
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Error correction for encoded quantum annealing
Fernando Pastawski and John Preskill

Phys. Rev. A 93, 052325 — Published 19 May 2016
DOI: 10.1103/PhysRevA.93.052325

http://dx.doi.org/10.1103/PhysRevA.93.052325


Error correction for encoded quantum annealing

Fernando Pastawski1 and John Preskill1

1Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena, California 91125, USA

Recently, Lechner, Hauke and Zoller [1] have proposed a quantum annealing architecture, in
which a classical spin glass with all-to-all pairwise connectivity is simulated by a spin glass with
geometrically local interactions. We interpret this architecture as a classical error-correcting code,
which is highly robust against weakly correlated bit-flip noise, and we analyze the code’s performance
using a belief-propagation decoding algorithm. Our observations may also apply to more general
encoding schemes and noise models.

Quantum annealing [2] is a method for solving combi-
natorial optimization problems by using quantum adia-
batic evolution to find the ground state of a classical spin
glass. Hoping to extend the reach of quantum annealing
in practical devices, Lechner et al. [1] have proposed an
elegant scheme, using only geometrically local interac-
tions, for simulating a classical spin system with all-to-
all pairwise connectivity. Their scheme may be viewed
as a classical low-density parity-check code (LDPC code)
[3]; here we point out that the error-correcting power of
this LDPC code makes the scheme highly robust against
weakly correlated bit-flip noise. This observation also ap-
plies to other schemes for simulating spin systems based
on LDPC codes.

Lechner et al. propose representing N logical bits
~b = {bi, i = 1, 2, . . . , N} using K =

(
N
2

)
physical bits

~g = {gij , 1 ≤ i < j ≤ N}, where gij encodes bi ⊕ bj and
⊕ denotes addition modulo 2. The K physical variables
obey K − N + 1 independent linear constraints. Hence
only N−1 physical variables are logically independent;
we may, for example, choose the independent variables
to be {g12, g23, g34, . . . , gN−1,N}. The linear constraints
may be chosen to be weight-3 parity checks. If weight-4
constraints are also allowed then the parity checks can
be chosen to be geometrically local in a two-dimensional
array. Higher-dimensional versions of the scheme may
also be constructed [1]; we will discuss only the two-
dimensional coding scheme here, but the same ideas also
apply in higher dimensions.

An LDPC code is a (classical) linear error-correcting
code which can be represented as a sparse bipartite graph
called a Forney-style factor graph (FFG), also known as
a Tanner graph. To illustrate the FFG concept, Fig. 1
shows the FFG for the [7, 4, 3] Hamming code, which has
parity check matrix[13]

H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

 . (1)

The code’s parity checks are the linear constraint nodes,
denoted ⊕ in the graph, while the bits in the code block
are the variable nodes, denoted (=). All lines connect-
ing to a variable node have the same value (either 0 or
1), and all lines connecting to a constraint node are re-
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FIG. 1: The bipartite Forney-style factor graph (FFG) for
the [7, 4, 3] Hamming code, with linear constraint nodes de-
noted ⊕ and variable nodes denoted (=). Constraint nodes
correspond to rows of the parity check matrix H in eq.(1),
and variable nodes correspond to columns; an edge connects
two nodes if a 1 appears in H where the corresponding row
and column meet.

quired to sum to 0 modulo 2. Thus each variable node
corresponds to a column of H, each constraint node cor-
responds to row of H, and an edge of the FFG connects
a variable node and constraint node if and only if H has
the entry 1 in that row and column. The code has “low
density” in the sense that each parity check has low Ham-
ming weight, and correspondingly each constraint node
is connected by edges of the FFG to a small number of
variable nodes. The parity check matrix for a particu-
lar linear code can be chosen in many ways; hence there
are many possible FFG presentations of the same code.
Fig. 2 shows one possible FFG for the LDPC code of the
LHZ scheme. Later we will discuss another FFG for this
code.

While gij denotes the value of bi⊕bj in the ideal ground
state of the classical spin glass, we use g′ij to denote the
(possibly noisy) readout of the corresponding physical
variable after a run of the quantum annealing algorithm.
If the readout is not too noisy, we can exploit the re-
dundancy of the LDPC code to recover the ideal value
of {bi ⊕ bj} from the noisy readout ~g′ with high success
probability. Given an error model, we can determine the

conditional probability p(~g′|~b) of observing ~g′ given ~b.

Assuming that each ~b has the same a priori probability,
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FIG. 2: An FFG for the LDPC code of the LHZ scheme,
based on Fig. 1d of Ref. [1], shown for N = 5. Here the
variable nodes represent the physical spin variables {gij}, with
i ∈ [1, N − 1] and j ∈ [2, N ]. The geometrically local linear
constraints ensure that certain closed loops of spins have even
parity.

we decode ~g′ by finding the most likely ~b:

~bdecoded = MLE(~g′) = ArgMax~b p(~g′|~b), (2)

where MLE means “maximum likelihood estimate.” In
fact, we can only recover the ideal ~b up to an overall
global flip since one bit of information is already lost
during encoding.

We adopt the simplifying assumption of independent
and identically distributed (i.i.d.) noise: g′ij is flipped
from its ideal value gij with probability ε ≤ 1/2, and
agrees with its ideal value with probability 1−ε. Though
we do not necessarily expect this simple noise model to
faithfully describe the errors arising from imperfect quan-
tum annealing, our assumption follows the presentation
of [1]. This model might be appropriate if, for exam-
ple, the noise is dominated by measurement errors in the
readout of the final state. It also allows us to estimate
p(~g′|~b), either analytically or numerically. Exact MLE
decoding is possible in principle, but has a very high
computational cost. We will settle instead for decoding
methods which are computationally feasible though not
optimal.

There is a very simple error correction procedure for
which we can easily estimate the probability of a decoding
error. For the purpose of decoding (say) g12 ≡ b1⊕b2, we
make use of the following N−2 weight-3 parity checks:

0 = (12)⊕ (23)⊕ (13) = · · · = (12)⊕ (2N)⊕ (1N),
(3)

where we’ve used (ij) as a shorthand for gij . These
checks provide us with N−2 independent ways to recover
the logical value of b1 ⊕ b2, namely

b1 ⊕ b2 = (13)⊕ (23) = (14)⊕ (24) = · · · = (1N)⊕ (2N).
(4)

(Of course, g′12 itself provides another independent way

to recover b1 ⊕ b2, but to keep our analysis simple we
will not make use of g′12 here.) Since g′ij 6= gij with
probability ε, each g′1j ⊕ g′2j 6= gij with probability

ε∗ := 2ε(1− ε) ≤ 1/2. (5)

Therefore, g12 is protected by a length-(N−2) classi-
cal repetition code with bits flipping independently with
probability ε∗. The probability of a majority vote decod-
ing error can be estimated from the Chernoff bound:

pfail ≤ exp

(
−2(N − 2)

(
1

2
− ε∗

)2
)
. (6)

This is not the tightest possible Chernoff bound, and
using additional information such as the observed value
of g′12 will only improve the success probability. However,
eq.(6) already illustrates our main point: the probability
of a decoding error for any bi ⊕ bj decays exponentially
with N . A simple union bound constrains the probability
with which any of the N−1 bits are decoded incorrectly:

ptotalfail ≤ (N − 1) exp

(
−2(N − 2)

(
1

2
− ε∗

)2
)
. (7)

Including g′12 in the decoding algorithm improves the
accuracy of our estimate of b1⊕ b2, and including higher-
weight parity checks such as 0 = (12)⊕ (23)⊕ (34)⊕ (14)
can yield further improvements. Following a pragmatic
approach to using such information, we have imple-
mented belief propagation (BP) [5], a fairly standard de-
coding heuristic for LDPC codes. BP efficiently approxi-
mates MLE decoding when the constraint graph is a tree,
and sometimes works well in cases where the graph con-
tains closed loops. For an introductory account of FFGs
and BP see Ref. [4].

In BP, a marginal distribution is assigned to each vari-
able, and updated during each iteration based on the
values of neighboring variables on the FFG. Therefore,
the implementation of BP depends not only on the code
and the noise model, but also on how the code is repre-
sented by the FFG. For our implementation, rather than
using the FFG in Fig. 2, with

(
N−1
2

)
= O(N2) constraint

nodes, we use an FFG with
(
N
3

)
= O(N3) constraint

nodes instead. For each triplet (bi, bj , bk) of logical bits,
the corresponding constraint is

0 = (ij)⊕ (jk)⊕ (ik) (8)

in the notation of eq.(3). These constraints are highly re-
dundant, and the larger number of constraints increases
the cost of each BP iteration. On the other hand, this
scheme has the advantage that it treats all variables sym-
metrically, and furthermore it includes all the constraints
used in our majority voting scheme, which we have al-
ready seen has a noise threshold of 1/2 for i.i.d. noise in
the limit of large N , ensuring that BP will also converge
to the correct answer in this limit. Our FFG is shown
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in Fig. 3 for N = 4, in which case the FFG is planar,
with six variable nodes and four constraint nodes. For
large values of N the FFG is highly connected and hard
to draw.

In a single iteration of BP, the marginal probability
distributions assigned to the variables are updated by
the following two-step procedure. In the first step, each
constraint node sends a message to each of its neighbor-
ing variable nodes. For the edge of the FFG connect-
ing constraint node a to variable node v, this message,
computed using the sum-product formula, is constraint
node a’s guess regarding the marginal distribution for v,
based on the marginal distributions for its other neigh-
bors besides v. To be concrete, in the FFG for the LHZ
code, let gij(0) denote the probability that variable gij
has the value 0, and let gij(1) denote the probability
that gij = 1. The message sent by the constraint node
a = (12)⊕ (23)⊕ (13) to the variable node v = (12) is(

g12(0)

g12(1)

)
a→v

=

(
g23(0)g13(0) + g23(1)g13(1)

g23(0)g13(1) + g23(1)g13(0)

)
, (9)

where (g12)a→v denotes a’s guess. In the second step of
the procedure, each variable node updates its marginal
distribution by evaluating the normalized product of its
previous a priori probability and all estimated proba-
bilities passed by the neighboring constraint nodes. To
be concrete, suppose that variable node v is connected
by edges to constraint nodes a and b; then the updated
probability distribution for variable node v will be(

gv(0)

gv(1)

)
updated

∝
(
gv(0)ga→v(0)gb→v(0)

gv(1)ga→v(1)gb→v(1)

)
, (10)

up to normalization.

For an i.i.d. noise model with error probability ε, we
assign initial distributions to each variable node by as-
suming that the observed value of gij is correct with
probability 1−ε and incorrect with probability ε. To de-
code, probabilities are updated repeatedly until they con-
verge to stable values or until the decoding runtime has
elapsed. Intuitively, a consistent neighborhood reduces
the entropy of the local marginal distributions, whereas
an inconsistent neighborhood may increase the entropy
or even change a variable’s most likely value. How in-
consistencies are resolved is illustrated in Fig. 3, which
depicts one iteration of BP for the LHZ code with N = 4.
There, the marginal distribution of one variable node is
incompatible with the rest, and its updated distribution
favors a flipped value, correcting the error.

For the LHZ code and i.i.d. noise the numerically es-
timated probability ptotalfail of a decoding error is plotted
in Fig. 4 as a function of the error probability ε and the
number N of encoded spins, for N ranging from 2 to
40. As expected, we find that the failure probability falls
steeply as N increases if ε is not too close to the thresh-
old value 1/2. Also as expected, ptotalfail is substantially
smaller than the crude estimate in eq.(7).
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FIG. 3: One iteration of the BP realization for the case ε = 0.1
and N = 4. Each number shown is the probability gij(0) that
the associated node (ij) has the value 0. (a) The prior distri-
bution assuming each measured physical spin has the value 0,
except for one spin in the lower right corner which has value
1. This value is incompatible with the rest, indicating a likely
error. (b) Values of gjk(0) passed from variable nodes (=) to
neighboring constraint nodes ⊕. (c) Values of (gij)a→v, com-
puted by the sum-product formula, passed from constraint
nodes to neighboring variable nodes. (d) Updated a posteri-
ori values for gij(0), calculated as the (normalized) product
of received messages and prior probabilities.

We conclude that the architecture proposed in [1], and
the decoding method proposed here, provide good pro-
tection against i.i.d. noise in the readout of the physical
spins, assuming an error probability ε for each physi-
cal spin which is independent of the total number N of
encoded spins. More generally, we expect powerful de-
coding strategies such as BP to enhance the performance
of other quantum annealing schemes in which the sim-
ulated spins are the logical bits of an LDPC code. We
note that BP and other related methods have also been
used to solve combinatorial problems in a purely classi-
cal setting [6]. Perhaps sophisticated classical decoding
strategies and quantum annealing, when used together,
can solve problems which are beyond the reach of either
method used alone.

To keep our analysis simple, we assumed an i.i.d. noise
model for the physical spins, which might not be an ac-
curate description of the noise in realistic quantum an-
nealing. In fact, Albash et al. [8] have recently pro-
vided evidence that this noise model is inadequate, by
investigating the performance of the LHZ scheme using
simulated quantum annealing, a Monte Carlo method
(using a classical computer) for approximating the be-
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FIG. 4: Performance of iterative BP decoding algorithm. The
probability of a decoding error is plotted as a function of the
number N of encoded spins, for various values of the physical
error probability ε. Each data point was obtained by averag-
ing over 5000 noise realizations, and for each realization the
BP algorithm was iterated five times, incorporating informa-
tion about loops up to length 33 = 25 + 1. The decoding
performance is significantly better than for a single BP itera-
tion, where only loops of size ≤ 3 are considered. The logical
error probability starts at ptotalfail = ε for N = 2 and rises with
N until the onset of exponential decay, which begins for a
smaller value of N than suggested by eq.(7).

havior of a quantum annealing procedure. The output
distributions in actual quantum annealing experiments
have been found to agree reasonably well with simulated
quantum annealing predictions, and the numerical results
in Ref. [8] indicate that the LHZ scheme does not out-
perform the annealing architectures used in current ex-
periments [9], even after including a final decoding step.
Perhaps quantum error-correcting codes can be invoked
to achieve further improvements in performance [10, 11],
but so far no truly scalable scheme for quantum annealing
has been proposed [12]. How well the Lechner et al. ar-
chitecture performs under realistic laboratory conditions
is a question best addressed by experiments.
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