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We show that n thermal fermionic alkaline-earth atoms in a flat-bottom trap allow one to robustly
implement a spin model displaying two symmetries: the Sn symmetry that permutes atoms occu-
pying different vibrational levels of the trap and the SU(N) symmetry associated with N nuclear
spin states. The symmetries makes the model exactly solvable, which, in turn, enables the ana-
lytic study of dynamical processes such as spin diffusion in this SU(N) system. We also show how
to use this system to generate entangled states that allow for Heisenberg-limited metrology. This
highly symmetric spin model should be experimentally realizable even when the vibrational levels
are occupied according to a high-temperature thermal or an arbitrary non-thermal distribution.
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The study of quantum spin models with ultracold
atoms [1, 2] promises to give crucial insights into a range
of equilibrium and non-equilibrium many-body phenom-
ena from quantum spin liquids [3] and many-body lo-
calization [4] to quantum quenches [5–7] and quantum
annealing [8]. While other approaches exist [9–12], the
most common approach to implement a quantum spin
model with ultracold atoms relies on preparing a Mott
insulator in an optical lattice, where the internal states
of atoms on each site define the effective spin [1, 13–
19]. Virtual hopping processes to neighboring sites and
back then give rise to effective superexchange spin-spin
interactions. Since the superexchange interactions are
typically very weak (� kHz) [1] (unless the traps are
operated near surfaces, which can reduce spacings and
increase energy scales [20–22]), it is a significant chal-
lenge in experimental cold atom physics to achieve tem-
peratures and decoherence rates low enough to access
superexchange-based quantum magnetism.

Since ultracold atoms can be prepared in specific inter-
nal (i.e. spin) states with extremely high precision, spin
temperatures that can be realized are much lower than
the experimentally achievable motional temperatures. It
is therefore tempting to circumvent the problem of high
motional temperature by constructing a spin model in
such a way that the motional and spin degrees of free-
dom are effectively decoupled. We provide a recipe for
such a decoupling and hence for realizing spin models
with thermal atoms.

The first crucial ingredient for implementing such a
spin model is to depart from second-order superexchange
interactions and use contact interactions to first order
[23–32]. As shown in Fig. 1(a), this can be achieved if
all atoms sit in different orbitals of the same anharmonic
trap and remain in these orbitals throughout the evolu-
tion, which is a good approximation for weak interactions
[23–25, 30, 31]. In that case, the occupied orbitals play
the role of the sites of the spin Hamiltonian. However,

because of high motional temperature in such systems,
every run of the experiment typically yields a different set
of populated orbitals and hence a different spin Hamilto-
nian [30]. Thus, unless the dynamics are constrained to
states symmetric under arbitrary exchanges of spins [30],
every run of the experiment would lead to different spin
dynamics.

The second crucial ingredient to decouple spin and
motion is therefore to use an infinite one-dimensional
square-well potential as the anharmonic trap, with the
motion frozen along the other two directions. The inter-
action terms in the spin Hamiltonian H are proportional
to the squared overlap of pairs of distinct sinusoidal or-
bitals, and are thus all of equal strength. Therefore Ĥ
is independent of which orbitals are occupied, leading
to spin-motion decoupling and temperature independent
predictions, as well as opening up the possibility of pre-
cise control. Moreover, since Ĥ is invariant under any
relabeling of the n occupied orbitals, Ĥ has Sn permuta-
tion symmetry.

Alkaline-earth atoms enrich the symmetry. In such
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FIG. 1: (a) Contact interactions between atoms in the orbitals
of a one-dimensional infinite square well of width L are all-
to-all with equal strength. (b) With nuclear spin I, each of
the electronic clock states g and e of fermionic alkaline-earth
atoms can offer N degenerate states, with N ≤ 2I + 1.
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atoms, the vanishing electronic angular momentum J in
the electronic clock states g = 1S0 and e = 3P0 results in
the decoupling of the nuclear spin I from J [Fig. 1(b)].

This endows Ĥ with an additional SU(N) spin-rotation
symmetry, where N can be tuned between 2 and 2I + 1
by choosing the initial state [33–38]. Restricted to g, Ĥ
is just the sum of spin-swaps over all pairs of occupied
orbitals and can be diagonalized in terms of irreducible
representations of the group of symmetries G = Sn ×
SU(N).

Motional-temperature-insensitive spin models can also
be realized using long-range interactions between ions in
Paul traps [39], Penning traps [6, 7, 40], and also between
molecules [41–44] or Rydberg atoms [12] pinned at differ-
ent sites of an optical lattice. However, the realization of
SU(N)-symmetric spin models in such systems requires
a great deal of fine tuning [45].

Motivated by the exploration of how quantum systems
evolve after quantum quenches and whether (or how)
they equilibrate and/or thermalize [46], especially in the
presence of long-range interactions [6, 7], we first study
spin diffusion [44, 47, 48] in a system of g atoms only. Due
to crucial use of representation-theoretic techniques, our
calculations are not only exponentially faster than naive
exact diagonalization but also, for N = 2, yield a closed-
form expression for all n. We then present a protocol
that employs both g and e states to create Greenberger-
Horne-Zeilinger (GHZ) states [49], which could be used
to approach the Heisenberg limit for metrology and clock
precision [50].

Spin Hamiltonian. A single mass-M fermionic alkaline-
earth atom (for now, in its ground electronic state
g) trapped in a 1D spin-independent potential V (x)
has real orbitals φj(x) with energies Ej satisfying[
−(~2/2M)∂2/∂x2 + V (x)

]
φj(x) = Ejφj(x). The

operator ĉ†jp creates an atom from the vacuum in

φj(x) with nuclear spin state p ∈ 1, 2, ..., N . For
n identical atoms in the same potential with con-
tact s-wave interactions, the Hamiltonian is Ĥ =∑
jpEj ĉ

†
jpĉjp+

∑
p<q

∑
jkj′k′ Ujkj′k′ ĉ

†
jpĉj′pĉ

†
kq ĉk′q, where

Ujkj′k′ = 4π~ω⊥agg
´∞
−∞ dxφj(x)φk(x)φj′(x)φk′(x), agg

is the 3D-scattering length, and a potential with fre-
quency ω⊥ freezes out transverse motion.

To obtain the desired Hamiltonian, we specialize to a
width-L infinite square well V (x), with well-known eigen-

states φj(x) =
√

2/L sin(jπx/L) for 0 ≤ x ≤ L, with
energy Ej = (πj/L)2/2M . Then Ujkj′k′ is zero unless
(i): (j ± k) = ±(j′ ± k′); to first order in the interaction,

we can also set Ujkj′k′ → 0 unless
∑
jpEj ĉ

†
jpĉjp is con-

served, which occurs when (ii): j2 + k2 = j′2 + k′2. Both
(i) and (ii) are satisfied if and only if (j′, k′) = (j, k) or
(k′, j′) = (j, k). As the system conserves orbital occu-
pancies, it can be described by a spin model. Assuming

orbitals are at most singly occupied (n̂j =
∑
p ĉ
†
jpĉjp ≤ 1

for all j) [80], the spin Hamiltonian is:

Ĥ = −U
∑
j<k

ŝjk, (1)

where ŝjk ≡
∑
pq ĉ
†
jpĉjq ĉ

†
kq ĉkp swaps spins j and k,

and the sum is over occupied orbitals. Crucially, U ≡
4πagg~ω⊥/L is independent of j and k. We dropped a
constant

∑
j Ej + n(n− 1)U/2, which will have no effect

on spin dynamics. For a fixed set of occupied orbitals, Ĥ
has Nn basis states |p1, p2, ..pn〉 with pj ∈ 1, ..., N .

Exact eigenenergies and eigenstates. For N = 2, the
spin-swap can be written in terms of the Pauli opera-
tors: ŝjk = 1/2 + (σ̂xj σ̂

x
k + σ̂yj σ̂

y
k + σ̂zj σ̂

z
k)/2, allowing

Eq. (1) to be written as Ĥ = −U
[
~S2 + n

4 (n− 4)
]
, where

~S = 1
2

∑
j ~σj . The eigenstates of Ĥ for N = 2 are

the well-known Dicke [51] states |S, Sz, k〉, with energies
E(S) = −U

[
S(S + 1) + n

4 (n− 4)
]
. The quantum num-

ber k labels distinct states with the same ~S2 and Ŝz

eigenvalues. We now describe the general case for arbi-
trary N , but defer derivations and detailed explanation
to the Supplemental Material [52].

Equation (1) has two obvious symmetries: permuta-
tions in Sn of the n occupied orbitals, and application of
the same unitary in SU(N) to all of the spins giving a
group G = Sn×SU(N) of symmetries. From Schur-Weyl
duality [53], we conclude that for each integer partition
~λ = (λ1, λ2, ..., λN ) such that

∑
i λi = n and λi+1 ≤ λi,

there is a subspace of constant energy E(~λ). The ~λ-
subspaces (called irreducible representations of G) are
orthogonal and span the full Hilbert space.

A Young diagram is a pictorial representation of ~λ con-
sisting of a row of λ1 boxes above a row of λ2 boxes, which
is above a row of λ3 boxes etc. It is also useful to define
~γ = (γ1, γ2, ..., γλ1

) as the column heights of the Young

diagram ~λ. Figure 2(a) shows an example with n = 7
and N = 3.

To create an eigenstate in any ~λ-subspace,
first consider the basis state: |T 〉 ≡
|1, 2, ..., γ1〉 |1, 2, ..., γ2〉... |1, 2, ..., γλ1

〉, which is cho-
sen by associating orbitals with boxes of the Young
diagram as in Fig. 2(b), and putting those orbitals

in spin states as in Fig. 2(c). We form |~λ〉 (which is

one of many [52] eigenstates in the ~λ-subspace) by
antisymmetrizing |T 〉 over orbitals associated with boxes

in each column of ~λ:

|~λ〉 = |A{12...γ1}〉|A{12...γ2}〉...|A{12...γλ1
}〉, (2)

where A{...} antisymmetrizes its argument, for example:
|A{123}〉 = |123〉+|312〉+|231〉−|132〉−|321〉−|213〉. The

normalization constant is fixed by 〈~λ|~λ〉 = γ1! γ2! ...γλ1
!.

We see that the Young diagram associates symmetry with
rows and antisymmetry with columns.

From Ĥ|~λ〉 = E(~λ)|~λ〉 one can prove E(~λ)/(−U) =∑N
i=1

(
λi

2

)
−∑λ1

j=1

(
γj
2

)
: the number of ways of choosing
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two boxes in the same row of ~λ, minus the number of ways
of choosing two boxes in the same column [52]. This is
in line with the intuition that the swap picks up −U for
each symmetric pair and +U for each antisymmetric pair

in the Young diagram. In terms of ~λ,

E(~λ) = −U
2

N∑
i=1

(λi − 2i+ 1)λi. (3)

Figure 2(d) illustrates the eigenvalues and eigenstates of

Ĥ for the simple case of n = 4 and N = 3, along with the
corresponding Young diagrams. There is an equivalence
for the SU(2) case between Young diagram (λ1, λ2) and
angular momentum quantum number S given by S =
(λ1 − λ2)/2 = (2λ1 − n)/2.

Spin diffusion dynamics. Spin diffusion is the pro-
cess by which evolution under a generic spin Hamilto-
nian causes initially ordered states to diffuse [44, 47, 48].
We take initial state |ψ(0)〉 = |1〉⊗m1 |2〉⊗m2 ...|N〉⊗mN .
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FIG. 2: (a) A Young diagram ~λ = (4, 2, 1) [with ~γ =

(3, 2, 1, 1)] for n = 7, N = 3. (b) A labeling of boxes in ~λ from
1 to n, increasing down columns, starting at the left. (c) Or-
bitals associated with boxes in row p are put in spin state |p〉
to form basis state |T 〉 = |1231211〉 [spins ordered as in (b)],

used to construct eigenstate |~λ〉 = |A{123}〉|A{12}〉|11〉 with

E(~λ)/(−U) =
∑
i

(
λi
2

)
−
∑
j

(
γj
2

)
= 6+1+0−3−1−0−0 = 3.

(d) The set of all Young diagrams for n = 4 and N = 3,
with energies above. Below, eigenstates are represented by
colored boxes: rotations in SU(N) transform between eigen-
states in the same colored column, while permutations in Sn
transform between eigenstates in the same colored row. Rep-
resentative states are found using the prescribed construction
to be |1111〉, (|12〉 − |21〉) |11〉, (|12〉 − |21〉)(|12〉 − |21〉), and
(|123〉+ |312〉+ |231〉− |132〉− |213〉− |321〉) |1〉, respectively.
(e) Spectrum for n = 30 with N = 2 (red), and N = 3 (blue).

Note any computational basis state can be changed to
this form by reordering occupied orbitals. We consider
the time evolution of observable Q̂ =

∑m1

j=1 |1〉j〈1|j : the

number of the first m1 orbitals in spin-state |1〉. This is
the simplest observable capturing the broken symmetry
of the initial state. The expectation of Q̂ evolves accord-

ing to: Q(t) ≡ 〈ψ(0)|eiĤtQ̂e−iĤt|ψ(0)〉, omitting ~ where
convenient from here on.

Calculating Q(t) for a generic Hamiltonian requires
matrix diagonalization, which scales exponentially with
n (for fixed N). Using the symmetry of Hamiltonian (1)
and the Wigner-Eckart theorem for SU(N), we obtain an
explicit sum (see Eq. (S11) in Ref. [52]) for Q(t) in terms
of Clebsch-Gordan and recoupling coefficients. For the
case of N = 2, with initial state of m1 = m spin up and
m2 = n−m spin down orbitals, using well-known closed
forms for the Clebsch-Gordan and recoupling coefficients:

Q(t) = m+

n/2∑
S=|n−2m|/2+1

γ(S)[cos (2SUt)− 1], (4)

where γ(S) = 4S2−(n−2m)2

4S

(
n

n/2+S

)
/
(

n
n−m

)
. For N > 2,

closed forms for the required coefficients are not known to
the authors, but can be calculated efficiently using stan-
dard algorithms as in Ref. [54]. In Fig. 3, we compare the
evolution of the same operator and total particle number
for initial states with N = 2 spin states and N = 3 spin
states. The oscillations are much less pronounced and
spin diffusion occurs more fully (Q drops lower) for the
latter state. With this model, looking at times away from
the multiples of the revival time 2π/U , one could study
apparent near-equilibration of some observables (such as
Q in the N = 3 case) acting on the first m1 spins. Pertur-
bations could be added to the system to remove revivals
and potentially allow for the thermalization of the first
m1 spins.

GHZ state preparation. Highly entangled states could
lead to short-term applications in metrology [50, 55], and
long-term applications in quantum information [56, 57].
It is particularly timely to design ways for implementing
entanglement-assisted – and hence more accurate – clocks
with alkaline-earth atoms [58, 59] since such atoms re-
cently gave rise to the world’s best clock and have nearly
approached the quantum projection noise limit for unen-
tangled atoms [60, 61]. We now show our system offers
a natural way to produce metrologically relevant entan-
glement (in the form of GHZ states) in alkaline-earth
clock experiments. It is the experimental realization of
quantum spin models in alkaline-earth clock experiments
[30] and the potential application of these spin models to
improve the clocks that motivated this work.

To create a GHZ state, we allow atoms in the excited
electronic state e with energy ωeg above the ground elec-
tronic state g [see Fig. 1(b)]. First assume N = 2. An ap-
plied magnetic field adds Zeeman spin-splittings Bg 6= Be
[62] to both g and e states. To first order in the interac-
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FIG. 3: Exact time evolution of Q̂ =
∑10
j=1 |1〉j〈1|j , which

counts the number of the first ten orbitals in spin state |1〉.
Two initial states are compared: |1〉⊗10|2〉⊗20 for SU(2) and
|1〉⊗10|2〉⊗10|3〉⊗10 for SU(3). The initial evolution is similar,
but more |1〉 states diffuse out of the first ten orbitals for

SU(3) later on. Since all E(~λ) are integer multiples of U ,
complete revival occurs at Ut = 2π. In the SU(2) case, the
oscillation is dominated by the smallest S in Eq. (4). This
is consistent with the fact that for fixed Sz, the size of the
eigenspaces decreases with S, causing overlap to be larger
with subspaces of small S generically.

tion strength, the spin Hamiltonian is [52]:

Ĥ = Ĥsp +
∑
α<β

Uαβ

n̂αn̂β −∑
j 6=k

ĉ†jαĉjβ ĉ
†
kβ ĉkα

 .(5)

The single-particle Hamiltonian is Ĥsp = ωegn̂e +
Bg(n̂1g − n̂2g) + Be(n̂1e − n̂2e), the sum α < β is
over distinct pairs of 1g, 1e, 2g and 2e. Constants
Uαβ are derived in terms of (electronic-state dependent)
scattering lengths [52]. Note that n̂1g, n̂2g, n̂1e and
n̂2e are separately conserved by Hamiltonian (5). As
shown in Fig. 4, to create the n-particle GHZ state
(|1g1g..1g〉 + |2g2g..2g〉) from |1g1g..1g〉, three consec-
utive pulses should be applied:

1. Spatially inhomogeneous, weak, many-body π/2
pulse e−iνegt

∑
j Ωegj (|1e〉j〈1g|j + |2e〉j〈2g|j) + h.c.

with frequency νeg = ωeg + (Be −Bg) + nU1e1g.

2. Spatially uniform, weak, single-atom π pulse
e−iν12tΩ12

∑
j(|2g〉j〈1g|j + |2e〉j〈1e|j) + h.c. with

frequency ν12 = 2Bg.

3. Pulse 1, but for pulse area π, not π/2.

The frequency of the first pulse picks out an effective two-
level system consisting of |1g1g..1g〉 and |{1e1g..1g}〉 ∝∑
jp(Ω

eg
j − Ω̄eg)|1e〉j〈1g|j |1g1g..1g〉 (we defined Ω̄eg ≡∑

j Ωegj /n.). The pulse must be spatially inhomoge-

neous to make Ωegj j-dependent and to be able to ac-

cess eigenstates with interaction-dependent energies (i.e.

|{1e 1e...1g}i

|1g 1g...1gi
(1.)

(2.)

(3.)

|{1e 1g...1g}i + |1g 1g...1gi |{1e 1g...1g}i + |2g 2g...2gi

|1g 1g...1gi + |2g 2g...2gi

a) b) |{1e 1e...1g}i

|1g 1g...1gi

|{1e1g...1g}i

⌫eg

|2g2g...2gi

⌫eg � 2U1e1g

2nBg

FIG. 4: (a) System prepared in |1g1g..1g〉. Spatially inho-
mogeneous pulse (1.) results in equal superposition of this
state and |{1e1g..1g}〉, containing one e atom. An interac-
tion blockade prevents coupling to states with two e atoms.
Pulse (2.) flips the spins of the all-g state. The initial pulse
is reversed in pulse (3.), resulting in the GHZ state. (b) Rele-
vant energy levels of the Hamiltonian with e and g states and
the magnetic field. Note that pulses (1.) and (3.), which in-
volve states |1g1g..1g〉 and |{1e1g..1g}〉, do not couple to state
|{1e1e..1g}〉 since there is a blockade of 2U1e1g. Similarly, dur-
ing pulse (2.), blockade prevents excitation of |{1e1g..1g}〉.

not fully symmetric eigenstates). The precise form of
the inhomogeneity is unimportant, as all n − 1 non-
symmetric states with a single e atom are degenerate
in Ĥ due to its Sn symmetry. We use curly brackets
to signify linear combinations of |1e1g..1g〉 and permu-
tations. No state |{1e1e..1g}〉 is coupled by pulse 1 be-
cause the first e atom blockades the addition of another
by energy 2U1e1g [52]. The second pulse has no effect
on |{1e1g..1g}〉 because the e atom blockades transition
to any state |{1e2g..1g}〉. The final pulse does not af-
fect the |2g2g..2g〉 state because the pulse is off-resonant
by energy of order (Be − Bg) [52]. Note that although
the precise form of the inhomogeneity in the first pulse
is unimportant, the final pulse and the first pulse must
have the same inhomogeneity. Since all three pulses rely
on blockade, each pulse must take time � 1/U . Curi-
ously, the fact that the interactions in our spin model
have effectively infinite range makes our spins analogous
to long-range interacting Rydberg atoms, for which a
similar protocol exists for generating maximally entan-
gled states [63]. We have designed the protocol to have
at most one e atom at any time, which avoids the po-
tential problem of inelastic e-e collisions [64], while g-e
losses are negligible [35, 65].

For integer m such that N ≥ 2m, m GHZ states can be
created provided one has sufficient control [66] over the
nuclear spin states coupled by the pulses [52]. Several
GHZ states can be used to create a single GHZ state of
better fidelity via entanglement pumping [66, 67].

Experimental Considerations. We use the example of
87Sr to describe how to experimentally access the physics
we discuss in this work.

The key requirements of this proposal are as follows.
Firstly, the x and y degrees of freedom must be frozen,
forming a 1D interacting system along the z direction.
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Secondly, U = (4πagg~ω⊥)/L should be less than the
single-particle energy separations, the smallest of which
is 3~2(π/L)2/M , ensuring the validity of the first-order
perturbation theory in our derivation of Eq. (1). This
constrains the relative sizes of L and ω⊥. Thirdly, vari-
ations in Ujkjk, with standard deviation ∆U , give rise
to variations in eigenergies ∼ n∆U (see Supplemental
Material [52]). Therefore, we also require ∆U/U < 1/n.

To meet these requirements, we propose an optical lat-
tice potential formed by two magic-wavelength (813 nm)
[68] orthogonal standing waves in x and y. This could
be achieved with a pair of angled beams [69] for each
standing wave, in bow tie configuration [see Fig. 5].

✓✓
!?

gravity

L

b)

!z

a)

✓

✓

xy
z

FIG. 5: Layout of suggested experimental implementation. a)
A bow tie beam arrangement of two pairs of beams aimed at a
vacuum chamber. In each pair, the two beams have different
k vector directions of θ = 30o, forming an in-plane stand-
ing wave perpendicular to that pair’s net k vector direction.
The pair of perpendicular standing waves forms an attractive
lattice. b) The two-dimensional lattice of attractive-potential
tubes forms with transverse vibrational frequency ω⊥ and lat-
tice constant ∆x. The finite beam width results in a weak po-
tential in the z direction with vibrational frequency ωz. Grav-
ity is in the beam plane to avoid a potential gradient along
the tubes. Blue-detuned light outside the central region of
width L forms caps for the tubes. Following the Supplemen-
tal Material [52], we obtain ω⊥ ' 2π × 10 kHz, ∆x ' 3 µm,
ωz ' 2π × 100 Hz, and L ' 10 µm.

An additional blue-detuned optical potential at
394 nm, the Sr blue magic wavelength, is applied to form
approximate 1D square wells from the resulting tubes.
The potential could be formed from a projected image
of a Gaussian beam with waist 30 µm and total power
400 mW screened in the center by a rectangular mask of
width L = 10 µm. Imperfect cap potentials, along with
a finite curvature of the flat potential, contribute to ∆U
and are analyzed in the Supplemental Material [52].

With these parameters, and agg = 5.1 nm [70], one
obtains U/~ = (4πaggω⊥)/L ≈ 2π × 10 Hz, and should
be able to meet all three of the aforementioned key re-
quirements with . 20 atoms in a single tube. Further
details are included in the Supplemental Material [52].
Such values of Uαβ ∼ U [35] can potentially allow for the
preparation of the GHZ state on a time scale comparable
to the ∼ 1s experimental cycle time for state-of-the-art
clocks [60], and may thus provide a practical advantage
over the use of unentangled atoms.

To observe spin diffusion, the initial state could be
formed by cooling a spin-polarized system to the limit
where the lowest n orbitals are occupied. One could po-
tentially consider taking advantage of large N for better
cooling [71, 72]. One coud address different orbitals ei-
ther spatially with spin-changing pulses which only cou-
ple to certain orbitals (for example using pulses focused
on the center of the well and hence decoupled from or-
bitals that vanish there), or energetically by temporarily
transferring atoms to another electronic state subject to
a different potential. To observe spin diffusion with ther-
mal atoms, one could rely on the fact that about half of
the occupied orbitals are odd, and the other half are even,
which becomes statistically more accurate for larger n. It
is possible to address only the even orbitals by using a
beam focused at the center of the well, since the odd or-
bitals vanish there. This could be extended to larger N
by using additional beams focused on other points in the
well.

Outlook. The proposed system opens a wide range of
research and application avenues beyond those discussed
above. For the case of N = 2, our Sn×SU(N)-symmetric
Hamiltonian can be used for decoherence-resistant entan-
glement generation [73], a method whose generalization
to N > 2 we postpone to future work. Furthermore,
by comparing with the exact solutions presented here or
those derived in the limit of strong interactions [74, 75]
one could verify the performance of the proposed exper-
imental system as a quantum simulator. The system
can then be used to reliably study more general regimes
where complexity theory might rule out efficient classical
solutions. In particular, deviations from the square-well
potential will break Sn [but not SU(N)] symmetry. This
will for example lift the degeneracy of the most antisym-
metric spin state (highest energy eigenspace for U > 0).
Depending on how this degeneracy is lifted, exotic many-
body states might arise [76, 77].

Finally, thanks to its high Sn × SU(N) symmetry,
the present system allows one to implement powerful
quantum information protocols, such as the density ma-
trix spectrum estimation protocol of Keyl and Werner
[78, 79].
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[22] A. González-Tudela, C. L. Hung, D. E. Chang, J. I. Cirac,
and H. J. Kimble, Nature Photon. 9, 320 (2015).

[23] K. Gibble, Phys. Rev. Lett. 103, 113202 (2009).
[24] A. M. Rey, A. V. Gorshkov, and C. Rubbo, Phys. Rev.

Lett. 103, 260402 (2009).
[25] Z. Yu and C. J. Pethick, Phys. Rev. Lett. 104, 010801

(2010).
[26] H. K. Pechkis, J. P. Wrubel, A. Schwettmann, P. F. Grif-

fin, R. Barnett, E. Tiesinga, and P. D. Lett, Phys. Rev.
Lett. 111, 025301 (2013).

[27] C. Deutsch, F. Ramirez-Martinez, C. Lacroûte, F. Rein-
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