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Department of Physics, Georgetown University, 37th and O st. NW, Washington DC, 20057, USA

Recently a variant on Ramsey interferometry for coupled spin-1/2 systems was proposed to directly
measure the retarded spin-spin Green’s function. In conventional experimental situations, the spin
system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we
examine the nonequilibrium retarded spin-spin Green’s functions within the transverse-field Ising
model. We derive the lowest four spectral moments to understand the short-time behavior and we
employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey
protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of
the ground state and diabatically excited higher-energy states via a temporally ramped transverse
magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which
has a constant transverse field. The short-time allows us to extract the initial transport of many-
body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian.
Compressive sensing is employed in the data analysis to efficiently extract that spectra.

I. INTRODUCTION

One of the main computational tools of quantum
many-body physics is the retarded Green’s function be-
cause its causal structure makes it the physical Green’s
function for the linear response of the system and for
describing its equilibrium behavior. The formal interpre-
tation of the retarded Green’s function is that it deter-
mines the quantum states of the system. In equilibrium,
all single-particle expectation values can be calculated
from the Green’s functions and the Fermi-Dirac distri-
bution, which determines how those quantum states are
occupied. If one is also interested in exciting systems
to nonequilibrium, then one needs to examine nonequi-
librium many-body theory. Here, one has to deter-
mine two independent Green’s functions—the retarded
Green’s function (introduced above) and the so-called
lesser Green’s function—the former continuing to deter-
mine the quantum states and the latter determining how
those states are occupied (since it is no longer given by a
simple Fermi-Dirac distribution). It turns out that nearly
all experimentally measurable quantities are actually de-
termined by the lesser Green’s function, not the retarded
Green’s function. This holds in equilibrium too, as one
typically finds any expectation value calculated from the
retarded Green’s function requires an additional Fermi-
Dirac distribution factor, which converts the retarded
Green’s function into the lesser Green’s function. It is
due to this simple relationship between the retarded and
lesser Green’s functions in equilibrium that one can get
all the information from knowing the retarded Green’s
functions only.

This then brings up a fundamental question: Is it pos-
sible to directly measure the retarded Green’s function
in an experiment? Most physicists would reasonably re-
spond no, since the occupancy of the states always plays
a role in a measurement, but recent work showed that
this is not the case. Knap, et al. [1], proposed a variant
of Ramsey interferometry for any coupled spin-1/2 sys-

tem, that reduces to the direct experimental measurement
of a retarded Green’s function! The Ramsey protocol is
quite simple, as shown in Fig. 1. One starts the system
in some given quantum state (Knap et al. assume this is
a thermal state, but in most quantum simulators it will
be some other state that the system has evolved into at
time t = t0), applies a local Rabi pulse at site j, lets the
system evolve under the Hamiltonian until time t, ap-
plies a second global Rabi pulse, and then measures the
spin at site i. It is by no means obvious that this will re-
sult in the measurement of the retarded Green’s function,
so we illustrate this in a brief derivation below. Then
we describe how the evolution of the system will change
(from that of an equilibrium Green’s function) due to the
nonequilibrium character of the initial state |ψ0〉 that the
system started from. These effects of the nonequilibrium
characteristics of the state is investigated by studying the
initial propagation of information from the disturbance
and comparing that to the Lieb-Robinson like bound [2]
and extracting the energy spectra for the transverse-field
Ising model.

The organization of this paper is as follows: In Sec. II,
we summarize the derivation of how the Ramsey spec-
troscopy protocol results in a pure state retarded spin-
spin Green’s function. We review the formalism of the
transverse-field Ising model as simulated in the linear
Paul trap and the approximation we apply for the time
evolution. To further understand the short time behavior
the spectral moments are derived. We finally discuss the
key ideas of compressive sensing. In Sec. III, we present
numerical examples of the pure state retarded spin-spin
Green’s function. We extract different features as a func-
tion of time to compare to Lieb-Robinson bounds and we
apply compressive sensing to Fourier transform the mea-
surements as a function of time and extract the excitation
spectra at different transverse fields. Finally, in Sec. IV,
we provide our conclusions.



2

FIG. 1: (Color online.) Schematic of the Ramsey protocol.
(a) Rotate a single spin j by π/2. (b) Allow the resulting
quantum spin state to freely evolve forward in time. (c) Apply
a global rotation and immediately measure the z-component

of the ith spin, σ
(z)
i .

II. FORMALISM

The Ramsey spectroscopy protocol is completely gen-
eral, so we first describe it solely in terms of spins,
and then we discuss the specific implementation via ions
trapped in a linear Paul trap (for the concrete calcula-
tions). The procedure involves applying two rotations
of the spins (i. e., Rabi pulses) at different times, with
a free evolution under the spin Hamiltonian in between;
the first rotation is a single-spin rotation at lattice site j,
given by

Rj(φ1) =
1√
2

[
Î + i

(
σ
(x)
j cosφ1 − σ(y)

j sinφ1

)]
. (1)

Here, σ
(r)
j is the Pauli spin matrix (with eigenvalues ±1),

the index r = x, y, or z denotes the spatial direction of
the Pauli spin matrix and the index j denotes the spatial
site index on the lattice. The second spin rotation is a
global spin rotation given by

R(φ2) =

N∏
j=1

Rj(φ2) (2)

for a spin lattice with N lattice sites. The Rabi pulse is
the general one used in Ref. 1, with the product of the

Rabi frequency times the time equal to π/2, and φ1 (or
φ2) the phase of the laser pulse.

The Pauli matrices satisfy the standard commutation
relations [

σ
(α)
i , σ

(β)
j

]
−

= 2iεαβγσ
(γ)
i δij (3)

with ε the completely antisymmetric rank three tensor
(Levi-Civita symbol).

The pure state retarded spin-spin Green’s function is
defined by

Gret
αβ,ij(t, t0) = −iθ(t− t0)〈ψ0|

[
σ
(α)
i (t), σ

(β)
j (t0)

]
−
|ψ0〉,

(4)
where θ(t) is the Heaviside function, and |ψ0〉 is a pure
quantum state which can be thought of as the “initial”
spin wavefunction. This is a “nonequilibrium” Green’s
function, similar to the T = 0 Green’s function, except it
uses a different quantum state than the ground-state for
the matrix elements; for example, in an ion-trap-based
implementation, it can be the time-evolved state when
the system starts in the ground state for a large mag-
netic field and then the field is ramped to some final
value. Note that the time evolution between the two
spin rotations can be with respect to a constant Hamil-
tonian or a time-varying one, it does not matter for the
definition. In addition, the initial state |ψ0〉 is taken to
be any pure quantum state; it need not be an eigenstate
of the Hamiltonian at the initial time.

A. Ramsey spectroscopy protocol

The Ramsey spectroscopy protocol consists of four
steps after starting the system in an initial state |ψ0〉
at time t0: (1) perform a single-spin rotation on the
jth spin, with the single-spin rotation Rj(φ1) at t0, (2)
evolve the system to time t under the Hamiltonian (which
can be time dependent, but will be chosen to be time-
independent here), (3) perform a global rotation R(φ2)
at time t, and (4) immediately measure the z-component
of the ith spin. The entire Ramsey interferometry mea-
surement then corresponds to evaluating the following
matrix element (t ≥ t0)

Mi,j(φ1, φ2, t) = 〈ψj(t)|σ(z)
i |ψj(t)〉, (5)

where |ψj(t)〉 is the Schrödinger representation for the
final wavefunction (after the first three steps of the pro-
tocol), which is given by

|ψj(t)〉 = R(φ2)Û(t, t0)Rj(φ1)|ψ0〉. (6)

Here, Û(t, t0) = Tt exp[−i
∫ t
t0
dt̄H(t̄)] is the evolution op-

erator, given by a time-ordered product if the Hamilto-
nian changes as a function of time. Using the fact that

R†(φ2)σ
(z)
i R(φ2) = −σ(x)

i sinφ2 − σ(y)
i cosφ2, (7)
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and the Heisenberg representation for the spin operators,

where σ
(r)
i (t) = Û†(t, t0)σ

(r)
i Û(t, t0), yields

Mi,j(φ1, φ2, t) = −1

2
〈ψ0|[Î − i(σ(x)

j cosφ1 − σ(y)
j sinφ1)]

× [σ
(x)
i (t) sinφ2 + σ

(y)
i (t) cosφ2]

× [Î + i(σ
(x)
j cosφ1 − σ(y)

j sinφ1)]|ψ0〉.(8)

The most interesting case corresponds to the choice φ1 =
0 and φ2 = π/2 [1] which gives

Mi,j(0,
π

2
, t) = −1

2
〈ψ0|[Î − iσ(x)

j (t0)]σ
(x)
i (t)

× [Î + iσ
(x)
j (t0)]|ψ0〉, (9)

where we trivially represented the spins in Rj(φ1) by the

Heisenberg representation at t0, since Û(t0, t0) = Î. So
far, the Ramsey protocol, and the manipulations we have
made, are completely general. Now, we need to invoke
a parity argument that says all expectation values that
correspond to an odd number of σxi operators vanish
if the initial state |ψ0〉 has definite spin-reflection par-
ity. We will be considering the evolution with respect
to a transverse-field Ising model, which has this spin-
reflection parity (and will be verified in detail below). In
this case, the matrix element becomes

Mi,j(0,
π

2
, t) =

1

2
Gret
xx,ij(t, t0) (10)

after we drop the odd averages. Hence, the Ramsey spec-
troscopy directly measures the retarded spin-spin Green’s
function! Note that this also implies that the Green’s
function in the time domain is real (which can be easily
proven).

A natural alternative representation of the retarded
Green’s function is the Lehmann representation and here
we derive a similar representation when the transverse-
field Ising model is time independent during the free-
evolution stage of the Ramsey spectroscopy. We first
expand |ψ0〉 =

∑
n Cn|n〉, in terms of the eigenstates of

the transverse-field Ising model at time t0 (H(t0)|n〉 =
En|n〉); the Hamiltonian becomes time independent for
t ≥ t0. We introduce |ψ0〉 and an identity operator into
Eq. (4),

Gret
xx,ij(t, t0) = −iθ(t− t0)

×
N∑

m,n,n′

C∗mCn

[
〈m|σ(x)

i (t)|n′〉〈n′|σ(x)
j (t0)|n〉

− 〈m|σ(x)
j (t0)|n′〉〈n′|σ(x)

i (t)|n〉
]
.

(11)
Because we are assuming that the Hamiltonian is time
independent, the time evolution operator acting on an
eigenstate satisfies Û(t, t0)|n〉 = exp[−iEn(t − t0)]|n〉,
which is employed to further simplify the above equation

to

Gret
xx,ij(t, t0) = −iθ(t− t0)

×
∑
m,n,n′

C∗mCn

[
e−i(En′−Em)(t−t0)〈m|σ(x)

i |n
′〉〈n′|σ(x)

j |n〉

− e−i(En−En′ )(t−t0)〈m|σ(x)
j |n

′〉〈n′|σ(x)
i |n〉

]
.

(12)
In this representation, the individual matrix elements os-
cillate at the energy differences of the transverse-field
Ising model. Although some matrix elements might can-
cel each other once summed over, the pure state retarded
Green’s function will oscillate at many energy eigenvalue
differences. Additionally the energy differences are be-
tween states with opposite spin-reflection parity (we dis-
cuss the spin-reflection parity in the next section), be-
cause the σ(x) operator is odd under the spin reflec-
tion symmetry. Interestingly, this equation differs from
the conventional Lehmann representation of a thermal
Green’s function because the matrix element is not pro-
portional to |σ(α)|2. In other words, when we evaluate the
pure state Green’s function—in cases where the state is
a superposition of eigenstates—the Lehmann representa-
tion includes cross terms that do not appear in the con-
ventional trace (when one evaluates a thermally averaged
Green’s function).

B. Transverse-field Ising model

For concreteness, we consider the evolution of the spin
system in the transverse-field Ising model as generated
in an ion trap quantum simulator. In the linear Paul
trap, the effective spin-1/2 system is encoded onto the
2S1/2 : |F = 0,mf = 0〉 and |F = 1,mf = 0〉 hy-

perfine “clock” states of the trapped 171Yb+ ion. The
Ising-like interaction is generated by applying two opti-
cal beams with a frequency difference of µ, which results
in a spin-dependent force. When the phonons are only
virtually occupied, they can be integrated out to leave
behind a spin-only Hamiltonian. These Ising spins have
a long-range interaction that decays approximately with
a power law in the inter-ion distance. The power law is
tunable between the uniform case (α = 0) and the dipole-
dipole interaction case (α = 3). The spin-exchange in-
teractions are approximated by

|Jij | ≈
J0

|Ri −Rj |α
(13)

where Ri is the position of the ith ion and J0 the overall
scale for the exchange interactions. The Jijs are posi-
tive for the ferromagnetic case and negative for the an-
tiferromagnetic case; we will show results only for the
ferromagnetic case here. In general, the Jijs are time de-
pendent but when the detuning µ is detuned to the blue
of the transverse center-of-mass mode, the system is well
approximated by static Jij , which we do here as well.
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FIG. 2: (Color online.) Energy spectrum of the transverse-

field Ising model with 10 spins and α = 1.00. Near B(y)/J0 =
0.75 there is a minimum energy gap between the ground state
and the (red line) first coupled state.

The transverse-field Ising model for N ions then be-
comes

H(t) = −
N∑

i, j = 1
i < j

Jijσ
(x)
i σ

(x)
j −B(y)(t)

N∑
i=1

σ
(y)
i . (14)

Here, B(y)(t) is the time-dependent transverse magnetic
field; we work with h̄ = 1. Note, that the transverse-
field Ising model has two symmetries. The first symme-
try is a spatial reflection symmetry, which is described
by Jij = JN−iN−j , and derives from the even symmetry
of the axial trapping potential about the origin. Here,
the lattice index is ordered in a strictly increasing or-
der from left to right. The second symmetry is a spin-
reflection parity, when the Pauli matrices are transformed
by σ(x) → −σ(x), σ(y) → σ(y), σ(z) → −σ(z). In this
case, the spin-spin commutators and the transverse-field
Ising model Hamiltonian both remain invariant. So, if
the initial state |ψ0〉 has a definite spin-reflection parity,
then, because the Hamiltonian H(t) is even under spin-
reflection parity (and hence so is the evolution operator),
we have that the matrix element with respect to |ψ0〉 of

any odd number of σ
(x)
i (t) operators vanishes, as claimed

above.
The excitations to higher coupled states (i. e., states

with the same symmetry) depend on the energy gaps
between those coupled states and how quickly the trans-
verse magnetic field changes with time up to the time t0.
In Fig. 2, we show the energy spectra for N = 10 spins
with α = 1.00; note that there is a minimum energy gap
near B(y)/J0 = 0.75.

When we examine the spin-spin Green’s function, we
can consider a number of different scenarios. We start

FIG. 3: (Color online.) Schematic of the complete protocol
we use in implementing the Ramsey spectroscopy. (a) We ini-
tialize the state in the ground state of the Hamiltonian when
B(y) � |Jij |. Then we decrease the transverse magnetic field
via an exponential ramp in time. We also show the average
magnitude of the nearest neighbor interaction, Jnn, and the
next-nearest neighbor, Jnnn, in red ( dashed ) lines to give a
relative idea of the strength of the transverse magnetic field
to the spin-spin interaction. (b) For the time interval [t0, t],
we apply the Ramsey spectroscopy protocol and perform sig-
nal processing on the resulting measurements as a function of
the final time t.

the system at tinit in the ground state of the Hamilto-
nian when B(y)(tinit)� |Jij |, evolve it by decreasing the
field to time t0, then apply the Ramsey protocol. Dur-
ing the Ramsey spectroscopy, we can keep the transverse
field constant (as we will do here) or we can continue to
vary it in time until t, when the final measurement is
made. While we focus on the case when the Hamilto-
nian is a constant during the Ramsey protocol in this
work, the more general case allows one to investigate
strong nonequilibrium effects associated with the spin-
spin Green’s function. Unfortunately, there is no simple
way to interpret the results of those such experiments,
which is why we focus on the simpler case here, which
can be directly interpreted. The protocol is illustrated in
Fig. 3.

The formula for the Jij have been derived in Ref. [3, 4]
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and the resulting equation for the static Jij is

Jij = ΩνR

N∑
m=1

bimbjm
µ2 − ω2

m

. (15)

The Jij depend on the normal mode eigenvector, bim, of
the mth phonon mode at the ith ion site and the cor-
responding phonon frequency, ωm — the calculation of
bim and ωm can be found in Ref. [5]. The remaining vari-
ables in Eq. (15) are experimental parameters and we use
the same parameters used in Ref. [6] (we work with con-
ventional frequency units). The symbol νR = h/(Mλ) =
18.5 kHz is the recoil energy of a 171Yb+, where M is the
ionic mass, λ = 355 nm is the wavelength of the laser ap-
plied to the linear chain of ions, and Ω = 600 kHz is the
Rabi frequency. The parameter µ is the detuning and
is defined by µ = ωCOM + 3ηΩ = 1.0233ωCOM , where
ωCOM is the transverse center of mass phonon mode and
the Lambe-Dicke parameter η =

√
νR/ωcom = 0.0621.

The Jij can be adjusted to yield different power law be-
havior, as described in Eq. (13), by changing the detun-
ing, µ, or the asymmetry between the axial and trans-
verse center of mass mode. We use the latter strategy in
Sec. III. The axial center of mass mode is adjusted from
620 kHz to 950 kHz yielding a power law fit ranging from
0.7 < α < 1.2. The energy unit, J0, that we use to scale
the Jij satisfies J0 ≈ 1 kHz for N = 10 ions. In Sec. III,
we focus on the ferromagnetic interaction with positive
spin-exchange coefficients (Jij > 0).

The specifics of the Ramsey protocol we use are as
follows: (1) Initialize the system of spins along the y-
direction at tinit and start with B(y)(tinit) = B0 = 10J0,
(2) reduce the transverse magnetic field via an exponen-
tial ramp with B(y)(t) = B0 exp(−t/τ) between tinit to
t0, (3) apply the Ramsey protocol in the time interval
[t0, t] with a constant transverse magnetic field, B(y)(t0)
and (4) perform a signal processing analysis on the result-
ing measurements. The Ramsey protocol is the same as
described above with the single spin rotation at t0 and
the pure state |ψ0〉 is the state that was time evolved
from tinit to t0. Note that during step 2, the transverse
magnetic field changes in time, requiring a time-ordered-
product for the evolution operator until time t0.

C. Time Evolution

We must evaluate the time evolution with respect to
the time-dependent Hamiltonian that satisfies

i
∂

∂t
Û(t, tinit) = Ĥ(t)Û(t, tinit), (16)

where Û(tinit, tinit) = Î. The resulting time evolu-

tion operator is a time-ordered product, Û(t, tinit) =

Tt exp
[
−i
∫ t
tinit

dt′Ĥ(t′)
]
. After t0, the magnetic field is

held constant and the transverse-field Ising model is time
independent, which simplifies the subsequent time evolu-
tion operator to Û(t, t0)|n〉 = exp[−iEn(t−t0)]|n〉 for the
eigenstates defined above at t0.

We follow the same procedure as we did in Ref. [22]
and use the commutator-free exponential time (CFET)
approach to approximate the nontrivial time evolution
operator. The details of the CFET approach can be
found in Refs. [7, 8]. The central idea of the CFET ap-
proach is to use a number of Trotter approximations to
construct a single evolution operator that evolves a δt for-
ward in time. The Trotter factors are chosen in a manner
that when combined via the Baker-Campbell-Hausdorff
formula [9–11] they produce a high-order truncated Mag-
nus expansion [12] of the evolution operator. Depending
on the number of Trotter factors used, the CFET op-
erator can increase the order of the truncated Magnus
expansion. We use the optimized fourth-ordered CFET
approach, that has an error of δt5.

D. The spectral function and spectral moments

The spectral function determines the local density of
states of the quantum system. Spectral moment sum
rules are useful to understand the short time behav-
ior and can ultimately be applied to compare to Lieb-
Robinson bounds. While the spectral moment sum rules
can be derived for the completely general nonequilibrium
Green’s function, we do so only for the case of a Hamil-
tonian that is constant for times t > t0 here.

The spectral function is then defined via

Aretxx,ij(ω) =

− 1

π
Im

 ∞∫
0

dtrelG
ret
xx,ij (t0 + trel, t0) eiωtrel

 (17)

and the nth spectral moment is then defined as follows:

µret,nxx,ij =

∞∫
−∞

dωωnAretxx,ij(ω). (18)

Using integration by parts n times, one can directly re-
late the nth spectral moment to the nth derivative of the
retarded Green’s function as

µret,nxx,ij =

− 2

π
Im

[
in

∂n

∂tnrel
Gretxx,ij (t0 + trel, t0)

]
trel=0+

.
(19)

We calculate the first nonzero spectral moments for arbi-
trary lattice sites i and j. The calculations are tedious,
but straightforward and finally yield
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µret,0xx,ij = 0, (20a)

µret,1xx,ij =
4

π
B(y)(t0)〈ψ0|σ(y)

i |ψ0〉δij , (20b)

µret,2xx,ij = 0, (20c)

µret,3xx,ij = − 8

π

(
B(y)(t0)

)2
Jij〈ψ0|σ(y)

i σ
(y)
j |ψ0〉+

δij
2π
〈ψ0|

[
B(y)(t0)

(
16
(
B(y)(t0)

)2
+
∑
kk′

JikJik′σ
(x)
k σ

(x)
k′

)]
σ
(y)
i |ψ0〉

+
4δij
π

∑
k

Jik〈ψ0|
[(
B(y)(t0)

)2 (
σ
(x)
k σ

(x)
i + σ

(z)
k σ

(z)
i

)]
|ψ0〉. (20d)

The zeroth and first two moments vanish except when
i = j, where the first moment is nonzero. This implies
the Green’s function for i 6= j is very flat in t initially; the
case with i = j has a nonzero slope that is proportional to
the transverse magnetic field and the polarization of the
spin along the field direction. For i 6= j the first nonzero
spectral moment is µret,3xx,ij(t0) and here the coefficient is
proportional to the direct spin-spin interaction between i
and j and rotated from along x to along y—the coefficient
is scaled also by the square of the transverse magnetic
field. The case with i = j is even more complicated.

E. Signal processing

The generalized Lehmann formula in Eq. (12) shows
that the time dependence of the Green’s function relates
to the different excitation energies of the many-body sys-
tem. Since these excitation energies are discrete, the time
dependence is determined by a finite set of exponentials
with different weights. This is precisely the case where
compressive sensing can be employed to extract the fre-
quencies and the weights most efficiently from the data
in the time domain; this becomes particularly important
since the extent of the time domain is limited by the
decoherence time in an experiment. The source of this
decoherence is due to other spontaneous emission and ex-
perimental noise ( for example intensity fluctuations in
the Raman beams ). Even though compressive sensing is
optimized for this procedure, it remains experimentally (
and therefore numerically ) challenging because there are
a fairly large number of nonzero frequencies, that can lie
close to one another, and the amplitude associated with
the frequencies is low. So good data is necessary to ex-
tract all of them; instead, we use a small number of points
to simulate the case of an actual experiment and hence
we won’t be able to pick out all of the frequencies. In
addition, one would need to take multiple measurements
at every time step to decrease the noise due to count-
ing statistics and other experimental error. Although we
will not explicitly take into account these errors, we keep
these limitations in mind. A complete review of compres-
sive sensing for clean and noisy signals can be found at

Rice University [13]. We present a short summary below.
To Fourier transform a data set of M time steps to a

frequency domain with Nstep frequency steps, the follow-
ing matrix-vector multiplication equation is solved

AF−1Gretxx,ij(ωn) = AGretxx,ij(tm, t0). (21)

Here, the inverse Fourier transform matrix, F−1, is per-
formed by a partial discrete Fourier transform, where the
matrix size is M × Nstep, A is the measurement matrix
that is of size M×M , and the index n runs over the Nstep
frequency steps, while the index m runs over the M time
steps. The inverse Fourier transform matrix satisfies

F−1mn =
1

Nstep
e−iωntm , (22)

The construction of the measurement matrix, A, is one
of the key elements of compressive sensing. It is a ran-
dom orthogonal matrix, whose elements, Aij , are chosen
from a normal distribution and then A is orthogonal-
ized, where the columns of the matrix are the vectors.
When Eq. (21) is solved, there are an infinite number
of possible solutions, due to the fact that Eq. (21) is an
under-determined system of equations. The other tenet
of compressive sensing is that the solution that minimizes
the absolute value of the signal in the frequency domain

min ||Gret
xx,ij (ω) || = min

∑
n

|Gret
xx,ij (ωn) | (23)

is the optimal solution to pick from the different choices.
In addition, one can randomly choose the time coordi-
nates (instead of having them on a uniform grid), but
we do not use this additional randomness in this work.
We employ the matlab toolkit CVX [14] to solve Eq. (21)
subject to the constraint in Eq. (23).

III. RESULTS

We show numerical examples of the application of the
Ramsey spectroscopy protocol to a linear chain of N =
10 spins with a ferromagnetic interaction, Jij > 0. We



7

FIG. 4: (Color online.) Examples of the Ramsey spectroscopy
as a function of time for i = 0 and j = 0 (black), 1 (red),

4 (blue), and 9 (green) with 4 different B(y)(t0)/J0 values

[B(y)(t0)/J0 is equal to the following: (a) 0.94, (b) 0.74, (c)
0.49, and (d) 0.35].

perform the single spin rotation on the spin at the left
end of the linear chain, i = 0, and the characteristic
transverse magnetic field ramping time is τ = 0.85/J0.

We show examples of the Ramsey spectroscopy proto-
col as a function of time for four pairs of spins, the first
spin is always site i = 0 and the second spin is j = 0, 1, 4,
and 9 (for the N = 10 spin chain). We study four differ-
ent final transverse magnetic fields, B(y)(t0)/J0 = 0.94,
0.74, 0.49, and 0.35. From this point on, we will assume
t0 = 0 to make the discussion simpler. As expected from
Eq. (20), the Green’s function for all spins at t2 = t0 = 0
starts at 0. A little afterwards, the Gret

xx,00(t, 0) decreases
linearly as a function of time, and the slope becomes
more shallow as the transverse magnetic field decreases,
also as expected from the sum rules. Additionally, at the
three other sites, j = 1, 4, and 9 the Green’s function be-
gins with a very flat t dependence, because the first two
derivatives vanish. and then decreases at different rates
dependent on the distance of the spin from the left edge
i = 0 of the lattice. Note, that as the transverse mag-
netic field decreases the amplitude of the measurements
also decreases. The decrease in the amplitude is due the
eigenstates of the transverse-field Ising model becoming
the eigenstates of σ(x) as B(y)(t0) −→ 0.

The oscillations for i = j = 0 can be interpreted in
an alternative manner via a Loschmidt echo [1, 15]. The
Loschmidt echo describes a forward propagation in time
with one Hamiltonian H = H0 +V , and then a backward
propagation in time with another Hamiltonian H0,

L(t− t0) = 〈ψ|eiH0(t−t0)e−iH(t−t0)|ψ〉. (24)

The pure state Green’s function in Eq. (4) can then be
defined in terms of a Loschmidt echo by realizing that
σxi exp−iH0(t−t0) σxi = exp−iH(t−t0), so that the local
pure state retarded Green’s function is rewritten as

Gret
xx,ii(t, t0) = −iθ(t− t0) [L(t− t0)− L(−t+ t0)] . (25)

We examined the Loschmidt echo time trace over a long
time interval given by a length of 100 ms. The Green’s
function has significant oscillations here, sometimes in-
cluding low frequency oscillations with large amplitudes
(not shown here). By comparing the features at differ-
ent times by eye, we notice that the amplitude of the
oscillations appears to remain large and not decay expo-
nentially. This identifies that this spin system appears to
be in the localized regime because the oscillations do not
seem to decay as a function of time (if they did decay,
then it would be in the diffusive regime).

A. Lieb-Robinson bounds

Next, we want to identify how the pure state Green’s
function can be employed to examine Lieb-Robinson-like
behavior. Here, we have a system that has a perturba-
tion initiated at the left end of the chain, and we can
ask how long before the initial response of the pertur-
bation will be seen elsewhere in the chain. Since the
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system has long-range interactions, we expect the infor-
mation to flow with a power-law behavior rather than a
light-cone, as determined recently [16, 17]. One idea to
track this information flow is to track some feature of the
Green’s function which measures the time-delay for the
response. In looking at the results in Fig. 4, we see that
the first minimum, first maximum, and first zero cross-
ing of Gret

xx,ij(t, 0) all seem to correlate with the distance
from the left end of the chain. So we plot the times at
which those features occur for the different lattice sites
in Fig. 5, with each panel corresponding to a different
final transverse field: B(y)(t0)/J0 = 0.94, 0.74, 0.49, and
0.35.

In Fig. 5 (a), the first local minimum and maximum
of Gret

xx,ij(t, 0) seemingly have a power law behavior as a
function of the relative distance from i = 0, while the first
zero is only observed for lattice sites with j < 5. As the
transverse magnetic field, in Fig. 5 (b-d), is decreased, the
power law behavior of the first local minimum and max-
imum becomes unrecognizable. The first zero crossing in
Fig. 5 (c) seemingly jumps from j = 2 to j = 9. The
behavior of these features at the low transverse magnetic
field appear not to be saturating Lieb-Robinson bounds.
They show no regular behavior and hence must be gov-
erned by other longer-time physical phenomena than the
initial propagation of information.

We next plot the first intercepts of when Gret
xx,ij(t, 0) =

c for 5 different values of c, as shown in Fig. 6. The values
we chose are: c = −0.0002, −0.0005, −0.001, −0.0015,
and −0.002 for the same transverse magnetic fields as
previously used. The Gret

xx,ij(t, 0) = −0.0002 intercept
consistently seems to behave closest to a power law, since
the black circles do not vary far from the fitted dashed
line. However, for the higher intercepts Gret

xx,ij(t, 0) =
−0.001, −0.0015, and −0.002, the power law fits well
only for Fig. 6 (a). As the transverse magnetic field de-
creases, the oscillations begin to dominate the pure state
retarded Green’s function and the power law fit begins to
fail. Although for Gret

xx,ij(t, 0) = −0.0005, a power law fit

can be calculated for B(y)(t0)/J0 = 0.94, 0.74, and 0.35,
as shown in Fig. 6 (a, b, and d), it cannot for the in-
termediate transverse magnetic field in Fig. 6 (c). Since
the retarded spin-spin is measuring the initial response,
we expect this approach to work best in the limit as the
intercept c → 0. But this limit would be essentially im-
possible to reach experimentally, where one wants to use
as large an intercept as possible. The net result is that
for any realistic system, we need to use a compromise to
determine how rapidly the information is transferred and
to examine how close that rate is to saturating general-
ized Lieb-Robinson bounds.

In the short time limit, we expect the pure state re-
tarded Green’s function to be proportional to Jij mul-
tiplied by a spin-spin expectation value, as described
by the third spectral moment in Eq. (20c) for i 6=
j. And following from Eq. (13), the pure state re-
tarded Green’s function is then proportional to |R0 −
Rj |−αt3〈ψ0|σ(y)

0 σ
(y)
j |ψ0〉. If this spin-spin expectation

value were a constant with distance (which would occur
for a fully ordered ferromagnetic state), then one could
predict the power law to approach 3/α. Instead, we ob-
serve that the power law |R0 − Rj | ∝ tγ has γ inversely
proportional to α. This relation shows that increasing α
should reduce γ, which we see in our data, and was also
seen in the experiment which approached these bounds
in a different way [18, 19]. This relationship between the
relative distance of the spins to t examines a general-
ized Lieb-Robinson bound, which puts an upper bound
on how quickly information travels down the chain of
spins. Note that the original Lieb-Robinson bound was
derived using the maximum value (or maximum eigen-
value) of the retarded Green’s function, ||Gret

xx,ij(t)|| [2],
and we are considering the expectation value of the re-
tarded Green’s function given a pure state |ψ0〉 that is
not typically a single eigenstate of the retarded spin-spin
Green’s function operator. So the results are a bit differ-
ent.

In Table I, we show the power law fits, |R0−Rj | ∝ t̄γ ,
for the different features discussed previously for 3 differ-
ent Ising interaction power laws: α = 0.9, 1.00, and 1.12.
The power law fits for the first local minimum, first local
maximum and the first zero crossing vary with little dis-
cernible behavior as the transverse magnetic field is de-
creased. The Gret

xx,ij(t, 0) = −0.0002 gives consistent val-
ues for γ for all the Ising interactions we considered. The
γs are higher than α, suggesting that the spin-spin expec-
tation value is not a constant with distance. More than
likely the intercept is still set too high and higher order
spectral moments are being observed as well. Although
from the Gret

xx,ij(t, 0) = −0.0002 fits, the γ’s are inversely
proportional to the α’s. The fits for intercepts where
Gret
xx,ij(t, 0) = −0.0005, −0.001, −0.0015, and −0.002 are

less consistent for low transverse magnetic field. The
inconsistency and negative γ are due to the oscillatory
behavior of the pure state retarded Green’s function.

B. Energy spectrum

We present numerical examples for extracting the en-
ergy spectrum via Fourier transformation of the i =
j = 0 data. The measurement, or calculation, of the
energy spectrum has been previously examined experi-
mentally [20, 21] and theoretically [1, 22]. The Fourier
transform of the i = j = 0 data in Fig. 4 is per-
formed over a time interval of [0, 6]ms for α = 1.00 with
B(y)(t0)/J0 = 0.94, 0.74, 0.49, and 0.35. As described
above, the Fourier transformation is performed by using
compressive sensing. We employ M = 64 time steps that
map to Nstep = 1024 steps in the frequency domain in
Fig. 7 and compare the resulting delta function peaks
to scaled coefficients from the Lehmann representation
of 1024Gret

xx,00(t, t0). In Fig. 7, the blue dots represent
scaled coefficients that can be identified to a delta func-
tion peak and the red dots are the coefficients that cannot
be readily identified with a delta function peak. When
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FIG. 5: (Color online.) First local minimum (blue circles), local maximum (red circles) and zero (black circles) of the pure
state Green’s function for i = 0 and all other j lattice sites. Here the x-axis is labeled at the equilibrium position from the left
edge i = 0, |R0 −Rj |.

the number of steps in the compressive sensing data, M ,
is increased, the number of associated scaled coefficients
increases as does the accuracy. Note though that the ma-
jority of the red dots do cluster near blue dots and the
compressive sensing might not be able to distinguish be-
tween the different peaks. There are a few spurious high
frequency delta function peaks that are due to frequencies
being added together, however identifying what frequen-
cies are being added together is not easily done. So the
Green’s function is showing that it contains much infor-
mation about the spectra, unfortunately it is difficult to
extract this data from a series of temporally short exper-
imental runs. Here we used a basic compressive sensing
scheme but a more advanced compressive sensing algo-
rithm (i. e. basis pursuit) might be able to further reduce
the number of measurements as a function of time, re-
duce the time interval, and produce more accurate delta
function peaks. In addition there are compressive sens-
ing algorithms that can reduce the effects of noise and
counting statistical error, (i. e. basis pursuit denoise).

IV. CONCLUSION

In this work, we investigated the nonequilibrium be-
havior of the pure state retarded spin-spin Green’s func-
tion produced by a variant of a Ramsey spectroscopy pro-
tocol by exploring its application to the transverse-field
Ising model as simulated in a linear Paul trap. First,
we showed that the Lehmann representation of the pure
state retarded Green’s function is generalized and we de-
termined the first three spectral moment sum rules. We
proceeded to present numerical examples of the Ramsey
spectroscopy as a function of time. We then extracted
the various features to simplify the pure state retarded
Green’s function behavior. The features we chose to ex-
tract are: the first local minimum; the first local maxi-
mum; the first zero crossing; and when Gret

xx,ij(t, 0) = c.
From these features, we fit power laws to investigate gen-
eralized Lieb-Robinson bounds. The feature that gave
the most consistent power laws was the smallest inter-
cept, however the resulting power law was higher than
expected. This is most likely due to the intercept being
too high and the oscillatory behavior affecting the signal.
The final example was to Fourier transform the measure-
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FIG. 6: (Color online.) Extraction of the first intercepts of 5 different values of c for 4 values of B(y)(t0)/J0: (a) 0.94, (b)
0.74, (c) 0.49, and (d) 0.35. The values of the intercepts c are: −0.0002 (black circles), −0.0005 (red squares), −0.001 (blue
triangles ), −0.0015 (purple plus signs), and −0.002 (green diamonds). In addition, the dashed lines show a power law fit,
|R0 − Rj | ∝ tγ |, for each of these values. The −0.0002 power law fits are the most consistent among the other intercepts.
Interestingly, the −0.0005 intercept is able to recover the power law behavior in (d). Here the x-axis is labeled at the spin’s
relative distance from i = 0, |R0 −Rj |.

ment as a function of time into the frequency domain.
Compressive sensing was used to extract the excitation
energies weighted by the matrix elements of the gener-
alized Lehmann representation. This analysis was not
able to extract all of the energy differences. Additionally
there are spurious high frequency delta function peaks
that are most likely due to two frequencies being added
together.

What are the experimental implications of these re-
sults? It appears that it would be difficult to use this
method to extract the initial speed with which informa-
tion is transferred in the system, because the results work
best for small intercepts, but experimental error would
make the data there very noisy. Similarly, one can ex-
tract some of the excitation energy differences, but not
all of them because there are too many of them, hence it
is not clear precisely what one would do with the exper-
imentally measured subset of data. Perhaps, the most
interesting aspect of this Green’s function is the Green’s
function itself. After all, it is surprising to be able to ex-

tract a retarded Green’s function from an experimental
measurement, and a full knowledge of the Green’s func-
tion allows for a wealth of different information to be
determined about the system. Indeed, this is likely the
most important result of the Ramsey experiment in these
trapped ion systems. This becomes even more interesting
if one examines the more nonequilibrium case where the
Hamiltonian continues to change between times t0 and t.
Unfortunately, it isn’t clear precisely what one would use
that data for.

Another interesting question is the following: In cases
where the pure state |ψ0〉 represents a thermal distri-
bution well, in the sense that the coefficients |Cn|2 are
nearly proportional to the Boltzmann factor [23], then
does the pure state retarded spin-spin Green’s function
represent the thermally averaged retarded Green’s func-
tion well? One might expect this to be true, because the
diagonal elements in the summation will closely resem-
ble the trace employed in the calculation of the thermal
Green’s functions, and the off diagonal elements should
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B(y)(t)/J0 α 0.0002 0.0005 0.001 0.0015 0.002 first local minimum first local Maximum first zero

0.94
0.90 2.47 2.41 2.43 2.44 2.43 1.34 1.78 6.09

1.00 1.91 1.95 1.95 1.95 1.96 2.12 3.211 0.892

1.12 1.72 1.77 1.77 1.77 1.78 2.21 2.92 1.31

0.74
0.90 2.39 2.38 2.33 2.28 2.25 8.94 — 9.81

1.00 1.93 1.94 1.93 1.93 1.92 5.26 — 1.19

1.12 1.75 1.76 1.76 1.75 1.75 1.21 2.05 7.05

0.49
0.90 2.64 2.77 2.82 2.83 2.81 1.41 0.85 —

1.00 1.87 1.0 — — — 0.38 0.30 3.20

1.12 1.69 1.59 1.01 — — 4.29 — 2.88

0.35
0.90 1.96 — — — — 1.22 0.82 1.71

1.00 1.97 1.95 — — — — 0.51 0.31

1.12 1.59 1.72 1.75 — — — 0.75 1.2

TABLE I: Power law fits |R0−Rj | ∝ t̄γ for 3 different ranges of Ising interaction, α = 0.90, 1.00, and 1.12. Each are calculated

at B(y)(t0)/J0 = 0.94, 0.74, 0.49, and 0.35. The calculated γ are for the following features: Gret
xx,ij(t̄, 0) = −0.0002, −0.0005,

−0.001, −0.0015, and −0.002; first local minimum; first local maximum; and the first zero crossing. Here, the —’s are for γ’s
that inadequately fit the data or are negative. The Gret

xx,ij(t̄, 0) = −0.0002 case gives a consistent γ for the 3 Ising interaction
ranges. Other cases do not work as well.

FIG. 7: (Color online.) Fourier transform of the i = j = 0 pure state retarded Green’s function of the data taken in the time
interval of [0, 6]ms. The results of the compressive sensing (black line) are compared to the scaled coefficients of the Lehmann
representation, 1024Gret

xx,00(t, 0) (blue and red circles), and to the partial Fourier transform (green line). The blue circles are
energy differences that are associated with a delta function peak and the red circles are those that cannot be easily associated
with a delta function peak. There are also spurious delta functions peaks that are due to the addition of two energy differences.
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become small as the system size becomes large due to
cancellations from the complex phases.

We hope future studies will clarify these issues.

Acknowledgments

J. K. F. and B. Y. acknowledge support from the
National Science Foundation under grant number PHY-

1314295. J. K. F. also acknowledges support from the
McDevitt bequest at Georgetown University. B. Y. also
acknowledges support from the Achievement Rewards for
College Students Foundation.

[1] M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M. Lukin,
and E. Demler, Phys. Rev. Lett. 111, 147205 (2013).

[2] E. Lieb Robinson and D. Robinson, Commun. Math.
Phys. 28, 251 (1972).

[3] S.-L. Zhu, C. Monroe, and L.-M. Duan, Phys. Rev. Lett.
97, 050505 (2006).

[4] C.-C. Joseph Wang and , J. K. Freericks, Phys. Rev. A
86, 032329 (2012).

[5] C. Marquet, F. Schmidt-Kaler, and D. F. V. James, Ap-
plied Physics B 76, 199 (2003).

[6] R. Islam, C Senko, W. C. Campbell, S. Korenblit, J.
Smith, A. Lee, E. E. Edwards C.-C. J. Wang, J. K. Fre-
ericks, and C. Monroe, Science 340, 583 (2013).

[7] A. Alverman and H. Fehske, J. Comput. Phys. 230, 5930
(2011).

[8] A. Alverman, H. Fehske, and P. B. Littlewood, New Jour-
nal of Physics 14, 105008 (2012).

[9] H. Baker, Proc. Lond. Math Soc. 34, 347 (1902).
[10] J. Campbell, Proc. Lond. Math Soc. 28, 381 (1897).
[11] F. Hausdorff, BerVerh Saechs Akad Wiss Leipzig 58, 19

(1906).
[12] W. Magnus, Comm. Pure and Appl. Math. VII, 649

(1954).
[13] http://dsp.rice.edu/cs
[14] M. Grant and S. Boyd, Graph implementations for non-

smooth convex programs in Recent Advances in Learning
and Control, V. Blondel and S. Boyd and H. Kimura,
editors, Springer-Verlag Limited, 95–110 (2008).

[15] J. Loschmidt, Sitz. Kais. Akad. Wiss. Wien Math.-Nat.
Kl. 73, 128 (1876).

[16] S. Bravyi,and M. B. Hastings, and F. Verstraete, Phys.
Rev. Lett. 97, 050401 (2006).

[17] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gor-
shkov, Phys. Rev. Lett. 114, 157201 (2015).

[18] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M.
Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe,
Nature 511, 198 (2014).

[19] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller,
R. Blatt, and C. F. Roos, Nature 511, 202 (2014).

[20] C. Senko, J. Smith, P. Richerme, A. Lee, W. C. Camp-
bell, and C. Monroe, Science 345, 430 (2014).

[21] P. Jurcevic, P. Hauke, C. Maier, C. Hempel, B. P.
Lanyon, R. Blatt, C. F. Roos, Phys. Rev. Lett. 115,
100501 (2015).

[22] B. Yoshimura, W. C. Campbell, and J. K. Freericks,
Phys. Rev. A 90, 062334 (2014).

[23] M. H. Lim, B. T. Yoshimura, and J. K. Freericks, New
Journal of Physics 18, 043026 (2016).


