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Adiabatic pulses are used extensively to enable robust control of quantum operations. We in-
troduce a new approach to adiabatic control that uses the superadiabatic quality or Q-factor as
a performance metric to design robust, high fidelity pulses. This approach permits the system-
atic design of quantum control schemes to maximize the adiabaticity of a unitary operation in a
particular time interval given the available control resources. The interplay between adiabaticity,
fidelity and robustness of the resulting pulses is examined for the case of single-qubit inversion, and
superadiabatic pulses are demonstrated to have improved robustness to control errors. A numerical
search strategy is developed to find a broader class of adiabatic operations, including multi-qubit
adiabatic unitaries. We illustrate the utility of this search strategy by designing control waveforms
that adiabatically implement a two-qubit entangling gate for a model NMR system.

A. Introduction

Speed and robustness are two essential characteristics of
quantum control schemes that can often seem to be at
odds with one another. On one hand, fast diabatic gates
designed using optimal control techniques can approach
the quantum speed limit (QSL) and minimize errors due
to decoherence [1]. However, these pulses are often sen-
sitive to variations in the experimental control param-
eters and to uncertainties in the system Hamiltonian.
Additionally, the pulse shapes produced by these tech-
niques are typically not smooth and frequently push the
hardware limits of the system, requiring careful tuning
and calibration to ensure high fidelity [2, 3]. On the
other hand, smoothly varying gates can be made robust
to control errors and are typically easier to implement
due to the simpler hardware requirements. In particular,
the utility of adiabatic gates that rely on the well-known
adiabatic theorem [4] has been demonstrated for a vari-
ety of control tasks for quantum information processing
[5–8]. The transition-free driving of a quantum system
enabled by adiabatic gates is particularly important if
some excited states of the system are more susceptible
to decoherence. Hybrid approaches that combine both
diabatic and adiabatic control have also been explored
[9–11].

Amplitude- and frequency-modulated “adiabatic
pulses” have long been used in nuclear magnetic res-
onance (NMR) to efficiently invert nuclear spin states
[12–14] and provide robustness against inhomogeneities
in both the static and radiofrequency (RF) magnetic
fields, finding applications in both high resolution NMR
spectroscopy and in vivo magnetic resonance imaging
[15]. Similar schemes have been used to optically control
population transfers in atomic and molecular gases
[16, 17].

Finite time operations can only approximately satisfy
the adiabatic condition, an issue that becomes critical
in the context of adiabatic quantum computation [18].
Long control pulses are also susceptible to decoherence
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introduced by interactions with unwanted environmental
degrees of freedom. This raises an important question:
what is the minimal time required to perform a high-
fidelity adiabatic transition? Counter-diabatic driving
strategies — called shortcuts to adiabaticity (STA) —
enable transition-less driving on much shorter timescales
[19], even approaching the QSL [20]. These techniques
have found applications in quantum state engineering
[21, 22], quantum computing [23, 24], many-body physics
[25] and quantum simulations [26, 27], and have been
shown to have robustness against control parameter vari-
ations [28]. The DRAG pulses used in superconducting
qubit implementations share many of these features as
well [29–31]. One challenge to implementing counter-
diabatic driving strategies, particularly for systems of
more than one-qubit, is that it may be difficult to gen-
erate the necessary counter-diabatic driving terms to en-
sure transition-free evolution using the available experi-
mental controls.

Here, we introduce a new approach to adiabatic con-
trol, based on Berry’s “superadiabatic” formalism [32],
that enables the systematic design of quantum control
schemes to maximize the adiabaticity of a unitary op-
eration in a particular time interval, given the available
controls. We explicitly use the superadiabatic quality or
Q-factor as a performance metric to optimize the avail-
able quantum control parameters. The idea of a supera-
diabatic Q-factor was introduced by Deschamps et al.
to explain the unexpectedly high fidelity of certain adia-
batic pulses used in NMR [33]. We show that maximiz-
ing superadiabatic Q-factors improves the performance
of standard one-qubit inversion pulses used in NMR and
introduce a numerical search strategy to find a broader
class of adiabatic unitaries when analytical solutions are
not available. We numerically examine the interplay be-
tween adiabaticity, fidelity and robustness of the result-
ing pulses and show that superadiabatic pulses also im-
prove robustness. Finally, we show how the search tech-
nique can be used to create control waveforms that adia-
batically implement a two-qubit entangling gate. While
we explore these ideas in the context of NMR experi-
ments, the ideas are broadly applicable to other modali-
ties.
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B. Superadiabatic Q-Factors

Consider a time-dependent Hamiltonian H0(t) with in-
stantaneous eigenbasis {|λ0(t)〉} at time t. Transform-
ing to an interaction frame under the unitary operator
V1 =

∑
λ |λ0(t)〉 〈λ0(0)| that instantaneously diagonal-

izes the Hamiltonian yields an interaction frame Hamil-

tonian of the form H1 = D1 + C1, where D1 = V †1H0V1
is diagonal and C1 = −i~V †1 V̇1 is a non-diagonal correc-
tion term (called an inertial term) arising from the time
dependence of the Hamiltonian. A transition has typi-
cally been considered adiabatic if ||D1(t)|| � ||C1(t)|| or
Q1(t)� 1 for the duration of the transition, where

Q1(t) =
||D1(t)||
||C1(t)||

. (1)

The “adiabatic Q-factor” Q1 is then defined as

Q1 = min
t∈[−∞,∞]

Q1(t). (2)

For finite-time processes, C1(t) is nonzero and the trans-
formed Hamiltonian H1(t) is non-diagonal. In many STA
approaches, a counter-diabatic driving term is introduced
to explicitly cancel this non-diagonal inertial term [19].
Note that this is only possible if such an effective Hamil-
tonian can be generated with the available controls.

The above procedure for diagonalizing the instanta-
neous Hamiltonian can be applied to the transformed
Hamiltonian H1, yielding a new Hamiltonian H2. Re-
peated indefinitely, this iterative procedure yields a
countably infinite family of transformed Hamiltonians.
Consider, for example, the Hamiltonian Hn−1. If the set
{|λn−1(t)〉} forms the instantaneous eigenbasis of Hn−1,
the unitary operator Vn =

∑
n |λn−1(t)〉 〈λn−1(0)| diago-

nalizes Hn−1. In the interaction picture in which Hn−1 is
instantaneously diagonalized, the Hamiltonian takes the
form Hn = Dn + Cn, where Dn = V †nHn−1(t)Vn and

Cn = −i~V †n V̇n. By direct analogy with Eqs. (1) and
(2), the adiabatic Q-factor in frame n takes the form

Qn = min
t∈[−∞,∞]

||Dn(t)||
||Cn(t)||

. (3)

Counter-diabatic driving STA strategies can also be de-
rived for superadiabatic interaction frames [34].

Deschamps et al. suggested that in a superadiabatic
transformation, if the system starts out in one of the
eigenstates of Hn(0), it will evolve adiabatically to the
target state in one of the superadiabatic frames as long
as

Qs ≡ max
n∈{1,2,...}

Qn � 1 , (4)

where Qs is defined to be the superadiabatic Q-factor
[33].

1. Scaling of Q1

The Q1 metric shows two important features:

1. If H is a time-dependent Hamiltonian and H ′(t) =
αH(t), then Q′1(t) = αQ1(t) for α ∈ R+.

Proof: Let {|n(t)〉} be the eigenvectors of H(t). Then
{|n(t)〉} are eigenvectors of αH(t), and hence

V ′(t) =
∑
n

|n(t)〉 〈n(0)| = V (t),

from which we have that

D′(t) = V ′(t)H ′(t)V ′†(t) = αD(t)

and

C ′(t) = −i~V ′†(t)V̇ ′(t) = −i~V †(t)V̇ (t) = C(t).

Therefore

Q′1(t) =
||D′(t)||
||C ′(t)||

=
α||D(t)||
||C(t)||

= αQ1(t).

2. If H ′(t) = H(αt) where t ∈ [0, τ ], then

Q′1(t) = Q1(αt)/α

for α ∈ R+.

Proof: Let u = αt. Then V (u) is the unitary that diago-
nalizes H ′(t) = H(u), D′(t) = D(u), and

C ′(t) = −i~V ′†(t)V̇ ′(t) = −i~V †(u)

(
d

dt
V (u)

)
= −i~αV †(u)

d

du
V (u) = αC(u).

Therefore

Q′1(t) =
||D′(t)||
||C ′(t)||

=
||D(u)||
α||C(u)||

= Q1(αt)/α.

C. Analytical NMR Inversion Pulses

To demonstrate the utility of the superadiabatic formal-
ism, we examine the well-known tanh/tan adiabatic in-
version pulse, one of a family of single spin-1/2 adiabatic
inversion pulses used in NMR [15, 35]. For this system,
the Hamiltonian during the pulse in a reference frame
rotating at the nuclear spin Larmor frequency (ωL) takes
the form:

H(t) =
ω1(t)

2
σx +

∆ω(t)

2
σz, (5)

where ∆ω = φ̇(t) − ωL is the resonance offset, φ(t) en-
codes the frequency and phase of the pulse, ω1(t) =
γB1(t), γ is the nuclear gyromagnetic ratio, B1(t) is the
amplitude of the applied RF field, and σx and σz are
Pauli spin operators. Here and throughout this paper, ~
has been set to 1. The goal of the pulse is to invert the
state from |↑〉 ≡ |0〉 to |↓〉 ≡ |1〉.
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For a tanh/tan pulse of length τ , the first half of the
pulse (t ≤ τ/2) can be described by [35]:

ω1(t) = ωmax
1 tanh [2ξt/τ ] (6)

and

∆ω(t) = A
tan [κ(1− 2t/τ)]

tanκ
, (7)

where ωmax
1 corresponds to the maximum RF field

strength, and ξ, κ, and A are parameters that can
be optimized for a particular system. For the second
half of the pulse (t > τ/2), ω1(t) = ω1(τ − t) and
∆ω(t) = −∆ω(τ − t).

In the simulations here, the maximum RF amplitude
was set at ωmax

1 = 80 krad/sec (12.7 kHz), a typical value
for a liquid-state NMR spectrometer. This corresponds
to a minimum gate time of 39.27 µs for a rectangular in-
version pulse. The remaining three parameters (ξ, κ, A)
were numerically optimized using brute-force search to
generate pulses that either (a) maximized the traditional
adiabatic Q-factor Q1, or (b) maximized the superadi-
abatic Q-factor Qs. Since s < 10 for the pulse lengths
examined, Qs was calculated by computing the maxi-
mum value of the first ten Q-factors, using the analytical
forms derived for these pulses by Deschamps et al [33].
The optimal pulse parameters are shown in Table 1.

pulse A (rad/sec) κ ξ
Q1 4.1× 105 6.9 16.1
Qs (120 µs) 50.5× 105 65.8 49.2
Qs (50 µs) 26.8× 105 36.3 41.6

TABLE I. Optimal pulse parameters for the tanh/tan pulse.

The optimization was first performed for pulse length
τ = 120 µs, about 3 times longer than the hard-pulse
time. Figure 1(a) compares the values of logQn (where
Qn is defined by Eq. (3)) for the two pulses at this pulse
length. For both optimized pulses, Qn initially increases
with n until it reaches a peak value, which is the supera-
diabatic Q-factor, Qs; in this case, for the Q1 optimized
pulse, s = 2, while for the Qs optimized pulse, s = 5.
As Figure 1(a) shows, for n > s, Qn begins to decrease
or “diverge,” a phenomenon that has been attributed to
the finite time of the transition [32, 33].

The overall fidelity of the pulse was characterized by
the overlap F = | 〈ψ(τ)|1〉 |. Figure 1(b) compares the
performance, using the infidelity (1 − F 2), of the two
optimized tanh/tan pulse shapes as their duration was
changed from 0 to 250 µs, demonstrating the improve-
ment in fidelity provided by the superadiabatic pulse for
pulse lengths τ > 56 µs. Note the oscillations in the Q1-
optimized pulse that occasionally give very high fidelity
at certain times.

As a visual representation of the adiabatic dynam-
ics, Figure 1(c) and (d) show how the Bloch vector ~v(t)
corresponding to the state tracks the Hamiltonian of

the optimized pulses on the Bloch sphere for the Q1

and the Qs optimized pulses respectively. The time-
dependent Hamiltonian can also be represented as a vec-

tor on the Bloch sphere ~H(t) = ω1(t)̂i + ∆ω(t)k̂. Since
ω1(t),∆ω(t) � 1 for most values of t ∈ [0, τ ], we plot

the projection of ~H(t) onto the Bloch sphere instead of
~H(t) itself. The instantaneous deviation between ~v(t)

and ~H(t) can be quantified in any superadiabatic frame

by calculating the angle αn(t) between ~Hn(t) and ~vn(t)
in that frame:

αn(t) = arccos

(
~Hn(t) · ~vn(t)

|| ~Hn(t)|| ||~vn(t)||

)
. (8)

Figures 1(e) and (f) show α1(t) (dashed) and αs(t) (solid)
for the Q1 optimized pulse (s = 2) and the Qs optimized
pulse (s = 5) respectively. For theQ1 optimized pulse, α1

and αs are on the same order of magnitude, accounting
for the quantum state’s failure to reach the target state
at this pulse length. For the Qs optimized pulse, on
the other hand, αs(t) is negligible compared to α1(t),
suggesting that the state is locked to the superadiabatic
Hamiltonian, Hs, but not to H1. For τ = 120 µs, the
infidelity of the Q1 pulse is seen to be quite large, which
is reflected in both Figures 1(b) and (c).

We next examine the more general problem of engi-
neering an optimally adiabatic pulse for a given pulse
length τ . As shown earlier Q1 scales linearly with the
length of the pulse if the pulse shape is held fixed, so
a pulse shape that is Q1-optimal for a particular pulse
length τ will remain optimal for all pulse lengths. Im-
portantly, this property does not hold for higher-order
Q-factors, and hence a Qs-optimal pulse at one pulse
length τ may not be optimal at a different pulse length,
suggesting that a separate optimization needs to be per-
formed for each pulse length of interest.

Figures 2(a) and (b) compare the performance of two
Qs optimized tanh/tan inversion pulses that were opti-
mized for inversion times of 50 µs and 120 µs to the orig-
inal Q1 optimized pulse. The pulse designed for 50 µs is
seen to perform better at shorter pulse lengths near 50 µs
(in terms of both fidelity and superadiabatic Q-factor),
while the pulse optimized for 120 µs performs better
at longer times, with the behavior appearing to switch
around 77 µs. The dotted vertical vertical line in Fig-
ure 2(a) indicates the duration of a “hard” rectangular π
pulse using the maximum available RF field of 80 krad/s,
and the dashed line shows the fidelity achieved with this
pulse. The fidelities of the three adiabatic pulses ap-
proach that of the ideal hard pulse at short times, but
never exceed it. However the adiabaticity of the pulses
is seen to rapidly fall as the pulse durations are reduced.
For these single qubit inversion pulses, we found that
Qs ≥ 10 preserved the desired robustness properties for
the adiabatic pulses.
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FIG. 1. A tanh/tan pulse of length τ = 120 µs was optimized by varying A, κ and ξ in Eqs. (6) and (7) and setting ωmax
1

to 80 krad/s. The resulting Qs optimized pulse is compared to the Q1 optimal tanh/tan pulse. In (a), the first ten adiabatic
Q-factors, defined in Eq. (3), are plotted for both pulses on a log scale. We compare the performance of these two pulses
by systematically reducing the pulse length, τ . The infidelity of the inversion for each pulse length τ is plotted in (b). The
quantum state’s trajectory for the Q1 optimized pulse is plotted in (c) and the trajectory of the Qs optimized pulse in (d). The
angles α1(t) and αs(t) are plotted as a function of time for the Q1 (s = 2) and the Qs (s = 5) pulses in (e) and (f) respectively.

D. Generalized Numerical Search Scheme

In the discussion above we considered the optimization of
Qn for single-spin pulses of a specific analytical form. In
order to consider other unitaries, and to provide an opti-
mization scheme that can be readily extended to higher-
dimensional spaces where closed-form expressions for Qn
are generally not available, we have designed an evolu-
tionary search strategy that iterates on an initial guess
pulse to produce numerically optimized pulse shapes that
maximize Qn for any frame of interest n. It should be
noted that numerical optimization techniques have pre-
viously been used both to find the optimal pulse pa-
rameters of standard adiabatic NMR pulse shapes as
well as to optimize arbitrary pulse shapes that maximize
Q1 [12–14]. The algorithm described below is similar
to other derivative-free pulse-shaping methods that have
been used in the past [36].

We assume our Hamiltonian has the form H(t) =
H0+

∑
k uk(t)Hk, where H0 is the time-independent part

of the Hamiltonian and uk(t) are the control parameters
corresponding to the Hermitian control operators Hk.
Let N be the number of time steps used to define the
pulse. An initial guess pulse (set of uk(t)) is chosen that
satisfies the necessary boundary conditions at t = 0 and
t = τ to ensure that the initial and final states are eigen-
states of H(0) and H(τ) respectively. The key steps in
our method are outlined here (see Appendix for addi-

tional details). (i) The parameters of the guess pulse are
perturbed in a time interval [t0 −∆, t0 + ∆] and Qn re-
calculated by numerically diagonalizing H(t) to find all
the Dn and Cn as outlined above. Perturbations that
improve Qn are preserved and used to update the guess
pulse. (ii) The center of the perturbation (t0), the size of
the perturbed region (2∆) and the amplitude of the per-
turbation are all cycled systematically during the search
as Qn is maximized.

It is important to note that the evolutionary search
does not guarantee convergence to a globally optimal
pulse shape. As with many numerical search strategies,
it is possible for the algorithm to get trapped in a local
optimum. This may present a particular challenge as the
size and complexity of the search space increases.

In Figure 3, this search technique has been applied to
the case of one-spin inversion. The chosen guess pulse
consists of a linear ramp with arbitrarily chosen slope for
the RF frequency offset ∆ω(t) and a parabola for the
RF amplitude ω1(t) with zeros at the endpoints and a
maximum value of ωmax

1 at t = τ/2. The evolutionary
algorithm was first applied to the guess pulse to maximize
Q1. The fidelity profile of the resulting pulse is plotted
as a dashed-dotted line in Figure 1, showing consider-
able improvement over the guess pulse fidelity. This Q1-
optimized pulse was then used as the starting point for a
second round of optimization, this time maximizing Q2
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FIG. 2. (a) The infidelity of two Qs-optimized pulses are
compared with the Q1 optimized pulse as a function of pulse
length. The length of a hard π-pulse at ω1 = 80 krad/s is
indicated by the vertical dotted line. The dashed black line
plots the infidelity of the hard pulse as the pulse length is
reduced to zero. The inset shows a magnified version of the
plot in the range from 80 to 150 µs to show the improved
performance of the pulse optimized for 120 µs at longer times.
(b) Qs as a function of pulse length for each of the optimized
pulses plotted in (a). The inset shows the behavior of Q as
the pulse length approaches zero.
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FIG. 3. The evolutionary strategy is applied to a guess pulse
to optimize Q1 and Q2 sequentially. The infidelity of the
resulting pulse, plotted as a solid line, shows improvement
over the Qs-optimal tanh/tan pulse of Figure 2.

at a pulse length 50 µs. The fidelity of the resulting pulse
is also plotted in Figure 3 as a solid line. For comparison,
the 50 µs Qs-optimized tanh/tan pulse shown in Figure
2 is reproduced here as a dashed line. For pulse lengths
around 50 µs, the numerically optimized pulse outper-
forms the Qs-optimal tanh/tan pulse, demonstrating the

potential benefits of numerical pulse-finding.
Optimal control techniques have also been used to

maximize adiabaticity [37, 38]. Previous work using op-
timal control techniques to find adiabatic pulses used the
integral of Q1 as a global metric to search for pulses [37].
It should be possible to adapt such a technique to maxi-
mize the integral of the superadiabatic Q-curve Qs(t) as
well, which may enable the use of gradient based meth-
ods. However, it is uncertain whether maximizing the
integral of Q(t) will preserve transition-free steering of
the system at all times.

E. Robustness against inhomogeneity

One of the principal benefits of adiabatic pulses is ro-
bustness against inhomogeneity in both the ∆ω and ω1

terms of the Hamiltonian described by Eq. 4. Such ro-
bustness is desirable both for ensemble experiments in
which there is a distribution of Hamiltonians (of both
the system and control Hamiltonians either in space or
in time), or if there is uncertainty in the Hamiltonian
parameters. We consider here the performance of the
Q1- and Qs-optimized pulses discussed above when they
are subjected to variations in both the frequency offset
∆ω and the amplitude ω1. Consider a one-spin pulse de-

scribed by the vector ~φ(t) = [∆ω(t), ω1(t)]. We examine
two distinct cases: (i) The RF amplitude ω1(t) is held
fixed and a frequency offset term δ is added to ∆ω(t),
yielding the modified pulse

~φ′(t) = [∆ω(t) + δ, ω1(t)] .

(ii) The original frequency offset ∆ω(t) is preserved, but
the RF amplitude ω1(t) is multiplied by a scale factor σ,
yielding the modified pulse

~φ′(t) = [∆ω(t), σω1(t)] .

In Figure 4, the robustness of several of the pulses dis-
cussed above is examined for offsets |δ| < 140 krad/s and
scalings 0 ≤ σ ≤ 3. The dotted line corresponds to a
hard π−pulse with an 80 krad/sec RF field and is the
least robust of the pulses shown. The robustness of the
Q1 optimal tanh/tan pulse is examined at pulse length
46 µs, which is the shortest pulse length at which the
pulse achieves nearly perfect fidelity (see Fig. 1(b) and
2(b)). The fidelity curves coincide for |δ| < 50krad/s
and σ < 1.1, suggesting that, for this pulse length, the
Q1-optimized pulse behaves like a hard pulse and con-
fers little advantage in terms of robustness. The figure
also compares the Q2-optimized numerical pulse with the
pulse length also set at 46 µs. Though the numerical
pulse performs worse under ideal conditions, it achieves
a higher fidelity than both the hard pulse and the Q1-
optimal pulse for |δ| > 36 krad/s and σ > 1.07. The ad-
vantages of the adiabatic pulses are more pronounced for
longer pulse lengths. The fidelities of the Q1-optimized
and 120 µs Qs-optimized pulses at pulse length 120 µs are
plotted as dashed lines. While both exhibit robustness
for a wide range of offsets, the superadiabatic tanh/tan
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FIG. 4. Robustness of four optimized pulses to B0 and B1

inhomogeneity. Pulse performance is examined at two pulse
lengths, 46 µs and 120 µs. The hard π-pulse fidelity is plotted
as a dotted line. In (a), δω(t) was subjected to a constant
additive offset ranging from −140 krad/s to 140 krad/s. In
(b), ω1(t) was subjected to a multiplicative offset ranging from
0 to 3. The pulses are more robust at the longer pulse length
120 µs. The superadiabatic pulses offer improved robustness
with respect to both types of offsets.

pulse outperforms the Q1-optimized pulse for all δ and all
σ > 0.8. Furthermore, the superadiabatic pulse achieves
nearly perfect fidelity for σ > 0.9. This suggests that su-
peradiabatic pulses offer an advantage not only in fidelity
as a function of pulse length, as shown in Figures 1–3, but
also in robustness against variations in the Hamiltonian
parameters.

F. Multiple qubits

Our approach can be extended, in principle, to a larger
number of qubits. However, since it requires the diago-
nalization of the instantaneous Hamiltonian to optimize
the trajectory, it is not a scalable approach, a property it
shares with most optimal control schemes. We consider
a two-qubit system whose Hamiltonian is given by

H(t) =
ωA1 (t)

2
σx ⊗ 1+

∆ωA(t)

2
σz ⊗ 1

+
ωB1 (t)

2
1⊗ σx +

∆ωB(t)

2
1⊗ σz

+
πJ

2
σz ⊗ σz,

(9)

where 1 is the 2-by-2 identity operator, ωA,B1 and ∆ωA,B

are the qubit controls for qubits A and B respectively,
and J is a fixed coupling constant in units of Hz. This
Hamiltonian arises in liquid-state NMR experiments and
has also been implemented with superconducting qubits

[39]. Here we demonstrate the use of our numerical
strategy to adiabatically evolve a non-entangled pure
state |ψi〉 = |00〉 to the maximally entangled Bell state
|ψt〉 = 1√

2
(|00〉+ |11〉) without controlling J . In some

systems J(t) can also be a time-dependent control when
it can be experimentally varied [8].

To design an adiabatic transition between |ψi〉 and
|ψt〉, we must first identify an initial Hamiltonian H(0)
with eigenstate |ψi〉 and a final Hamiltonian H(τ) with
eigenstate |ψt〉. Importantly, for the adiabatic theorem
to hold, the two eigenstates must be non-degenerate and
the order of the eigenstates must be preserved. Setting
ωA1 (0) = ωB1 (0) = 0 and requiring that ∆ωA(0) = α > 0
and ∆ωB(0) = −β < 0, H(0) can be written in matrix
form as: α− β + J 0 0 0

0 α+ β − J 0 0
0 0 −α− β − J 0
0 0 0 −α+ β + J

 .

If α > β and α, β > J , the initial state |00〉 is the eigen-
vector of H(0) corresponding to the second-largest eigen-
value α− β + J .

The condition on H(τ) can be satisfied by setting
∆ωA(τ) = ∆ωB(τ) = 0 and further requiring that
ωA1 (τ) = −A < 0 and ωB1 (τ) = A > 0. Again, A is
chosen so that A > J . In matrix form, with these condi-
tions applied, H(τ) becomes:

H(τ) =

 J A −A 0
A J 0 −A
−A 0 J A
0 −A A J

 ,

and the normalized eigenvector of H(τ) with the
second-largest eigenvalue is the Bell state |ψt〉 =
1√
2

(|00〉+ |11〉).
Simulating a liquid state NMR experiment, we used a

fixed value of 209.4 Hz for the J-coupling, corresponding
to the measured proton-carbon coupling in a carbon-13
labeled chloroform sample. For the initial guess pulse
the RF amplitudes ωA1 (t) (carbon) and ωB1 (t) (proton)
were chosen to vary linearly from 0 krad/s at time t = 0
to A = 78.5 krad/s (12.5 kHz) at time t = τ . The
resonance offsets ∆ω(t)A and ∆ω(t)B were also chosen
to be linear, with ∆ω(τ)A = ∆ω(τ)B = 0. The val-
ues α = ∆ωA(0) = 64 krad/s and β = −∆ωB(0) = 57
krad/s were chosen to maximize Q1 (See Appendix for
details). The search algorithm was then used to iterate
on this initial guess to find a control sequence that maxi-
mizes Q1. The algorithm was carried out at an arbitrary
pulse length since Q1 scales linearly with the length of
the pulse.

The shape, performance, and fidelity of the resulting
pulse depend on how long the algorithm is allowed to
iterate on the initial guess pulse. Here, a round of op-
timization is taken to be the number of times that each
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FIG. 5. Fidelity profiles of the two-qubit entangling pulse that
takes the state |ψi〉 = |00〉 to the state |ψt〉 = 1√

2
(|00〉+ |11〉).

The evolutionary algorithm was applied to a linear guess pulse
(dotted) for one round of optimization (dashed dotted) and
three rounds (solid), where a round of optimization consists of
each point in the pulse serving as the center of perturbation.
Comparison is made to a diabatic gate that creates the same
target state (dashed). The minimum time of the diabatic gate
given J = 209 Hz is plotted as a vertical dotted line. Inset:
Q1(t) is plotted for the three pulses, showing the algorithm’s
improvement in the first adiabatic Q-factor.

point in the pulse serves as a center of perturbation. Fig-
ure 5 shows the infidelity of the guess pulse and two Q1-
optimized pulses (following one and three rounds of op-
timization) as the length of the pulse is varied, while
the inset plots Q1(t) = ||D1(t)||/||C1(t)|| of both the
guess pulse and optimized pulses, showing improvement
in Q1 = minQ1(t). This improvement in adiabaticity
is matched by an improvement in fidelity, with the op-
timized pulse outperforming the guess pulse for many
of the depicted pulse lengths. It is interesting to note
that the QSL for a non-adiabatic gate in this two-qubit
system is on the order of 1 ms with the same control
resources (indicated by the dotted vertical line), which
is significantly shorter than the high fidelity adiabatic
pulses obtained here. The non-adiabatic entangling gate
consists of π/2 pulses on both spins, followed by a delay
1/2J , which is then followed by a π/2 pulse on the pro-
tons. The dashed line shows the drop in the fidelity of the
non-adiabatic gate as the delay is reduced below 1/2J . It
is the small size of the J-coupling that necessitates long
adiabatic gates in this case.

Figure 6 shows how the instantaneous eigenvalues of
the system change during the evolution of the final
pulses (optimized 3 times) with the values of α, β and A
above. The second largest eigenvalue, corresponding to
the transition under consideration, is plotted as a solid
line. The figure confirms that the eigenvalues remain
non-degenerate during the entire gate, with the size of
the minimum energy gap set by the strength of the J-
coupling. We plan to explore superadiabatic control of
multi-qubit systems in more detail in future work.
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FIG. 6. Eigenvalues of the optimized two-qubit entangling
Hamiltonian versus time. The adiabatic theorem requires
that energy levels not cross, which is satisfied here. The eigen-
values corresponding to the trajectory between |00〉 at t = 0
and the Bell state at t = τ are plotted as a solid line. The
eigenvalues are plotted in units of ~/s, using α = 64 krad/s,
β = 57 krad/s and A = 78.5 krad/s.

G. Conclusions

We have introduced a new approach to transition-free
driving of quantum systems. This approach uses the
superadiabatic Q-factor as a performance metric to de-
sign robust, high fidelity pulses that maximize the adi-
abaticity of the quantum operation in a particular in-
terval, given the available experimental controls. These
smoothly-varying super-adiabatic pulses are also easier
to implement due to their typically simpler hardware re-
quirements.

For the case of single qubit inversion pulses, we found
that optimizing Qs instead of Q1 improved both fidelity
and robustness over a wide range of pulse lengths. At
shorter pulse lengths a trade-off was observed between
fidelity and robustness, in which pulses that perform at
high fidelity near the quantum speed limit tended to be
less robust against inhomogeneity in the control parame-
ters. We also introduced a simple numerical search strat-
egy to implement a broader class of adiabatic operations,
including multi-qubit adiabatic unitaries, and designed
an adiabatic control sequence to implement a two-qubit
entangling gate. Our investigation highlights the gen-
erality of the Q-factor formalism, which can readily be
extended to even larger Hilbert spaces or to systems char-
acterized by entirely different Hamiltonians.

The proposed method promises to offer another op-
tion in the toolbox of quantum control techniques. Ul-
timately, it would be useful to systematically character-
ize the landscape of control in terms of potential trade-
offs between desirable features such as speed, robustness
against control errors and adiabaticity (or transition free
driving). This would allow experimentalists to tailor
their control strategy to the specific experimental con-
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straints in their setups.

H. Acknowledgements

Jonathan Vandermause acknowledges support of a James
O. Freedman Presidential Scholarship and a research

grant from the Paul K. Richter and Evelyn E. Cook
Richter Memorial Fund at Dartmouth College. This re-
search is based in part upon work supported by the Na-
tional Science Foundation under CHE-1410504.

[1] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Mon-
tangero, V. Giovannetti, G. E. Santoro, Phys. Rev. Lett.,
103, 240501 (2009).

[2] T. W. Borneman and D. G. Cory, J. Magn. Reson., 225,
120–129 (2012).

[3] J. M. Martinis and M. R. Geller, Phys. Rev. A, 90,
022307 (2014).

[4] A. Messiah, Quantum Mechanics (North-Holland, Ams-
terdam, 1965).

[5] A. Recati, T. Calarco, P. Zanardi, J. I. Cirac, and P.
Zoller, Phys. Rev. A, 66, 032309 (2002).

[6] L.-M. Duan and H. J. Kimble, Phys. Rev. Lett., 90,
253601 (2003).

[7] G.D. Fuchs, V.V. Dobrovitski, D.M. Toyli, F.J. Here-
mans, D.D. Awschalom, Science, 326, 1520–1522 (2009).

[8] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R.
Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A.
Dunsworth, E. Jeffrey, A. Megrant, J. Y. Mutus, P. J. J.
O’Malley, C. M. Quintana, D. Sank, A. Vainsencher, J.
Wenner, T. C. White, M. R. Geller, A. N. Cleland, and
J. M. Martinis, Phys. Rev. Lett., 113, 220502 (2014).

[9] D. Bacon and S.T. Flammia, Phys. Rev. Lett., 103,
120504 (2009).

[10] I. Hen, Phys. Rev. A, 91, 022309 (2015).
[11] T. Chasseur, L. S. Theis, Y. R. Sanders, D. J. Egger, F.

K. Wilhelm, Phys. Rev. A, 91, 043421 (2015).
[12] M. S. Silver, R. I. Joseph, and D. I. Hoult, Journal of

Magnetic Resonance 59, 347 (1984).
[13] J. Baum, R. Tycko, and A. Pines, Phs. Rev. A 32, 6

(1985).
[14] M. Garwood and L. DelaBarre, Adv. Magn. Reson. 153–

177, 155 (2001).
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I. APPENDIX

A. Search Algorithm Details

Figure 7 outlines the steps of the algorithm. Assume that
the control pulses of length τ are divided into N equal
intervals ∆t such that τ = N∆t. The control waveform
is parameterized by uk(t) = uk(m∆t), 0 ≤ m ≤ N .

(a) Choose the center of the perturbation (m = `) of
the initial curve uk(m∆t) .

(b) Choose the radius of perturbation r. For each cen-
ter of perturbation `, the radii were allowed to vary
from r = N/2 (alters the entire curve) to r = 2
(smallest local perturbation).
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FIG. 7. The evolutionary strategy used to search for opti-
mally adiabatic rf pulses, consisting of a four-step iterative
procedure. (a) The center of perturbation is chosen. (b) The
radius is chosen, defining an interval of perturbation. (c) The
curve is perturbed and (d) the best perturbation is kept.

(c) Introduce a parabolic perturbation centered at `
with radius r: For every point m ∈ [`− r, `+ r],
uk(m∆t) is changed to ũk(m∆t) such that

ũk(m∆t) = uk(m∆t)− ε (m− (`− r)) (m− (`+ r))

r2
.

where ε is a constant that controls the size of the
perturbation. For any given combination of ` and r,
we perturb the curve ten times (chosen arbitrarily),
in each case choosing ε to be a random value in
the interval [−εmax, εmax]. The figure shows 4 such
perturbations.

(d) The perturbation that maximizes the chosen adia-
batic Q-factor is preserved. If, for any given radius
of perturbation, none of the ten perturbations im-
proved the adiabaticity, we return to step (b), this
time choosing a smaller perturbation radius.

When a perturbation that improves adiabaticity is found,
the four-step procedure is repeated for a new center
`′ = ` + 1 (mod N). If the algorithm does not find an
improvement for any of the radii between r = N/2 and
r = 2, the center is changed. Finally, since a pulse con-
sists of two functions, ∆ω(t) and ω1(t), the algorithm
toggled between the two: ∆ω(t) was perturbed at center
`, and before perturbing ∆ω(t) again with `′ = ` + 1,
ω1(t) was perturbed at center `.

B. Initial guess pulses for two-qubit control

Figure 8 motivates the choice of ∆ωC(0) (carbon, system
A) and ∆ωH(0) (hydrogen, system B) mentioned in the
text. Each point in the 2-D grid represents a different

linear guess pulse. The colorbar indicates the value of
Q1 – the lighter the color of the grid point, the higher
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FIG. 8. Q1 of guess pulse for different choices of ∆ωC(0) (car-
bon, system A) and ∆ωH(0) (hydrogen, system B). Lighter
colors correspond to more adiabatic pulses. The black ar-
row indicates the guess pulse that was chosen. The colorbar
indicates the value of Q1 for pulse length 10ms.

Q1 is for the corresponding pulse. The highest values of
Q1 occur when ∆ωC(0) = ∆ωH(0), which is forbidden
by the adiabatic theorem since it leads to degeneracy
in the eigenvalues. Instead, the point indicated by the
black arrow was chosen, with ∆ωC(0) ≈ 64 krad/s and
∆ωH(0) ≈ −57 krad/s. Figure 9 plots the shape of this
linear guess pulse as well as the Q1-optimized numerical
pulse.
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