and e−iHtETI(ρ)eiHt is also always less than
ε, and so τDε (ETI(ρ)) = ∞. So, in general, we find
that for any TI quantum operation ETI, it holds that
τDε (ρ) ≤ τDε (ETI(ρ)), and hence

1

τDε (ρ)
≥ 1

τDε (ETI(ρ))
. (3.9)

Therefore, the function 1/τDε satisfies condition (i) in the
definition of a measure of translational asymmetry (Def-
inition 1). Finally, note that any incoherent state ρTI

is invariant under time evolution, and so for any ε > 0,
τDε (ρ) = ∞ which implies that the speed 1/τDε (ρ) = 0,
and therefore that 1/τDε satisfies condition (ii) in Defini-
tion 1 as well. This completes the proof of the theorem.

This theorem shows clearly why the notion of coherence
as asymmetry relative to time translation naturally ap-
pears in the context of quantum speed limits: because
the very notion of speed itself is a measure of asymmetry
relative to time-translation. Note that the speed of evo-
lution can, however, increase (unboundedly) under what
Ref. [25] termed incoherent operations, and so the notion
of coherence studied by Baumgratz et. al. [25] does not
characterize the speed of evolution.

Theorem 3 leads to a useful framework for understand-
ing and generalizing quantum speed limits. According to
this theorem, any function which can quantify the notion
of speed of evolution should be non-increasing under TI
quantum operations, and hence should be a measure of
asymmetry relative to time-translation. In other words,
a quantity which can be increased under TI quantum op-
erations is not a natural candidate for quantifying the
speed of evolution. This suggests that to find tighter
quantum speed limits, one should try to find inequalities
which can be expressed in terms of asymmetry measures.
Note that Eq.(2.5) guarantees that any such function re-
mains constant during the evolution.

Perhaps surprisingly, it turns out that both the stan-
dard Mandelstam-Tamm and Margolus-Levitin bounds
satisfy this property for pure states. For a pure state ψ,
these bounds provide an upper bound on the speed of
evolution as

τ−1⊥ (ψ) ≤ 2∆E(ψ)

π
,

2 [Eav(ψ)− Emin(ψ)]

π
. (3.10)

As we show in Sec.(IV) and Sec.(V), the right-hand side
of both of these bounds are also non-increasing under
TI quantum operations. Therefore in the case of pure
states, inequalities (3.10) can be interpreted as upper
bounds on a measure of asymmetry, namely, τ−1⊥ (ψ),
by two other measures of asymmetry, namely, ∆E(ψ)
and Eav(ψ)− Emin(ψ). However, it can be easily shown
that for mixed states these functions can, in general, in-
crease under TI quantum operations, and hence they are
not measures of asymmetry. For instance, the operation
which maps any quantum state to the completely mixed
state is clearly TI. However, for the completely mixed
state the variance of energy can be arbitrarily large. In
this case both Mandelstam-Tamm and Margolus-Levitin
provide very loose bounds; they cannot see the fact that
the speed of evolution is zero.

In Sec. (IV), we find generalizations of the
Mandelstam-Tamm bound in which the variance ∆E is
replaced by a genuine measure of time-translation asym-
metry. The fact that the upper bound on the speed of
evolution is a measure of asymmetry, in particular, guar-
antees that it vanishes for all incoherent states, including
the completely mixed state.
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D. Mixing does not increase speed

Intuitively, one expects that the speed of evolution of
the mixture of two states is no greater than the fastest
speed of evolution of each of them. We therefore propose
that any reasonable notion of speed of state evolution
should satisfy this property. In other words, if a function
f from states to real numbers quantifies the speed of
evolution, then it should be quasi-convex, meaning that
for any 0 ≤ p ≤ 1 and for any pair of states ρ and σ it
should satisfy

f
(
pρ+ (1− p)σ

)
≤ max

{
f(ρ), f(σ)

}
. (3.11)

Quasi-convex functions are natural generalizations of
convex functions, which satisfy

f
(
pρ+ (1− p)σ

)
≤ pf(ρ) + (1− p)f(σ) . (3.12)

Note that the monotonicity of speed under mixing only
requires quasi-convexity of the function, and not the con-
vexity, which is a stronger condition.

The following proposition asserts that a speed of evo-
lution is automatically quasi-convex if it is defined in
terms of a measure of distinguishability that is jointly
quasi-convex.

Proposition 4 For any jointly quasi-convex measure of
distinguishability D, i.e., one satisfying Eq.(3.3), and for
any ε > 0, the function 1/τDε , defined via Eq. (3.6), is
quasi-convex, i.e., for any 0 ≤ p ≤ 1, and any pair of
states ρ and σ it holds that

1

τDε (pρ+ (1− p)σ)
≤ max

{
1

τDε (ρ)
,

1

τDε (σ)

}
. (3.13)

Equivalently, the function τDε is quasi-concave, that is,

τDε (pρ+ (1− p)σ) ≥ min
{
τDε (ρ) , τDε (σ)

}
. (3.14)

Proof. Let

t0 ≡ τDε (pρ+ (1− p)σ).

Recall from Eq. (3.6) that τDε (ν) for any state ν is defined
as the minimum time at which D(ν, ν(t)) ≥ ε. It follows
that

D
(
pρ+ (1− p)σ , pρ(t0) + (1− p)σ(t0)

)
≥ ε.

Using the quasi-convexity of D, this implies that

max
{
D (ρ, ρ(t0)) , D (σ, σ(t0))

}
≥ D

(
pρ+ (1− p)σ , pρ(t0) + (1− p)σ(t0)

)
≥ ε .

Given the definitions of τDε (ρ) and τDε (σ), this implies
that either

τDε (ρ) ≤ t0 (3.15)

or

τDε (σ) ≤ t0 (3.16)

or both, which in turn implies that t0 ≥
min

{
τDε (ρ) , τDε (σ)

}
. Recalling the definition of

t0, this completes the proof.
Since any function which can quantify speed of evolution
is expected to be non-increasing under mixing, it is
desirable to find quantum speed limits (upper bounds
on the speed of evolution) that respect this property as
well. That is, it is desirable to find upper bounds on the
speed 1/τDε which are also non-increasing under mixing.
Note that the standard Mandelstam-Tamm bound does
not have this property, because the uncertainty ∆E in
general increases under mixing. For instance, by mixing
two eigenstates of energy with different energies, each of
which has vanishing ∆E, we get a state with nonzero
∆E.

Based on theses ideas, in the following we present gen-
eralizations of the Mandelstam-Tamm bound in which
the speed 1/τDε (ρ), instead of being bounded by ∆E(ρ),
is bounded by measures of time-translation asymmetry.
Moreover, the latter are quasi-convex (by virtue of be-
ing convex), and therefore do not increase under mix-
ing. This leads to tighter quantum speed limits in the
case of mixed states. In particular, these generalizations
would imply that for all incoherent states, the speed
of evolution is zero. Also, in Sec. (V), we discuss the
Margolus-Levitin bound and we show that the function
Eav(ψ)−Emin(ψ), which shows up in this bound, is mono-
tonic under TI quantum operations.

IV. GENERALIZED MANDELSTAM-TAMM
BOUNDS

In this section, we consider two particular examples of
measure of distinguishability, namely the trace distance
and the Renyi relative entropy, and we show that they
lead to two different generalizations of the Mandelstam-
Tamm bound, both of which reduce to the Mandelstam-
Tamm bound in the special case of pure states (up to
a constant of order one) but yield tighter bounds in
the case of mixed states. These generalizations of the
Mandelstam-Tamm bound have, roughly speaking, the
following interpretations. Note first that 1/τDε (ρ) can be
interpreted as an average speed of evolution relative to
the distinguishability measure D. Using the trace dis-
tance as our distinguishability measure, we find that this
average speed of evolution is upper-bounded by the in-
stantaneous speed of evolution (the first derivative of
the measure). Using the Renyi relative entropy as our
measure, we find that the average speed of evolution is
upper-bounded by the instantaneous acceleration of the
evolution (the second derivative of the measure).

First, consider the trace distance as the measure of
distinguishability. For two states σ1 and σ2, it is given by
‖σ1−σ2‖1, where ‖·‖1 is the l1-norm. Consider Eq. (3.6),
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and let τ l1ε denote the minimum time it takes state ρ to
evolve to another state at trace distance ε. Then, it is
straightforward to see that (see appendix) τ l1ε (ρ) is lower
bounded by

τ l1ε (ρ) ≥ ε

FH(ρ)
. (4.1)

where FH(ρ) is given by Eq. (2.6) and has been previ-
ously studied as a measure of asymmetry [21, 26]. This
function also has a simple interpretation in terms of the
speed of evolution. The fact that

FH(ρ) =

[
d

dt
‖ρ− ρ(t)‖1

]
t=0+

= lim
ε→0+

ε

τ l1ε (ρ)
, (4.2)

implies that FH can be interpreted as the instantaneous
speed of evolution according to the trace distance. From
this point of view, the inequality of Eq. (4.1) is simply a
bound on the average speed in terms of the instantaneous
speed, and both of these notions of speed are measures
of asymmetry relative to time translations. As we will
discuss later, in the case of pure states, this bound re-
duces to the Mandelstam-Tamm bound (up to a missing
π factor).

As our second example, we consider the Renyi quan-
tum relative entropy, Eq. (3.5), for s = 1/2. Let τRen

ε (ρ)
be the minimum time t it takes, under Hamiltonian H,
for the relative Renyi entropy D1/2(ρ, ρ(t)) to become

larger than or equal to ε. Equivalently, τRen
ε (ρ) can be

defined as the minimum time t such that tr(
√
ρ
√
ρ(t)) ≤

e−
ε
2 . Then, as we show in the appendix, for any ε > 0 it

holds that

τRen
ε (ρ) ≥

√
1− e−ε/2√
SH(ρ)

, (4.3)

where SH is the Wigner-Yanase skew information, de-
fined in Eq. (2.9).

The Wigner-Yanase skew information has been shown
to be a measure of asymmetry [21] and has a simple inter-
pretation in the context of quantum speed limits. Noting
that

SH(ρ) =
1

4

[
d2

dt2
D 1

2
(ρ, ρ(t))

]
t=0

=
1

2
lim
ε→0+

ε

(τRen
ε (ρ))

2

(4.4)
we find that SH(ρ) can be interpreted as (one fourth of)
the instantaneous acceleration of evolution, relative to
the Renyi relative entropy with s = 1/2, at t = 0. Since
the instantaneous velocity, i.e. the first derivative with
respect to time, vanishes at t = 0, from this point of view
Eq.(4.3) is simply a bound on the average speed based
on the instantaneous acceleration at t = 0.

Both functions FH(ρ) and SH(ρ) are zero if and only if
the state ρ is incoherent, i.e., if and only if it commutes
with H. They both capture the intuition that coher-
ence of the state ρ relative to the H eigenbasis should
be quantified by the noncommutativity of ρ and H, or

in the case of SH , the non-commutativity of
√
ρ and H.

Furthermore, they satisfy

FH(ρ) ≤ 2∆E(ρ) , (4.5a)

SH(ρ) ≤ ∆E2(ρ) , (4.5b)

where both inequalities become equalities in the case of
pure states. 7

Using the fact that for pure states, the inequalities
of Eq. (4.5) hold as equalities, together with the fact
FH and SH are non-increasing under TI quantum oper-
ations, we find that if, under a TI quantum operation, a
pure state ψ can be transformed to a pure state φ, then
∆E(ψ) ≥ ∆E(φ). In other words, the energy uncertainty
∆E is a measure of asymmetry in “pure to pure” state
transformations.

Two states are perfectly distinguishable if and only if
their trace distance is 2, and their relative Renyi entropy
is ∞. This means that

τ⊥(ρ) = τRen
∞ (ρ) = τ l12 (ρ) . (4.6)

Then, using the inequalities of Eq. (4.5), we can see that
both bounds Eq. (4.1) and Eq. (4.3) reduce to the original
Mandelstam-Tamm bound, Eq.(1.1), up to a factor of π
in the case of Eq.(4.1), and a factor of π/2 in the case of
Eq.(4.3), which are irrelevant for any practical purposes.8

In the case of mixed states, however, the bounds of
Eq. (4.1) and Eq. (4.3) can be much more powerful than
the standard Mandelstam-Tamm bound. In particular,
unlike the Mandelstam-Tamm bound, these bounds cor-
rectly imply that for any incoherent state the speed of
evolution is zero. This is because they both satisfy the
criterion we expressed in the previous section: the upper
bounds on the speed evolution is a measure of asymmetry
relative to time translation, and so quantifies coherence
relative to H.

Another interesting property of the functions SH and
FH is the fact that they are both convex, i.e., for 0 ≤
p ≤ 1 and for any pair of states ρ and σ

FH (pρ+ (1− p)σ) ≤ p FH (ρ) + (1− p)FH (σ) (4.7a)

SH (pρ+ (1− p)σ) ≤ p SH (ρ) + (1− p)SH (σ) . (4.7b)

One way to see the convexity of FH and SH is to use the
fact they are, respectively, instantaneous speed relative
to trace distance, Eq. (4.2), and instantaneous acceler-
ation relative to relative Renyi entropy, Eq. (4.4), and

7 One strategy to prove these bounds is the following. First check
them for the case of pure sates, which is straightforward. Then,
for a general mixed state, look at the purification of the state and
use the fact that by tracing over the purifying system, measures
of asymmetry do not increase. The latter monotonicity property
follows from the fact that partial trace is a TI quantum operation.

8 The missing factors of π and π/2 are due to the curvature of
the space of pure states, which is not taken into account in the
simple derivations of our bounds.
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then use the fact that trace distance and relative Renyi
entropy are both jointly convex. 9

As we discussed before, any function of state which
quantifies the notion of speed of evolution is expected
to be quasi-convex, and functions FH and SH have this
property, while the uncertainty function ∆E in the stan-
dard Mandelstam-Tamm speed limit is not and therefore
can increase under mixing.

One more appealing property which is satisfied by
Wigner-Yanase skew information SH , but not by FH ,
is additivity. Consider two (non-interacting) closed sys-
tems, A and B, with Hamiltonians HA and HB . The
total Hamiltonian is given by Htot = HA⊗IB+IA⊗HB ,
where IA and IB are the identity operators on systems A
and B respectively. Then, the Wigner-Yanase skew infor-
mation is additive for uncorrelated (initial) joint states
of A and B, i.e.

SHtot(ρA ⊗ ρB) = SHA(ρA) + SHB (ρB) . (4.8)

Note that the functions ∆E2(ρ) and Eav(ρ) − Emin(ρ),
which show up in Mandelstam-Tamm and Margolus-
Levitin bounds, are also additive.

V. MARGOLUS-LEVITIN BOUND AND
MEASURES OF ASYMMETRY

The next natural step is to understand the role of co-
herence and measures of asymmetry in the Margolus-
Levitin QSL bound, Eq.(1.2). In the case of the
Mandelstam-Tamm bound, Eq.(1.1), we saw that the up-
per bound on the speed of evolution, the energy uncer-
tainty ∆E, is itself a measure of time-translation asym-
metry for pure states, which is to say that it is non-
increasing in pure to pure state transformations that are
achieved using TI quantum operations. Hence for pure
states, the standard Mandelstam-Tamm can be inter-
preted as an upper bound on a measure of asymmetry,
namely, τ−1⊥ , by another measure of asymmetry, namely,
∆E. Does the standard Margolus-Levitin bound have a
similar interpretation?

In the following, we show that the answer is affirma-
tive, and the function Eav −Emin which shows up in the
Margolus-Levitin QSL is non-increasing in pure to pure
state transformations that are achieved using TI quan-
tum operations.

Let Amin/max(ρ) be the difference between Eav(ρ), the
average energy of state ρ, and Emin/max(ρ), the mini-
mum/maximum occupied energy level, i.e.

Amin(ρ) ≡ Eav(ρ)− Emin(ρ) , (5.1a)

Amax(ρ) ≡ Emax(ρ)− Eav(ρ) . (5.1b)

9 Convexity of skew information SH was shown originally by
Wigner and Yanase [42] and was one of their motivations to
interpret the function −SH as an entropy.

Then, one can easily see that:
(i) Functions Amin/max are non-negative, i.e.
Amin/max(ρ) ≥ 0 ,
(ii) For a pair of systems that are non-interacting, which
is to say that their total Hamiltonian is of the form
H1 ⊗ I2 + I1 ⊗H2, the functions Amin/max are additive,
i.e.,

Amin/max(ρ1 ⊗ ρ2) = Amin/max(ρ1) +Amin/max(ρ2) .
(5.2)

(iii) For a pure state ψ, Amin/max(ψ) is zero if (and only
if) ψ is invariant under time-translation, i.e., an eigen-
state of the Hamiltonian.

Using these properties one can easily prove the follow-
ing result:

Theorem 5 If there exists a TI quantum operation un-
der which a pure state ψ evolves to a pure state φ, then

Amin/max(φ) ≤ Amin/max(ψ) . (5.3)

So, it follows that functions Amin and Amax are measures
of asymmetry when restricted to pure states (according
to Definition 1). Note, however, that these functions can
increase under TI quantum operations when evaluated
on mixed states and thus they are not genuine measures
of asymmetry.

To prove this theorem, we use properties (i), (ii) and
(iii) of the functions Amin/max. We also make use of a
version of Stinespring’s dilation theorem, which implies
that any symmetric quantum operation can be imple-
mented using symmetric unitaries and symmetric pure
states [26, 53]. More formally, it asserts that any TI
quantum operation ETI (see Eq (2.4)), can be imple-
mented by coupling the system to an ancillary system,
or environment, with Hamiltonian Henv, via a unitary
VTI such that

ETI(ρ) = trenv

(
VTI[ρ⊗ |E0〉〈E0|]V †TI

)
, (5.4)

where the environment is initially in an eigenstate |E0〉
of its Hamiltonian Henv, and the unitary VTI which cou-
ples the system and environment is an energy conserving
unitary, i.e.[

VTI , H ⊗ Ienv + Isys ⊗Henv

]
= 0 . (5.5)

Suppose the TI quantum operation ETI transforms the
pure state ψ to the pure state φ, and consider the Stine-
spring dilation of this operation. Given that the reduced
state of the system must be φ at the end and given that
evolution in the dilation is unitary, the joint state of the
system and the environment at the end must be a pure
product state,

VTI(|ψ〉 ⊗ |E0〉) = |φ〉 ⊗ |θenv〉 (5.6)

where |θenv〉 is a pure state of the environment.
Next, we use the fact that VTI is an energy conserving

unitary, i.e., it satisfies Eq.(5.5). This implies that the
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energy distribution of the joint state of system and envi-
ronment does not change after evolution, which in turn
implies

Amin/max

(
|ψ〉 ⊗ |E0〉

)
= Amin/max

(
|φ〉 ⊗ |θenv〉

)
. (5.7)

Then, using the additivity of the functions Amin/max, we
find

Amin/max(ψ) +Amin/max(|E0〉)
= Amin/max(φ) +Amin/max(θenv) . (5.8)

But since |E0〉 is an eigenstate of energy, we have
Amin/max(|E0〉) = 0. Furthermore, using the fact
Amin/max is non-negative, we have Amin/max(θenv) ≥ 0,
and so

Amin/max(ψ) ≥ Amin/max(φ) . (5.9)

This complete the proof.
Note that all the properties (i), (ii) and (iii) of

Amin/max are also satisfied by the variance of the en-

ergy, ∆2E, and consequently, using essentially the same
argument, one can show that the variance is also non-
increasing for pure to pure state transformations that
are achieved by TI quantum opertations [28, 30].

Therefore, we have found that, just as for the
Mandelstam-Tamm QSL bound, the standard Margolus-
Levitin QSL bound can be interpreted as an upper bound
on the speed of evolution, which is one measure of time-
translation asymmetry, by a function that is also a mea-
sure of time-translation asymmetry in the case of pure
states.

Finally, note that in the Margolus-Levitin QSL, we can
replace Eav(ψ)−Emin(ψ) by Emax(ψ)−Eav(ψ), and the
bound still holds, i.e.

τ−1⊥ (ρ) ≤ 2

π
[Emax(ρ)− Eav(ρ)] . (5.10)

This can be shown, for instance, by transforming H →
−H in the original bound. This bound, however, is less
useful in practice, because while physical Hamiltonians
are bounded from below, in general they do not have a
bounded largest energy.

VI. CONCLUSION

In this paper, we discussed two different approaches
for quantifying coherence which sometimes have been
confused with each other. In the first approach, one
considers coherence as asymmetry relative to a group
of translations such as time-translations or phase-shifts
[20, 21, 24, 27], whereas in the second approach, one con-
siders coherence as the resource defined by incoherent op-
erations [25]. We have shown that only the first approach

for quantifying coherence is relevant in the context of
quantum speed limits. This notion of coherence has also
been shown to be relevant in the context of quantum ther-
modynamics [24, 27], quantum metrology and quantum
reference frames [20, 23, 26, 28, 29]. We also showed that
measures of coherence in the sense defined by Baumgratz
et. al. [25], are a proper subset of measures of asymme-
try. In particular, the Wigner-Yanase skew information
is a measure of asymmetry which is not a measure of
coherence based on the definition of Baumgratz et. al.
[25].

The notion of coherence as asymmetry relative to a
group of translations naturally shows up in the context of
quantum speed limits because the speed of evolution is it-
self a measure of asymmetry relative to time-translations.
This means that any function over states that can cap-
ture the notion of the speed of evolution of states should
also be a measure of asymmetry. Indeed one expects
that a tight quantum speed limit should bound the speed
of evolution with other measures of asymmetry. We
have shown that the standard Mandelstam-Tamm and
Margolus-Levitin bounds satisfy this criterion in the case
of pure states. Inspired by this intuition, we have found
extensions of the Mandelstam-Tamm bound in which the
speed of evolution is upper-bounded by genuine measures
of asymmetry, such as the Wigner-Yanase skew informa-
tion, which leads to significantly stronger bounds in the
case of mixed states. A natural open question for future
research is whether a similar goal can be achieved for the
case of the Margolus-Levitin bound.

Note: During the last stages of preparing this
manuscript, we became aware of a related work [54] re-
cently posted on arXiv which uses a nice geometric argu-
ment to derive an extension of Mandelstam-Tamm bound
based on Wigner-Yanase skew information. This bound
is basically equivalent to one of our bounds, i.e. Eq.(4.3),
up to a factor of π/2. Also, after posting the first version
of this paper on arXiv, we became aware of another re-
cent arXiv paper [55], which studies generalized geomet-
ric quantum speed limits based on the Petz contractive
metrics, including the Wigner-Yanase skew information.
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Appendix A: Proofs of bounds (4.1) and (4.3) and
proposition 2

1. Proof of Inequality 4.1

This follows from the fact that

∥∥e−iHtρeiHt − ρ∥∥
1

=

∥∥∥∥∫ t

0

ds
d

ds

(
e−iHsρeiHs

)∥∥∥∥
1

≤
∫ t

0

ds

∥∥∥∥ dds (e−iHsρeiHs)

∥∥∥∥
1

=

∫ t

0

ds
∥∥[H, e−iHsρeiHs]

∥∥
1

=

∫ t

0

ds ‖[H, ρ]‖1

= t ‖[H, ρ]‖1 , (A1a)

where to get the second line we have used the tri-
angle inequality. So, if at time t it holds that∥∥e−iHtρeiHt − ρ∥∥

1
= ε then

ε =
∥∥e−iHtρeiHt − ρ∥∥

1
≤ t ‖[H, ρ]‖1 (A2)

which proves bound 4.1.

2. Proof of Inequality 4.3

The Renyi relative entropy of ρ and ρ(t) = e−iHtρeiHt,
for s = 1/2 is given by

D1/2(ρ, ρ(t)) = −2 log tr
(√

ρ
√
ρ(t)

)
= −2 log tr

(√
ρe−iHt

√
ρeiHt

)
(A3)

So D1/2(ρ, ρ(t)) ≥ ε implies

e−
ε
2 ≥ tr

(√
ρ
√
e−iHtρeiHt

)
= tr

(√
ρe−iHt

√
ρeiHt

)
= 1 +

∫ t

0

dr1

∫ r1

0

dr2
∂2

∂r22
tr(
√
ρe−iHr2

√
ρeiHr2) ,

(A4)

where to get the last line we have used the fact that at
t = 0, first derivative of tr

(√
ρe−iHt

√
ρeiHt

)
with respect

to t vanishes, and so

[ ∂
∂r

tr(
√
ρe−iHr

√
ρeiHr)

]
r=t

=

∫ t

0

dr
∂2

∂r2
tr(
√
ρe−iHr

√
ρeiHr).

(A5)

So, we find

1− e−ε/2 ≤ 1− tr
(√
ρ e−iHt

√
ρ eiHt

)
= −

∫ t

0

dr1

∫ r1

0

dr2
∂2

∂r22
tr(
√
ρe−iHr2

√
ρeiHr2)

≤
∫ t

0

dr1

∫ r1

0

dr2

∣∣∣∣ ∂2∂r22 tr(
√
ρe−iHr2

√
ρeiHr2)

∣∣∣∣
≤
∫ t

0

dr1

∫ r1

0

dr2 max
r2∈[0,t]

∣∣∣∣ ∂2∂r22 tr(
√
ρe−iHr2

√
ρeiHr2)

∣∣∣∣
≤ t2

2
× max
r∈[0,t]

∣∣∣∣ ∂2∂r2 tr(
√
ρe−iHr

√
ρeiHr)

∣∣∣∣ , (A6)

where to get the third line we have used the triangle
inequality. Next, note that∣∣∣∣ ∂2∂r2 tr(

√
ρe−iHr

√
ρeiHr)

∣∣∣∣
=
∣∣tr(√ρe−iHr[H, [H,√ρ]]eiHr)

∣∣
=
∣∣tr([H,√ρ]e−iHr[H,

√
ρ]eiHr)

∣∣
≤ −tr ([H,

√
ρ][H,

√
ρ]) (A7a)

= 2SH(ρ) , (A7b)

where to get Eq.(A7a) we have used Cauchy-Schwartz
inequality. Combining Eq.(A7b) and Eq.(A6) we find

1− e−ε/2 ≤ t2 SH(ρ) , (A8)

which completes the proof.

3. Proof of proposition 2

Recall that according to Baumgratz et. al. [25], in-
coherent operations are quantum operations for which
a Kraus decomposition E(·) =

∑
µKµ(·)K†µ exists such

that for each Kraus operator Kµ and any incoherent state
ρ, KµρK

†
µ/tr(KµρK

†
µ) is also an incoherent state [25].

We assume incoherent states are states which are diago-
nal in the eigenbasis of the observable H, with the spec-
tral decomposition H =

∑
i λi|i〉〈i|.

As we show in the following, any TI quantum op-
eration ETI, i.e. any quantum operation satisfying
e−iHtETI(·)eiHt = ETI

(
e−iHt · eiHt

)
for all t ∈ R, has

a Kraus decomposition as ETI(·) =
∑
µKµ(·)K†µ, where

each Kraus operator Kµ satisfies

e−iHtKµe
iHt = eiωµtKµ , ∀t ∈ R (A9)

for a real number ωµ. Assuming this equation, it is
straightforward to show that ETI is an incoherent op-
eration in the sense of Baumgratz et. al. [25]: For any
incoherent state ρTI ∈ IH and for any t ∈ R it holds that

KµρTIK
†
µ = Kµ

(
e−iHtρTIe

iHt
)
K†µ (A10a)

= e−iHt
(
KµρTIK

†
µ

)
eiHt , (A10b)
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where the fist equality follows from the fact that ρTI is in-
coherent, and the second equality follows from Eq.(A9).
Since this holds for all t ∈ R, it follows that KµρTIK

†
µ

commutes with H, and hence is incoherent in H eigenba-
sis. Thus KµρTIK

†
µ/tr(KµρTIK

†
µ) is an incoherent state.

Since this holds for arbitrary incoherent state ρTI, it fol-
lows that ETI is an incoherent operation according to the
definition of Baumgratz et. al. [25].

Thus to complete the proof we only need to show
Eq.(A9). This equation is indeed a special case of lemma
1 of [30]. For completeness, here we present a different
proof of this fact based on the Steinspring representa-
tion of symmetric operations [53], which we also used in
section V.

Any TI quantum operation ETI can be implemented by
coupling the system to an ancillary system, or environ-
ment via a unitary VTI such that

ETI(ρ) = trenv

(
VTI[ρ⊗ |E0〉〈E0|]V †TI

)
, (A11)

where the environment is initially in an eigenstate |E0〉
of Henv with eigenvalue E0, and the unitary VTI which
couples the system to the environment satisfies

[VTI, H ⊗ Ienv + Isys ⊗Henv] = 0 . (A12)

Let {|El〉} be the orthonormal set of eigenvectors of Henv,

such that Henv|El〉 = El|El〉 (To simplify the notation we
assume there is no degeneracy). Then a Kraus decompo-

sition of ETI is given by ETI(·) =
∑
lKl(·)K†l , where

Kl = 〈El|VTI|E0〉 . (A13)

It can be easily seen that for any Kraus operator Kµ it
holds that

e−iHtKle
iHt = e−iHt〈El|VTI|E0〉eiHt

= e−iHteiElt〈El|e−iHenvtVTI|E0〉eiHt

= eiElt〈El|
(
e−iHt ⊗ e−iHenvt

)
VTI|E0〉eiHt

= eiElt〈El|VTI

(
e−iHt ⊗ e−iHenvt

)
|E0〉eiHt

= ei(El−E0)t〈El|VTI|E0〉
= ei(El−E0)tKl . (A14)

It follows that any TI operation ETI has a Kraus decom-
position satisfying Eq.(A9). (This argument also pro-
vides an interpretation of constants ωµ in Eq.(A9): In
the case where the generator H is the system Hamilto-
nian, and ETI is invariant under time translation, con-
stant ωµ is the energy transferred from the environment
to the system, given that the process corresponding to
Kraus operator Kµ has happened.)
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