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We present a way of measuring with high precision the anharmonicity of a quantum oscillator
coupled to an optical field via radiation pressure. Our protocol uses a sequence of pulsed interactions
to perform a loop in the phase space of the mechanical oscillator, which is prepared in a thermal
state. We show how the optical field acquires a phase depending on the anharmonicity. Remarkably,
one only needs small initial cooling of the mechanical motion to probe even small anharmonicities.
Finally, by applying tools from quantum estimation theory, we calculate the ultimate bound on
the estimation precision posed by quantum mechanics and compare it with the precision obtainable
with feasible measurements such as homodyne and heterodyne detection on the cavity field. In
particular we demonstrate that homodyne detection is nearly optimal in the limit of a large number
of photons of the field, and we discuss the estimation precision of small anharmonicities in terms of
its signal-to-noise ratio.

I. INTRODUCTION

In the last years the field of quantum opto-mechanics
has attracted significant interest, with the aim to con-
trol massive mechanical oscillators at the quantum level.
In particular quantum optomechanical cavities [1] have
been investigated in great detail, and many research
groups have proposed and studied different implemen-
tations with moving end mirrors [2, 3], separate intra-
cavity membranes [4] or levitating nanospheres [5–7] as
mechanical oscillators.
Thanks to their peculiar properties, quantum optome-
chanical systems have been historically studied in the
context of force sensing [8, 9] and have been recently
proposed as a promising platform to test collapse mod-
els of quantum mechanics [10, 11] and phenomenolog-
ical models of quantum gravity [12, 13]. A major fo-
cus of research is now also devoted to the preparation
of non-classical states of the mechanical motion, such as
squeezed states [14–18], single phonon excitations [19–21]
or even Schrödinger cat states [22–24].
In nearly every case cited above, the quantum mechani-
cal oscillator is approximated harmonic, as the intrinsic
anharmonic terms are considered small enough to be ne-
glected. However it has been recently shown how the an-
harmonic/nonlinear regime can be accessed in different
physical platforms. For instance, the effects of nonlinear-
ities have been explored (and exploited) in mechanical
resonators based on graphene and carbon nanotubes (see
[25, 26] and references therein). Also, in the case of a
levitated nanosphere it has been shown that its thermal
energy is sufficient to drive the motion of the oscillator
into the nonlinear regime [27]; in another example, elec-
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trostatic gradient forces are exploited in order to enhance
the intrinsic quartic anharmonicity of a nanomechanical
resonator [28]. Finally, the non-linear dynamics and the
cooling of a levitating nanosphere motion in a hybrid
electro-optical trap has been experimentally achieved in
Ref.[29].
Aside from perturbing the behavior and results that one
would obtain in the harmonic case, anharmonicity gives
rise to new interesting quantum peculiarities. For in-
stance, Milburn and Holmes studied the quantum and
classical dynamics of an anharmonic oscillator in phase
space showing that a decoherence reduction results in
quantum-to-classical-transition [30]. On the other hand,
anharmonicity has been proven to be a resource to gener-
ate non-classical quantum states [31–33], and a measure
able to quantify the non-linearity of a quantum oscillator
has been recently proposed [34].
Given these premises, it is now desirable to design a
protocol able to measure anharmonicity, in order to effi-
ciently analyze its contribution to the dynamics and its
effect on the experimental results.

In this work we present a scheme to estimate the an-
harmonicity of a quantum mechanical oscillator in an op-
tomechanical cavity. Specifically, we provide a method
based on the measurement of the phase shift of an op-
tical field after its interactions with a quantum anhar-
monic oscillator. High precision can be achieved requir-
ing a feasible initial cooling of the oscillator and the pro-
tocol reveals to be robust against losses. Furthermore,
we give the ultimate quantum bound on the precision
achievable through this setup, comparing it to the one
obtainable with standard measurements on the optical
field, such as homodyne and heterodyne measurements.
The manuscript is structured as follows: in Sec. II we
introduce the model of an optomechanical cavity and we
present a pulsed scheme that has been already studied
in literature to measure the quantum dynamics of opto-
mechanical systems [9, 12, 35, 36]. In particular we show
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how the unitary operator that describes the overall evolu-
tion of the system is related to a displacement operation
that drives the mechanical oscillator along a closed path
in phase space. Sec. III is dedicated to the computa-
tion of the anharmonic contribution to the evolution and
its effect on the phase shift acquired by the optical field.
In Sec. IV we apply tools from quantum estimation the-
ory and calculate the Quantum Fisher Information (QFI)
and the Fisher Information (FI) for different measure-
ment schemes to quantify how performing our estimation
method is. We finally evaluate the corresponding signal-
to-noise ratio to better discuss the estimability of small
values of anharmonicity against noise fluctuations. Sec.
V is devoted to our conclusive remarks.

II. THE MODEL

We consider a single mode optical field of frequency ωc
coupled to a quantum anharmonic oscillator of mass m
and frequency ωm in an optomechanical cavity of length
L. The effective Hamiltonian describing our system in a
frame rotating at the laser frequency on resonance with
the optical cavity frequency is H = H0 +Hint, where

H0 =
1

2
~ωm

(
X2
m + P 2

m

)
+
γ

4
~ωmX4

m (1)

is the free Hamiltonian of the mechanical oscillator, with:

Xm = (b†0 + b0)/
√

2 and Pm = i(b†0 − b0)/
√

2 its quadra-
tures operators and γ � 1 the quartic anharmonic pa-
rameter. We will replicate in Appendix B all the results
for the case of a cubic anharmonicity (δ/3~ωmX3

m). The
interaction Hamiltonian is given by [37]

Hint = ~gncXm (2)

where nc = a†a is the photon number operator for the
cavity field and g = (ωc/L)

√
~/mωm is the coupling

strength. In the case of a pulsed regime the interaction is
much faster than a mechanical period and the mechani-
cal position is essentially constant during the interaction.
We can then neglect the free evolution of the harmonic
oscillator during the interaction time and the dynamics
can be described by the unitary operator [35]

U = eiλncXm (3)

with λ = g/k the rescaled coupling constant and k the
cavity decay rate which, in the pulsed regime, satisfies
the bad cavity limit k � ωm.
Loosely speaking, the operator in Eq. (3) can be pic-

tured as a displacement operation by λnc/
√

2 along Pm

in the oscillator phase space (the sentence is rigorous if
the cavity field is prepared in a Fock state |n〉). As soon
as the interaction vanishes, the oscillator is free to evolve
under the Hamiltonian H0 and Xm and Pm start to in-
terchange themselves accordingly. We can therefore drive

FIG. 1: Schematic representation of the model. The laser
pulse enters into an optomechanical cavity and escapes enter-
ing in a delay loop for an engineered time. The apparatus
composed by the polarizing beam splitters (PBSs), the λ/4
wave plate and the Electro-optic Modulator (EOM) is used
to rotate the polarization before and after each pulse. After
the last interaction the EOM does not rotate the polarization
and the pulse escapes the cavity, being measured interfero-
metrically with respect to a reference field.

the oscillator along closed loops in phase space by select-
ing the appropriate time between consecutive pulsed in-
teractions. More specifically, we imagine that the same
light pulse enters the cavity, escapes after a short inter-
action (lasting a time 1/k) and waits in an engineered
loop before being injected again (see Fig.1).

III. THE ESTIMATION PROTOCOL

Using four pulsed interactions, each described by the
operator in Eq. (3) with a free mechanical evolution in
between, we drive the quantum oscillator along a loop
in its phase space. The total evolution operator can be
written as

U = eiλncXm( 3τ
4 )eiλncXm( τ2 )eiλncXm( τ4 )eiλncXm (4)

where τ = 2π/ω is the mechanical period of the quan-
tum anharmonic oscillator. To explicitly compute Eq.(4)
we need first to solve the dynamics of a quantum an-
harmonic oscillator. Evolution of quadrature operators
can be obtained from Heisenberg evolution for annihila-
tion (creation) operator [38, 39], which reads (at the first
order in γ)

b(t) ' b0e−iωt +
γ

4

[(
e−iωt − e+3iωt

) b†30

4
+
(
e−3iωt − e−iωt

) b30
2

+
(
e−iωt − eiωt

) 3

2
b†0

(
1 + b†0b0

)]
(5)
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with

ω = ωm +
3

8
γωm (2 + |A|2), (6)

|A| being the oscillation amplitude for the unperturbed
harmonic oscillator. We point out that to be consistent
with the perturbation approach we need the additional
requirement γ|A|2 = γ(λNp)

2 � 1, with Np = 〈nc〉 the
average number of photons of the cavity field. By using
Eq. (5) we find the quadrature operators at times t =
0, τ/4, τ/2, 3τ/4,

Xm(0) = Xm

Xm

(τ
4

)
' Pm + i

γ

4
√

2
∆

Xm

(τ
2

)
' −Xm

Xm

(
3τ

4

)
' −Pm − i

γ

4
√

2
∆

(7)

with ∆ = b30−b
†3
0 −3b†0 +3b0−3b†20 b0 +3b†0b

2
0 the deforma-

tion due to the anharmonic evolution. We remark that at
time t = τ the oscillator returns to its initial position (at
the first order in γ). As we are going to discuss, this is
an essential requirement, since only for closed loops field
and oscillator can become uncorrelated after a sequence
of interactions [22, 40]. In particular, to close the loop
we need the anharmonic frequency (see Eq.(6)) that ac-
tually is a function of the anharmonic parameter we want
to estimate. This is a common situation in local quantum
estimation theory and can be worked out by subsequent
adaptive measurements [41–43]. Moreover, since our fi-
nal goal is to measure the anharmonic parameter via an
interferometric scheme (e.g. homodyne and heterodyne
detection), we can ensure the closure of the loop also by
looking at the visibility of the interference fringes [23, 44].
However, we should also remark that this is not the case
for the cubic anharmonicity (see Appendix B) that does
not alter the mechanical frequency. This peculiarity can
be exploited to distinguish the two anharmonicities by
only looking at the inteferometric pattern.

We are now interested in the reduced dynamics of the
cavity field, i.e. we want to compute the completely-
positive map E defined as

E(%0) = Trm[U%0 ⊗ νU†] (8)

where Trm[•] denotes the partial trace on the mechanical
oscillator, while %0 and ν denote respectively the initial
state of the cavity field and of the mechanical oscilla-
tor. In the following we will focus on the case where the
oscillator is initially prepared in a state diagonal in the
Fock basis, i.e. ν =

∑
n νn|n〉〈n|, that comprises Gibbs

thermal state. In order to obtain this map, we can cal-
culate the evolution operator in Eq. (4) by substituting
the expressions for the quadrature operators in Eq. (7)
(see Appendix A for further details). After some algebra,
given the assumptions described above, the evolution of

the optical field after a closed loop reads (at the first
order in γ and in the limit λ2〈nc〉2 � n̄)

E(%0) ' ξeff%0ξ
†
eff , (9)

with ξeff = exp{i(λ2n2
c −

γ

2
(λ4n4

c + 3λ2n2
c n̄))} , (10)

where n̄ is the average thermal phonon number. We thus
obtain an effective unitary operator ξeff acting on the
cavity field, retaining all the information on the dynam-
ics, and in particular on the anharmonicity parameter γ.
We notice that the field experiences a Kerr-nonlinearity
when it enters into the optomechanical cavity [45]. Also,
we remark that Eq. (9) is valid for any initial state of
the oscillator diagonal in the Fock basis, such as Gibbs
thermal state. This is one of the main results of this pa-
per, as the estimation of the anharmonicity γ relies on
doable cooling of the mechanical oscillator. Indeed, the
mild condition on the average number of thermal phonons
λ2〈nc〉2 � n̄ guarantees that after a period the oscillator
is uncorrelated to the field and closes the loop in phase
space.
Since our protocol relies on having the same light pulse
for each interaction, it is worth estimating losses that
might occur in the delaying fiber loops. The ratio be-
tween consecutive pulses can be modeled as λi+1/λi =
1 − ε. The intensities of the four pulsed interactions in
Eq. (4) and the resulting effective map (acting only on
the cavity field) will be accordingly modified. Specifi-
cally, losses will affect the evolution operator, and as a
consequence, mirror and field will be correlated after a
loop. The overall noise on the anharmonic evolution can
be neglected when εn̄ � 〈nc〉, which is commonly satis-
fied in todays experiments (more details on this model
are reported in Appendix C).

Supposing that all the previous conditions are satisfied,
we can calculate the mean value of the optical field after
a four-pulse interaction. If the cavity field is initially
prepared in a coherent state %0 = |α〉 〈α|, the phase reads
(in the limit γλ4N3

p � 1 and λ2N2
p � n̄)

〈a〉 ' 〈α|ξ†effaξeff |α〉 ' α〈a〉0e−i
γ
2 λ

4(4N3
p+18N2

p+10Np+1)

(11)

with 〈a〉0 = eiλ
2−Np(1−ei2λ

2
) the phase acquired by

the field for a harmonic dynamics, and where now
Np = 〈nc〉 = |α|2. As can be seen in Eq. (11), after a
loop of the oscillator, the phase shift acquired by the
optical field is independent of mechanical initial states,
though it retains all the information on the dynamics.

IV. ESTIMATION PROPERTIES OF THE
ANHARMONIC PARAMETER

In order to assess how well one can estimate the anhar-
monicity parameter γ through our measurement scheme,
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we are going to exploit tools from local quantum estima-
tion theory [46], deriving the ultimate bounds on the es-
timation precision and comparing them with the bounds
corresponding to practical measurement schemes. We
start by calculating the QFI corresponding to the pa-
rameter γ for the output state (9), under the assump-
tions previously discussed. As the effective dynamics is
unitary, for an initial pure coherent state |α〉, the output
state will still be pure, i.e. |ψγ〉 = ξeff |α〉, and the QFI
can be evaluated as follows

Qγ = 4
(
〈ψ′γ |ψ′γ〉 − |〈ψ′γ |ψγ〉|2

)
= λ8

(
〈ψγ |n8

c |ψγ〉 − 〈ψγ |n4
c |ψγ〉2

)
= 16λ8N7

p +O(N6
p ),

(12)

where |ψ′γ〉 is the derivative of the state with respect to
the anharmonic parameter. The QFI sets the ultimate
lower bound on the estimation precision for the parame-
ter γ (quantified by the variance of an unbiased estima-
tor), through the so-called quantum Cramér-Rao theo-
rem that reads

Var(γ) ≥ 1

MQγ
&

1

16Mλ8N7
p

, (13)

where M denotes the number of measurements per-
formed. We deduce from Eq.(13) that the estimation
is highly enhanced by the Kerr-nonlinearity in Eq.(9),
where the anharmonic contribution scales as ∼ γλ4n4

c .
The quantum bound is always in principle achievable for
a single parameter, in the sense that there exists a POVM
whose (classical) FI is equal to the QFI. To evaluate if
feasible measurements are optimal we proceed by calcu-
lating the corresponding FI which in general reads

Fγ =

∫
d • (∂γp(•|γ))2

p(•|γ)
, (14)

where p(•|γ) is a generic conditional probability of ob-
taining the measurement outcome •, given the value of
the parameter γ. In the following we will focus on two
measurement strategies for the cavity field: homodyne
and heterodyne detection.
Homodyne detection corresponds to a projection on
quadrature operators eigenstates, Xφ|x〉φ = x|x〉φ, where
Xφ = xc cosφ+pc sinφ, and the pair of operators (xc, pc)
denote respectively the position and momentum opera-
tors for the cavity field. In the Fock basis, we can write
quadrature operator eigenstates as [47]

|x〉φ = e−x
2/2

(
1

π

)1/4 ∞∑
m=0

Hm(x)

2m/2
√
m!
e−imφ|m〉, (15)

where Hm(x) is the m-th Hermite polynomials. The con-
ditional probability of obtaining the outcome x, given γ,
is

p(x|γ) = |φ〈x|ψγ〉|2

=
e−(|α|2+x)

√
π

∣∣∣∣∣
∞∑
m=0

αmHm(x)

2
m
2 m!

eim[φ−λ2m(1+ γ
2 λ

2m2)]

∣∣∣∣∣
2

.

(16)

Unfortunately, there is no analytical way to compute this
series, however, by fixing all the parameters {α, φ, λ, γ}
and by varying the measurement outcome x, we can
numerically evaluate the integral and find the FI as
in Eq. (14). We show in Fig.2 the ratio between the
homodyne FI and the corresponding QFI by optimizing
the phase φ. As it can be seen from Fig. 2 the larger
the photon number is the more the ratio F hom

γ /Qγ
approaches one. We also observe that we already reach
a very good agreement with 30 photons though this is
actually very low compared to the number of photons
in a standard optomechanical cavity setup. This clearly
shows that homodyne detection is an advantageous
method to probe anharmonicity with arbitrarily high
precision, safely conjecturing its optimality in the limit
of large number of photons.

FIG. 2: Ratio F hom
γ /Qγ for cubic (red triangles) and quar-

tic (blue dots) anharmonicities as functions of the average
number of photons Np. Experimental parameters are set as
λ ∼ 1.5 × 10−5, γ = 10−25 and the phase φ is optimized to
φ = π/2.

On the other hand, heterodyne detection corresponds
to a projection on a coherent state |η〉, which can be
performed through a double-homodyne detection scheme
[48]. The corresponding conditional probability is given
by

p(η|γ) = |〈η|ψγ〉|2

= e−(|α|2+|η|2)

∣∣∣∣∣
∞∑
m=0

αmη∗m

m!2
e−iλ

2m2(1+ γ
2 λ

2m2)

∣∣∣∣∣
2

.

(17)

The FI can be computed by integration over in the whole
complex plane spanned by coherent states

F het
γ =

1

π

∫
d2η

(∂γp(η|γ))2

p(η|γ)
, (18)

where the dependence on the phase parameter has
dropped out, as opposed to the case of homodyne de-
tection. Also in this case the FI has been evaluated
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numerically for an initial coherent state with up to 35
photons. Our numerical results show that the optimality
of heterodyne measurement, quantified by the ratio be-
tween FI and QFI, does not depend on any parameter,
being the ratio fixed to F het

γ /Qγ = 0.5. We thus conclude
that it is much more convenient to perform a homodyne
measurement on the cavity field, in order to estimate the
anharmonicity with higher precision, and nearly quan-
tum limited.

As we are dealing with very small values of the param-
eter to be estimated, the signal-to-noise ratio is an im-
portant figure of merit that has to be considered. It tells
us how the effective contribution of the physical quantity
we want to measure compares to the noise. More specif-
ically, bearing in mind Cramér-Rao bound theorem, we
can define for any parameter ζ its signal-to-noise ratio
Rζ and derive the upper bound:

Rζ =
ζ2

Var(ζ)
≤ ζ2MQζ , (19)

where Qζ denotes the QFI for the parameter of interest
and M is the number of measurements performed. An
essential requirement for efficient metrology is to achieve
a significant value of the signal to noise ratio Rζ > 1 with
a reasonable number of experimental runs.
In our specific case, in the limit of large number of pho-
tons we get

R(4)
γ . 16γ2λ8N7

pM

R(3)
γ .

16

9
δ2λ6N5

pM ,
(20)

for a quartic and a cubic anharmonicity, respectively, and
where we have shown before that these bounds may be in
principle achievable via homodyne detection in the limit
of large number of phonons.
If we substitute the usual values of cavity parameters
in Eq.(20), e.g. Np ∼ 109 and λ ∼ 10−4, and consider
M ∼ 104 number of experimental runs (which still al-
lows us to use optimal asymptotic estimators, such as
the Bayesian or the MaxLik estimator), our results show
that one can in principle probe anharmonicities as low as
γ ∼ 10−20 for the quartic case and δ ∼ 10−15 for the cu-
bic case. Eventually, we observe that for these values of
the parameters all the assumptions that we have made
(i.e. γλ4N3

p � 1, λ2N2
p � n̄, εn̄ � Np) are satisfied

for temperatures of a few kelvins, which can be easily
achieved through dilution refrigeration.

V. CONCLUSIONS

We have presented a protocol to estimate the anhar-
monicity of a mechanical oscillator relying on a four-pulse
interaction with an optical field. Under reasonable ini-
tial cooling the output oscillator and optical field states
are uncorrelated; specifically, the oscillator returns to its

initial position, while the cavity field undergoes an effec-
tive unitary operator which retains information on the
anharmonicity of the mechanics. Since a frequency shift
is only obtained in the case of quartic anharmonicities,
and not in the cubic case, the scheme can also discrim-
inate between the two. By using tools from local quan-
tum estimation theory, we have also derived the ultimate
bounds on the estimation precision, showing how this
can be arbitrarily high by increasing the number of pho-
tons of the initial coherent state. Furthermore, we have
shown the performances of homodyne detection, conjec-
turing its near-to-optimality in the limit of large number
of photons. Finally, we have shown the efficiency of our
method in estimating small anharmonicities by consider-
ing state-of-the-art values of the optomechanical param-
eters.
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Appendix A: Anharmonic displacement operator
and Phase

In this section, we sum up the main steps that lead to
Eq. (9). By substituting Eqs. (7) in (4) we get

U ' eiλnc(−Pm−i
γ

4
√

2
∆)
e−iλncXme

iλnc(Pm+i γ

4
√

2
∆)
eiλncXm .

(A1)
If now we apply Zassenhaus formula [49], the first and
third terms can be rewritten, respectively, as (to the first
order in γ)

e
iλnc(−Pm−i γ

4
√

2
∆) 'e−iλncPme

γ

4
√

2
f1(b0,b

†
0)

e
iλnc(Pm+i γ

4
√

2
∆) 'eiλncPme

γ

4
√

2
f2(b0,b

†
0)

(A2)

where

f1(b0, b
†
0) = λnc∆−

3√
2
λ2n2

c(b
†2 − b2) +

√
2iλ3n3

cPm

f2(b0, b
†
0) = −λnc∆−

3√
2
λ2n2

c(b
†2 − b2)−

√
2iλ3n3

cPm.

(A3)

Switching the latter factors in Eq. (A2) to the left and
right respectively by iteratively applying Zassenhaus ex-
pansion we obtain the evolution operator at the first or-
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der in γ

U '
(

1 +
γ

4
√

2
F1(b0, b

†
0)

)
eiλ

2n2
c

(
1 +

γ

4
√

2
F2(b0, b

†
0)

)
,

(A4)

where F1(2)(b0, b
†
0) correspond to f1(2) after the switch.

Summing up the two functions F1 and F2 and performing
the partial trace on the mechanical oscillator initially in
a thermal state, it is then possible to obtain at first order
in γ the effective unitary operator

ξeff ' exp
{
i(λ2n2

c −
γ

2
(λ4n4

c + 3λ2n2
c n̄)
}
. (A5)

In the limit λ2N2
p � n̄, we get the mean value of the

optical field shown in Eq.(11) for an initial coherent state
|α〉

〈a〉 = 〈α|ξ†effaξeff |α〉

= αe−(|α|2+iλ2)
∞∑
n=0

|α|2n

n!
e−2iλ2ne−i

γ
2 λ

4(4n3+6n2+4n+1)

' α〈a〉0e−i
γ
2 λ

4(4N3
p+18N2

p+10Np+1),

(A6)

where in the last step we have assumed γλ4N3
p � 1.

For the sake of completeness we report here the exact
result for the QFI

Qγ = 4
(
〈ψ′γ |ψ′γ〉 − |〈ψ′γ |ψγ〉|2

)
' λ8

(
〈ψγ |n8

c |ψγ〉 − 〈ψγ |n4
c |ψγ〉2

)
' λ8(16N7

p + 216N6
p + 964N5

p + 1640N4
p

+ 952N3
p + 126N2

p +Np) .

(A7)

Appendix B: Cubic Anharmonicity

In the case of a cubic anharmonicity the correction to
the free Hamiltonian reads

Han =
δ

3
~ωmX3

m , (B1)

where the parameter δ quantifies the anharmonicity.
Again, following [39] we get the evolution for annihila-
tion (creation) operator at the first order in δ and for
initial displacements that satisfy δλNp � 1

b(t) ' b0e−iωt +
δ

23/2

[ (
e−iωt − 1

) (
2b†0b0 + 1

)
+
(
e−2iωt − e−iωt

)
b20 + (e−iωt − e2iωt)

b†20

3

]
,

(B2)

where in this case ω = ωm since the frequency is unper-
turbed at the first order in δ. We highlight that we might

exploit this feature to distinguish the two anharmonici-
ties by looking at the revival in the visibility interference.
The overall evolution operator can thus be evaluated as
in Eq.(4) by the anharmonic evolution of quadrature op-
erators, which results in

Xm(0) = Xm

Xm

(τ
4

)
' Pm + δ(∆ + b†20 ν + b20ν

∗)

Xm

(τ
2

)
' −Xm + δ(2∆ +

1

3
(b†20 + b20))

Xm

(
3τ

4

)
' −Pm + δ(∆ + b†20 ν

∗ + b20ν)

(B3)

being ∆ = −(b†0b0 + 1/2) and ν = −(1/6)(2i+ 1). Going
through the same procedure we showed in Appendix A,
we recover the final effective evolution operator for the
cavity field only (in the limit λ2N2

p � n̄)

ξeff ' exp{i(λ2n2
c −

2δ

9
λ3n3

c)}. (B4)

From which we deduce that the optical field experiences
a Kerr nonlinearity ∝ n3

c entering into the cavity. Hence,
the mean value of the optical field after four pulses now
results (in the limit δλ3N2

p � 1)

〈a〉 = 〈α|ξ†effaξeff |α〉 ' α〈a〉0e−i
2
9 δλ

3(3N2
p+3Np+1). (B5)

As a result, the QFI for a cubic anharmonicity δ, given
an initial coherent state |α〉 reads

Qγ = 4
(
〈ψ′γ |ψ′γ〉 − |〈ψ′γ |ψγ〉|2

)
' λ6

(
〈ψγ |n6

c |ψγ〉 − 〈ψγ |n3
c |ψγ〉2

)
' 16

81
λ6(9N5

p + 54N4
p + 84N3

p + 30N2
p +Np)

(B6)

leading to the Cramér-Rao bound,

Var(δ) ≥ 1

MQγ
&

9

16Mλ6N5
p

(B7)

Appendix C: Effect of losses

In this appendix we evaluate the effect of losses on the
unitary operator presented in Eq. (9). Since losses cause
decreasing intensities for consecutive pulses, we can de-
pict a lossy model through decreasing coupling strengths
λi+1/λi = 1 − ε with i = 1, ..., 4. By following the same
procedure as in Appendix A, the evolution operator reads

U ' e−iλ4ncPme
γ
4 f1(b0,b

†
0)eiλ4ncPm

× ξhe−iλ1ncXme
γ
4 f2(b0,b

†
0)eiλ1ncXm

(C1)

where ξh is the harmonic displacement given by

ξh = D(ncµ)ein
2
c[λ3λ2+ 1

2 (λ2−λ4)(λ1−λ3)]. (C2)
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D(ncµ) = enc(µb
†−µ∗b) with µ = (1/

√
2)[(λ4−λ2)+i(λ1−

λ3)] is a displacement operator that does not allow light
and mirror to be disentangled after a closed loop. The

functions f1(b0, b
†
0) and f2(b0, b

†
0) have the same formal

definitions as in (A3) with λ → λ4 and λ → λ1, respec-
tively. Calculating the exponentials in (C1) and expand-
ing at the first order in γ we get

U ' ξh +
γ

4
[F1(b0, b

†
0)ξh + ξhF2(b0, b

†
0)] (C3)

In order to estimate the contribution of losses, we per-
form the partial trace over the mechanical degrees of free-
dom

〈ξh〉 = e−
|µ|2
2 n2

c(1+2n̄)ein
2
c[λ3λ2+ 1

2 (λ2−λ4)(λ1−λ3)]

γ

4
〈F1(b0, b

†
0)ξh + ξhF2(b0, b

†
0)〉 ' γ

4
λ4n4

c +O(ελ4n3
c n̄).

(C4)

It is therefore possible to neglect the effect of losses on the
anharmonic contribution to the unitary operator in the
limit εn̄� Np. We also point out that losses change also
the harmonic term (and phase) giving rise to a reduction
of visibility that can be estimated before performing the
experiment.
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