
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Functional quantum computing: An optical approach
Timothy M. Rambo, Joseph B. Altepeter, Prem Kumar, and G. Mauro D'Ariano

Phys. Rev. A 93, 052321 — Published 18 May 2016
DOI: 10.1103/PhysRevA.93.052321

http://dx.doi.org/10.1103/PhysRevA.93.052321


Functional Quantum Computing: An Optical Approach

Timothy M. Rambo,∗ Joseph B. Altepeter,† and Prem Kumar
Center For Photonic Communication and Computing, EECS Department, Northwestern University,

2145 Sheridan Road, Evanston, IL 60208-3118, USA

G. Mauro D’Ariano
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Recent theoretical investigations treat quantum computations as functions, quantum processes
which operate on other quantum processes, rather than circuits. Much attention has been given to
the N− switch function which takes N black box quantum operators as input, coherently permutes
their ordering, and applies the result to a target quantum state. This is something which cannot
be equivalently done using a quantum circuit. Here, we propose an all-optical system design which
implements coherent operator permutation for an arbitrary number of input operators.

PACS numbers: 03.67.-a,42.50.-p

I. INTRODUCTION

Quantum computers hold the promise of dramatic
speed increases over their classical analogues for certain
types of problems, such as search[1], factoring[2], and
many others (see [3] for a summary of the topic). Specific
quantum algorithms are typically described using quan-
tum circuits, which represent quantum computations at
a low level in a qubit-wise step-by-step manner, similar to
representing a classical computation using machine code.
Describing computations in this manner, while accurate,
can be cumbersome and the resulting circuit diagrams
can be difficult to understand intuitively. By developing
a quantum analogue to the classical model of functional
computing, it may be possible to replace the quantum cir-
cuit description with functional formalism which is more
intuitive and has different capabilities.

A classical machine code predefines a set of bit-wise
operations to be applied in a fixed order for any input
bit register values. However, the broad scope of a com-
plex program such as an operating system or graphical
user interface is difficult to comprehend when focusing on
every transformation of every bit value. Complex compu-
tations are instead designed in the abstract as a collection
of functions, black boxes which can be applied arbitrarily
and return data and/or other functions.

Investigations into quantum functions find that
while physical systems are capable of arbitrarily control-
ling the use and ordering of black box unitaries, quan-
tum circuits cannot represent this[4–9] without signifi-
cantly increased resources. Though this doesn’t mean
that quantum functions will necessarily lead to more
physically resource efficient experiments, the functions
can provide different and more compact formalism for
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conceptualizing quantum information processes. This is
best illustrated by the N− switch operation[4, 5] which
coherently permutes the orderings of N black box oper-
ators based on the value of control qubits and applies
them to a target qubit register. In addition to being an
interesting example of the differences between quantum
functions and quantum circuits, arbitrary control over
causal orderings is a useful mechanism for investigating
the fundamental role of causality in quantum systems[10–
13] and enhancing the efficiency of certain quantum in-
formation processing tasks[14, 15]. A recent experiment
has implemented 2−switch using spatial modes to control
operator ordering, but to our knowledge there have been
no practical proposals for permuting more than 2 opera-
tors. Here we present an all-optical, experimental, archi-
tecture for N− switch, which exploits ultrafast quantum
coherent switching devices [16–18] to permute an arbi-

trary number of quantum operators while only requiring
a single physical device to implement each quantum op-
erator. The reader is cautioned that although “quantum
switch” is sometimes used synonymously withN−switch,
in this paper quantum switch refers to an optical device
for switching the path of photonic signals.

II. FUNCTIONAL QUANTUM COMPUTING

The original classical model of functional computing
is the λ-calculus [19], which treats functions and data as
the same type of objects. In other words, functions can
be input to and output from other functions along with
bit values. One attempt at developing a functional defini-
tion of quantum computation is the theory of “quantum
combs” [20, 21]. Quantum combs are essentially quantum
circuits with sockets that black box quantum operators
can be “plugged into,” similar to micro-chips on a circuit
board. However, this constructs a fixed circuit, granting
the user only classical control over the operators. Other
noteworthy proposals for functional quantum computing
are [22] and [23].
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More recently, quantum functions have been described
as circuits with coherently controlled, movable, wires [5].
Movable wires grant the ability to reconfigure the con-
nections between quantum operators in a computation
at run-time and coherent control can be used to create
a superposition of different uses—quantum control over
black box quantum operators. This also paints a physical
picture of a device with programmable interconnections,
the implementation of which is key to our design. Similar
investigations into quantum controlled black-box opera-
tors have also been carried out by other groups[6–9].
This new functional model is showcased by the N −

switch operation[5], which has an elegant functional def-
inition but a complex equivalent quantum circuit. This
N−switch operator takes as input: N black box quantum
operators, U0,U1,...,UN−1, a register of control qubits,
and a register of input qubits. It coherently orders
the input quantum operators based on the value of the
control qubits, creating a meta-operator—a superposi-
tion of quantum operators in (potentially) many different
orderings—that is then applied to the input qubit regis-
ter [5]. To illustrate the differences between the circuit-
based and functional descriptions, consider the simplest
case: 2− switch.
The 2− switch operator takes the following inputs:

two quantum operators U0 and U1, a control qubit |c〉 =
α|0〉+β|1〉, and an input qubit |ψ〉. The 2− switch func-
tion (shown in eq. 1 as f2−switch (•) for clarity) outputs

f2−switch (U0, U1, |c〉, |ψ〉) =α|0〉 ⊗ U0U1|ψ〉

+ β|1〉 ⊗ U1U0|ψ〉,
(1)

a coherent superposition of the operators being applied to
|ψ〉 in both possible orderings. Alternatively, 2− switch

operation could be described by a quantum circuit with
three wires (shown in Fig. 1(a)): one for the control
qubit |c〉, one for the input qubit |ψ〉, and one for an
ancilla qubit |a〉. The input wire leads to the operator
combination U0U1, while the ancillary wire leads to the
reversed operator combination U1U0. The control qubit
coherently exchanges the states of the input and ancilla
wires via a controlled-swap operator, and the input state
|ψ〉 propagates down a coherent superposition of both
the input and ancilla wires, passing through both sets
of operators, before being deterministically returned to
the input wire by a second controlled-swap. In this way,
the input qubit passes through the quantum operators in

both possible orderings. The circuit depiction requires
two separate copies of each box interacting with one in-
put qubit and one ancilla qubit, whereas the functional
description, 2− switch (U0, U1, |c〉, |ψ〉), enumerates one
copy of each operator. For a more direct comparison to
the circuit model, the functional description can be il-
lustrated as a circuit diagram with movable wires. This
modified circuit (shown in Fig. 1(b)), shows a single copy
of U0 and U1 with a superposition of two possible paths
through them created by moveable wires. The functional
description is less complex, it achieves operator permu-
tation with a single copy of each box and no ancillary

qubits.
The reduction in complexity achieved by the func-

tional description of 2− switch becomes even more sig-
nificant as the problem is generalized to a permutation
of N quantum operators. The functional description,
N−switch (U0, U1 . . . , UN−1, |c〉, |ψ〉), references each in-
put quantum operator only once while the quantum cir-
cuit for implementing an equivalent computation has
been shown to require O(N2) ancillary quantum oper-
ators, O(N2) total extra qubits (including both ancil-
lary and control), and exactly N copies of each quan-
tum operator [5]. Although the functional description of
N− switch is less complex than the circuit description,
this does not imply a reduction in physical resources.
Rather, the quantum functions provide a different, sim-
pler, framework for discussing quantum computations.
The value of this is clearly illustrated by its contribution
to discussions on the limits of the quantum circuit model
and the role of causality in quantum mechanics. Below,
we propose an optical device which can implement the
N− switch using only a single physical copy of each op-
erator.

III. AN OPTICAL OPERATOR PERMUTING

DEVICE

Functional abstraction in classical computing has en-
abled the development of a myriad of complex programs.
Now that a fully quantum-controlled functional model
for functional quantum computing has been introduced,
it is feasible that analogous development in quantum al-
gorithms may be possible. A proof-of-principle exempli-
fication of this functional model is the N− switch oper-
ation, which permutes the order in which N input quan-
tum operators are applied to an input qubit register. As
shown above, this operation can be visualized as a quan-
tum circuit with movable wires that coherently change
the path(s) which input qubits take through the input
operators. Implementation of these movable wires may
be achieved in an optical device using quantum switches
to alter the path of an arbitrarily encoded photonic qubit,
or qubit register, such that it encounters optical circuit
elements in a particular order. Although the N input
operators will act on the physical basis in which the in-
put quantum state is encoded, the order in which the
operators are applied will be coherently controlled via
manipulation of the photonic signal’s spatial and tempo-
ral degrees of freedom (modes).

A switch has been demonstrated which uses an op-
tical control pulse to couple the spatial and temporal
modes of photonic qubits without otherwise disturbing
their quantum state [16–18] (see Fig. 2). The two-input,
two-output, all-optical, fiber-based switch is a modified
nonlinear optical loop mirror (NOLM) [24] whose reflec-
tivity is controlled via cross-phase modulation generated
by an optical pump (control) pulse. In the absence of a
control pulse, a NOLM can be aligned so as to perfectly
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FIG. 1. (a) A quantum circuit diagram which implements 2− switch using two copies of each operator. (b) A functional circuit
diagram of 2− switch showing a superposition of two possible connections (solid and dashed) made by quantum controlled
movable wires. Arrows illustrate the direction of information flow.

reflect all incoming signal pulses. This perfect reflection
is a result of destructive interference between the clock-
wise and counter-clockwise paths of the Sagnac loop [25].
A dual-wavelength control pulse is multiplexed in and out
of the clockwise path of the Sagnac loop and consists of
two equal-energy cross-polarized optical pulses such that
a signal in the clockwise path of the Sagnac loop receives
a polarization-independent π phase shift [26]. This phase
shift turns destructive interference into constructive in-
terference and causes any signal which passes through
the pump pulse to totally transmit through the NOLM.
The switch outputs are demultiplexed from the input spa-
tial modes by fiber circulators, giving the device two in-
put and two output spatial modes. Note that although
the switching process is governed by pump light in the
classical domain, the switch can act on quantum signals
without disturbing them because the underlying physi-
cal process is coherent. These switches, which couple the
spatial and temporal modes of photonic qubits, can be
used to implement N− switch.
The quantum switch can be thought of as having two

states: “on”, where the spatial mode of an input pho-

Circ
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Input 2

Input 1

Output 2

50:50

Control  Pump 

Control Pump 

Circ

WDM
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FIG. 2. A schematic for the quantum switch. Cross-phase
modulation, caused by a pump pulse multiplexed in and out
of a fiber loop, alters the quantum signal interference within a
nonlinear optical loop mirror, thereby coherently controlling
whether an input signal exits from output 1 or output 2.

tonic signal is switched (i.e., an optical control pulse is
present), and “off”, where the spatial mode of an input
photonic signal is not switched (i.e., no control pulse is
present). In other words, the switch performs a condi-
tional bit-flip on a photonic signal’s spatial mode. This
operation is conditioned on the presence of a control
pulse. Because the photon is a quantum object, a pho-
tonic signal can enter the switch in a coherent super-
position of two different temporal modes. If the switch
is “on” for one of those modes and “off” for the other,
the timing of the photonic signal will coherently control
the conditional spatial bit-flip; i.e., the switching action
acts as a quantum controlled-NOT operation [16]. The
length of the Sagnac loop determines the “on-time” of the
switch—the window in which an input photonic signal
will be “switched” (the smallest demonstrated switching
window is 30 ps [18]). Additionally, there is some tran-
sition time between the off and on states, approximately
equal to the temporal extent of the control pulses (typi-
cally 5 ps). Using these two pieces of timing information,
one can define an arbitrary number of orthogonal tempo-
ral modes (t0, t1, etc...), or time-bins, in which a signal
will be switched contingent on the presence of a control
pulse. By constraining a photonic signal to exist in a
coherent superposition of 2T temporal modes

2T−1
∑

i=0

αi|1〉ti

2N−1
∏

j=1,j 6=i

|0〉tj (2)

where
∑2T−1

k=0 |αk|
2 = 1, a register of T temporal qubits

can be encoded onto the signal. This can be done by ei-
ther generating the signal in a superposition of temporal
modes as in [27] or by using unbalanced interferometers
similar to the one in [28] to separate the probability am-
plitude of the signal into multiple time-bins. Additional
qubits may be encoded on the photonic signal by using
other degrees of freedom such as orthogonal polarization
modes, optical frequency modes, photon number, etc...
provided the resulting quantum state can be guided by
single-mode fiber. Using quantum switches, it is possible
to create a device which re-wires the connections between
a collection of physical quantum operators that act on
these additional qubits. The inter-operator connections
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can be controlled such that each temporal mode expe-
riences a different series of quantum operations, thereby
implementing N− switch.

Consider a network of N − 1 switches Sp,q con-
nected in a binary tree structure [29], where p ∈
{0, 1, ..., n = log2N − 1} indicates the level of the tree
in which a switch resides and q ∈ {0, 1, ..., 2p − 1} is the
index of the switch within it’s level (see in Fig. 3(a)).
Each level of the tree contains 2p quantum switches and
the tree encompasses a total of N spatial modes (x0,
x1, ..., xN−1). Every switch not in the p = n − 1
level has its outputs connected to input 1 of the two
switches in the next level: Sp+1,2q and Sp+1,2q+1. For
a given p and q, a quantum switch acts on two spatial
modes: x2qN/2p+1 and x(2q+1)N/2p+1 , where all switches
with p > 0 are assumed to receive a vacuum field in-
put via the x(2q+1)N/2p+1 mode. In an N = 8 network,
for example, S1,1 acts on x2(1)(8)/21+1 = x2(8)/4 = x4
and x(2(1)+1)(8)/21+1 = x3(8)/4 = x6. Because of the tree
structure, a photonic signal input to the S0,0 switch can
be routed to any of N spatial modes at the output. In
other words, the tree of quantum switches is a multi-
plexer which maps a single input spatial mode to one of
N output spatial modes. If the structure is reversed (see
Fig. 3(b)) such that output 1 of both switch S′

p+1,2q and
switch S′

p+1,2q+1 connect to input 1 and input 2 of switch
S′
p,q, the switch network becomes a demultiplexer capa-

ble of routing a photonic input from any input spatial
mode of a switch in the p = log2(N) − 1 level to either
output spatial mode of the S′

0,0 quantum switch. In a de-
multiplexer switch network, all switches with p > 0 are
assumed to output a vacuum field via the x(2q+1)N/2p+1

mode. To avoid confusion, S′ will refer to switches used
for demultiplexing and S to switches for multiplexing.

Combining a multiplexer quantum switch network
whose output spatial modes are all connected to dif-
ferent physical quantum operators (x0 → U0, x1 →
U1, ..., xN−1 → UN−1), with a demultiplexer quantum
switch network, whose inputs are all connected to the
outputs of the quantum operators, yields a device which
can route an input signal through any of N unitary oper-
ators and return it to its initial spatial mode (see Fig. 4).
With the addition of a return loop connecting output 2
of S′

0,0 to input 2 of S0,0 via xN/2, the photonic signal
can be routed through the device an arbitrary number of
times, M , passing through an arbitrary quantum oper-
ator in each iteration. In other words, the device could
take an input photonic signal via the x0 input of S0,0,
apply one of NM possible combinations of quantum op-
erators, and output the result to x0 via output 1 of S′

0,0.
By programming the device to route the photonic signal
through a different combination of operators depending
on its temporal mode, the functionality of the device can
be significantly expanded.

The network of quantum switches can be pro-
grammed such that a photonic signal is routed through
a unique permutation of N quantum operators for each
of it’s temporal modes in M = N iterations through the

device. In this scheme, the state of an input photonic
signal is

NN−1
∑

i=0

αi|ψ〉ti,x0

NN−1
∏

j=0,j 6=i

|0〉tj ,x0
(3)

and the temporal modes are serialized by number and
chosen such that tNN−1 passes through the input switch
before t0 enters the return loop for the first time; the
output state is

NN−1
∑

i=0

αiOi|ψ〉ti,x0

NN−1
∏

j=0,j 6=i

|0〉tj ,x0
, (4)

where each temporal mode (ti) has undergone a
different combination of quantum operators Oi =
Oi,N−1Oi,N−2...Oi,0, and Oi,k = Ul where

l =

⌊

i

NN−j−1

⌋

modN, (5)

and j ∈ {1, 2, . . . , N − 1} indexes each iteration of the
photonic signal through the device.

Each Ul can be applied to an input photonic signal
by activating a unique group of switches such that they
are in the “on” state while interacting with the ith tem-
poral mode of a signal and in the off state, if necessary,
before the next temporal mode of the signal will interact
with them. To apply the Ul operator to a specific tem-
poral mode of the signal, all switches with indices such
that

(q + 1)
N

2p+1
≤ l < (q + 2)

N

2p+1
, (6)

and p 6= 0 must be turned on when that temporal mode
enters the switch. Because the p = 0 switches also serve
as input/output ports to the device, their behavior must
be different. The S0,0 switch must be turned on if either:

1) j = 0 and l ≥ N
2 , or 2) j 6= 0 and l < N

2 . The S′
0,0

switch must be turned on if either: 1) both j = M − 1
and l ≥ N

2 , or 2) j 6= 0 and l < N
2 . By applying these

switching rules for every iteration of every temporal mode
of the input signal, a superposition of all NN possible
operator permutations is applied to the input photonic
quantum state |ψ〉. Note that this device is more general
than an N − switch because it can be used to control
not just the ordering, but also number of uses of each
operator. This device will deterministically implement
the N−switch operation if the input signal is superposed
over only those temporal modes to which non-degenerate
operator permutations will be applied.

The savvy reader may note that our description
of switching rules means that the required number of
temporal modes scales as NN , and can become unrea-
sonable very quickly. However, the required number
of modes doesn’t exceed 1000 until one considers cases
where N>4. We suggest that our method be considered
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FIG. 3. (a) A network of N − 1 quantum switches which multiplexes an input photonic signal from the x0 spatial mode into
one of N spatial modes. (b) A network of N − 1 quantum switches which de-multiplexes N spatial modes of a photonic signal
into a single spatial mode (x0).
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FIG. 4. An optical device which simulates N− switch using 2N − 2 quantum switches, and N physical quantum operators.
Because the behavior of the quantum switches is governed by a predetermined pattern of optical control pulses, the time at
which a photonic signal is input to the device can be mapped to an order in which the photon passes through the quantum
operators.

for small-scale experiments, as there are no existing pro-
posals for an implementation of N− switch, N>2,which
is both deterministic and scalable. We choose 1000 time-
bins as the cut-off number for a “reasonable” experiment
because with a 1-GHZ system clock 1000 time-bins would
span 1µs in time and ∼200 m in space. Truly, there
are only N ! operator permutations where no operator
is called more than once, so the number of time-bins
could be reduced accordingly in this case. If the system
is reconfigured such that it only processes N ! temporal
modes, then the required number of modes doesn’t ex-
ceed 1000 unless N>7.

One application of optical operator permutation is
that it may be used to measure the commutativity of two
physical operators. Consider that the state output from

an optical 2− switch
(

U0, U1,
1√
2
(|0〉+ |1〉) , |ψ〉

)

device

is

1
√

(2)
U1U0|ψ〉t0x0

+
1

√

(2)
U0U1|ψ〉t1x0

, (7)

where modes containing vacuum are left out for simplic-
ity. Using an additional switch, the amplitude in t0x0
can be routed into an ancillary spatial mode xa as shown
in Fig. 5. The spatially separated signal amplitudes can
then be interfered by placing an optical delay (i.e. a
short length of fiber) in xa equal to the time between
temporal modes and combining t1x0 and t0xa on a 50:50
beamsplitter. This interference will yield the state

1

2
(U1U0 − U0U1) |ψ〉t1x0

+
1

2
(U1U0 + U0U1) |ψ〉t1xa

. (8)

The commutativity of the two operators, [U0, U1] =
U1U0 − U0U1, can be determined by post-selectively de-
tecting only the signal in x0, and using quantum state
tomography to reconstruct the state prepared in that
spatial mode.

It should be noted that [30] reports an experimental
measurement of operator commutativity, but using spa-

tial modes to control operator ordering. This is a simpler
approach for performing a 2− switch, because the con-
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trol information is encoded using a single beamsplitter
and the experiment contains only passive components.
However, it relies upon multiple spatially distinct modes
propagating through the same set of free-space optical
components which poses obvious issues for scalability.

Another work which does address the permutation of
an orbitrary number of operators is [15]. This is primar-
ily a theoretical treatment which introduces the concept
of an N−router that applies a variable re-mapping of the
target quantum state’s modes such that each mode can
be arbitrarily coupled to one of the input operators. In
this work, another N− router would then apply the in-
verse mode transformation and output the result back to
an input mode of the first N−router, repeating as neces-
sary to implement the full operator permutation. Clearly,
our multiplexer and de-multiplexer switch networks are
N− routers which apply a time-to-space mode mapping.
In contrast to our work, the authors of [15] suggest that
the that the control qubits could be encoded over orbital
angular momentum (OAM) states and that OAM mode
sorters could be used to couple different modes to differ-
ent operators. This approach has the advantage that the
dimensionality of the target qubit will not be expanded in
the time, a factor which could ease practical constraints
on the time-scales of system stability and lead to a sig-
nificant reduction in computation time compared to our
proposal. The disadvantage to this approach is that cur-
rent state-of-the-art OAM mode sorters have slower up-
date rates (∼4 kHz) and lower extinction (93%)[31] than
the switching technology which can update as fast as 10
GHz[18] with 99% mode extinction[16, 17].

One potential experimental issue with our approach
is that a given quantum operator will interact with each
temporal mode of the input photon at a different time.
At each of these different times, the transformation ap-
plied by the operator to the photonic signal’s quantum
state may be varied depending on air turbulence, vibra-
tion of optical components, noise in electrical compo-
nents, etc. . . In essence, the proposed device does not ap-
ply the quantum operator N times. Instead, it applies N
different approximations of the operator. One approach
to overcoming this problem, if necessary, is to exploit the
Fourier relationship between time and frequency. Apply-
ing a narrowband frequency filter to the photon at the
device output will broaden its temporal profile, though
such filtering could be a significant source of loss. If suf-
ficiently narrow filtering is possible without attenuating
the signal below measurable levels, it may become impos-
sible (even in principle) to determine whether or not the
different temporal modes of the photon interacted with
different approximations of each operator. In this case,
every temporal mode of the photon has effectively inter-
acted with the same approximation of each operator, and
the N− switch operation has been implemented.

IV. CONCLUSION

A new model of functional quantum computation
has recently been presented, one which describes quan-
tum computers as a collection of quantum operators with
programmable interconnections. Within this model, a
proof-of-principle operation, N− switch, has been pro-
posed which takes as input: N quantum operators, a
quantum control register, and an input quantum state;
the input operators are coherently re-ordered according
to the state of the control register and then applied to the
input state. While operator permutation is currently of
interest both fundamental science and quantum informa-
tion processing, there has been no discussion of practical
methods to permute more than two operators. We have
proposed an all-optical device to implement N− switch
for a photonic signal whose superposition over multiple
temporal modes encodes the control qubits for the per-
mutation and whose other degrees of freedom are used
to encode the computational quantum state. This all-
optical device utilizes 2N − 2 quantum switches, and a
single physical implementation of each quantum opera-
tor to be permuted. We have also presented a scheme in
which an optical N− switch device may be used to test
the commutativity of two physical quantum operators.
Although the optical N− switch device is not scale-able,
it could be used for small or test-bed systems.
This work was supported in part by the Na-

tional Aeronautics and Space Administration (NASA)
Space Technology Research Fellowship (Grant No.
NNX12AN27H). Although this work has been available
as arXiv:1211.1257v1 since 2012, it has only now been
submitted for peer review due to a professional conflict
for PK.
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