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Collective nature of light emission by atomic ensembles yields fascinating effects such as super-
radiance and radiation trapping even at the single-photon level. Light emission is influenced by
virtual transitions and collective Lamb shift which yields peculiar features in temporal evolution of
the atomic system. We study how two-dimensional atomic structures collectively emit single photon.
Namely, we consider spherical, cylindrical and spheroidal shells with two-level atoms continuously
distributed on the shell surface and find exact analytical solution for eigenstates of such systems,
their collective decay rates and frequency shifts. We identify states which undergo superradiant
decay and states which are trapped and investigate how size and shape of the shell affects collective
light emission. Our findings could be useful for quantum information storage and design of optical
switches.

I. INTRODUCTION

Collective spontaneous emission from atomic ensem-
bles has been a subject of long-standing interest since the
pioneering work of Dicke [1]. If a single photon is stored
in the atomic cloud (and shared among many atoms) the
state undergoes collective spontaneous decay which could
be superradiant if the atoms are properly phased. The
rate of spontaneous emission can be enhanced or inhib-
ited by changing the density of optical modes into which
photon is emitted [2, 3]. This can be effectively achieved,
e.g., by placing atoms in a microcavity [4–6].
Virtual (off-resonance) photons are fascinating aspect

of quantum electrodynamics. In contrast to real photons,
which may be detected, their virtual counterparts have a
fleeting existence limited by the time-energy uncertainty
relation. Virtual photons exist in and only in the in-
teraction and they do not generally conserve energy and
momentum. The emission and the subsequent absorp-
tion of one or more virtual photons, however, give rise
to measurable effects. For example, the Lamb shift [7]
arises from a modification of the transition frequency of
an atom due to the emission and reabsorption of trans-
verse virtual photons. In quantum field theory, even clas-
sical forces, such as the Coulomb repulsion or attraction
between two charges, can be thought of as due to the ex-
change of time-like virtual photons between the charges
[8]. By modulating the atom-field coupling strength, vir-
tual photons can be released as a form of quantum vac-
uum radiation [9].
Virtual transitions have interesting effect on collec-

tive emission of atoms [10–12]. In particular, if the ini-
tial atomic state is superradiant the virtual transitions
partially transfer population into slowly decaying states
which results in a trapping of some amount of atomic ex-
citation. On the other hand, for slowly decaying states
virtual processes yield additional decay channels which
leads to a slow decay of the otherwise trapped states. Vir-
tually exchanging off-resonant photons also induce collec-
tive Lamb shift [13–19].
One should note that quantization of the electromag-

netic field in the Coulomb gauge yields only transverse
photons. On the other hand, field quantization in the
Lorenz gauge also gives time-like and longitudinal pho-
tons [8]. Mentioned above references on the collective
Lamb shift, as well as the present paper, use the Coulomb
gauge and, thus, Lamb shift appears due to exchange of
virtual off-resonance transverse photons.

Photon propagating through an extended atomic cloud
is collectively absorbed and reemitted which yields col-
lective oscillations of the field envelope [20, 21]. Such col-
lective oscillations can be amplified by a low frequency
coherent drive by a mechanism of the difference com-
bination resonance which leads to generation of high-
frequency coherent radiation [22].

Many-photon superradiance has been observed exper-
imentally in various systems, e.g., in optically pumped
HF gas [23], helium plasma [24] and Cs atoms trapped in
the near field of a photonic crystal waveguide [25]. Su-
perradiance has been also discussed for excitons in semi-
conductors. In a crystal, the exciton can interact with
a photon forming the polariton, i.e., a hybridized mode
of exciton and photon. Since the exciton is a coherent
elementary excitation over the whole crystal it can decay
superradiantly through its macroscopic transition dipole
moment [26]. Exciton superradiance in crystal slabs has
been studied in [27, 28]. It was demonstrated that su-
perradiance can be treated by a unified formalism for
atoms, Frenkel and Wannier excitons [28]. A crossover
from two-dimensional to three-dimensional crystals was
investigated in [29]. A nonlocal theory of the collective
radiative decay of excitons was developed for semicon-
ductor quantum dots [30] and spherical semiconductor
nanocrystals [31]. A transition between the strong (co-
herent) and weak (incoherent) coupling limits of inter-
action between quantum well excitons and bulk photons
was analyzed in [32]. Exciton-photon coupled modes in a
semiconductor film was investigated theoretically in [33].
Exciton superradiance in semiconductor microcrystals of
CuCl was observed in [34].

Recent studies focus on collective, virtual and nonlo-
cal effects in atomic [11, 12, 16, 21, 35–63] and nuclear
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[16, 64–69] ensembles. Short while ago it was shown that
quantum mechanical evolution equations for probability
amplitudes that describe single-photon emission (absorp-
tion) by atomic ensembles can be written in a form equiv-
alent to the semiclassical Maxwell-Bloch equations [70].
This connection allows us considerably simplify the fully
quantum mechanical treatment of the problem and find
new analytical solutions.
Cooperative spontaneous emission can provide insights

into quantum electrodynamics and is important for var-
ious applications of the entangled atomic ensembles and
generated quantum states of light for quantum memories
[71–77], quantum cryptography [78, 79], quantum com-
munication [43, 73, 80] and quantum information [43, 47].
Superradiance has also important applications for realiz-
ing single-photon sources [81, 82], laser cooling by way
of cooperative emission [83, 84], and narrow line-width
lasers [85]. Collective interaction of light with nuclei ar-
rays can be also used to control propagation of γ rays on
a short (superradiant) time scale [86].
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FIG. 1: Geometry of atomic shells: atoms are continuously
distributed on a surface of a sphere (a), infinitely long cylinder
(b) or a spheroid (c).

In nature there exist two-dimensional atomic struc-
tures with unique properties. One example is graphene
which is an allotrope of carbon in the form of a two-
dimensional, atomic scale, hexagonal lattice. It is the ba-
sic structural element of graphite, charcoal, carbon nan-
otubes and fullerenes. Nitrogen vacancy centers on the
surface of bulk diamonds is another interesting example
of a two-dimensional shell structure geometry. Nitrogen
Vacancy (NV) centers are point defects in the diamond
lattice which are typically produced by diamond irradi-
ation followed by annealing. The NV can be controlled
coherently at room temperature using electromagnetic
fields. Due to its energy level structure, NV fluorescence
is spin-state dependent, allowing simple routes for opti-
cal initialization and readout. For these reasons, the NV
center is one of the most prominent candidates for room
temperature quantum information processing.

Here we investigate how two-dimensional atomic struc-
tures collectively emit light. Namely, we study spher-
ical, cylindrical and spheroidal shells with two-level
atoms continuously distributed on the shell surface (see
Fig. 1). We find eigenstates of such systems, their
collective decay rates and collective frequency (Lamb)
shifts. One should mention that eigenstates for various
bulk geometries when atoms occupy interior of a sphere
[12, 38, 39, 42, 87], cylinder [88–90], slab [40] or multi-
slice slab configuration [41] have been studies in the lit-
erature. Collective exciton states in a core-shell micro-
sphere have been investigated in [91]. However, as we
show, for the shell atomic structures which we study
here the problem has exact analytical solutions. Such
solutions yield new interesting insights on the collective
single-photon emission and show under what conditions
the atoms undergo fast superradiant decay and when col-
lective excitation is trapped (does not decay even in the
presence of virtual transitions).
In this paper we study collective photon emission by

an ensemble of two-level (a excited and b ground state)
atoms with spacing between levels Ea − Eb = ℏω. For a
dense cloud of volume V evolution of atomic system in a
scalar photon theory is described by an integral equation
with exponential kernel [12, 38, 39]

∂β(t, r)

∂t
= iγ

∫

dr′n(r′)
exp(ik0|r− r

′|)
k0|r− r′| β(t, r′), (1)

where β(t, r) is the probability amplitude to find atom
at position r excited at time t, γ is the single atom de-
cay rate, k0 = ω/c is the wave number associated with
the atomic transition and n(r) is atomic density. Equa-
tion (1) takes into account virtual (off-resonance) pro-
cesses and is valid in Markovian (local) approximation in
which evolution of the system at time t depends only on
the state of the system at this moment of time. This is
a good approximation provided that characteristic time
scale of the system evolution is longer than a time of
photon flight through the atomic cloud. However, if size
of the sample is large enough, the local approximation
breaks down and system’s dynamics becomes nonlocal in
time. Generalization of Eq. (1) including retardation
effects has been considered in [57].
Eigenfunctions of Eq. (1)

β(t, r) = e−Γtβ(r) (2)

and eigenvalues Γ determine evolution of the atomic sys-
tem. Real part of Γ yields the state decay rate, while
Im(Γ) describes frequency (Lamb) shift of the collective
excitation. The eigenfunction equation for β(r) reads

−iγ

∫

dr′n(r′)
exp(ik0|r− r

′|)
k0|r− r′| β(r′) = Γβ(r). (3)

Next we investigate solutions of Eq. (3) for various
shell-like structures.
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II. SPHERICAL SHELL

In this section we consider a spherical shell of radius
R (see Fig. 1a). Atoms are continuously distributed over
the sphere surface. In spherical coordinates r = (r, θ, φ)
the atomic density is n(r) = Nδ(r − R)/4πR2, where
N is the total number of atoms in the shell. For such
geometry Eq. (3) reads

− iγN

4π

∫

dΩr′
exp(ik0R|r̂ − r̂′|)

k0R|r̂ − r̂′| β(r̂′) = Γβ(r̂), (4)

where r̂ is a unit vector in the direction of r and integra-
tion is performed over all angles. We look for solution of
Eq. (4) in the form

β(r̂) = Ynm(r̂), (5)

where Ynm(r̂) ≡ Ynm(θ, ϕ) are spherical harmonics. Sub-
stituting this into Eq. (4) we obtain the following equa-
tion for the eigenvalues Γ

− iγN

4π

∫

dΩr′
exp(ik0R|r̂ − r̂′|)

k0R|r̂ − r̂′| Ynm(r̂′) = ΓYnm(r̂).

(6)
Next we use the expansion

exp(ik0R|r̂ − r̂′|)
k0R|r̂ − r̂′| =

4πi

∞
∑

k=0

k
∑

s=−k

Yks(r̂)Y
∗

ks(r̂
′)jk(k0R)h

(1)
k (k0R), (7)

where r̂ and r̂′ are unit vectors in the directions of r and
r
′ respectively, jk(z) and h

(1)
k (z) are the spherical Bessel

and Hankel functions. Substituting Eq. (7) into Eq. (6)
yields

γN

∞
∑

k=0

k
∑

s=−k

Yks(r̂)jk(k0R)h
(1)
k (k0R)×

∫

dΩr′Y
∗

ks(r̂
′)Ynm(r̂′) = ΓYnm(r̂). (8)

One can perform integration over r′ directions in Eq. (8)
using the orthogonality condition for spherical harmonics

∫

dΩr′Y
∗

ks(r̂
′)Ynm(r̂′) = δnkδsm (9)

which gives the following answer for the eigenvalues

Γn = Nγjn(k0R)h(1)
n (k0R). (10)

For the spherical shell geometry each eigenvalue is (2n+
1)−fold degenerate.

Spherical Hankel functions can be written as a combi-
nation of the spherical Bessel functions of the first and
the second kind as

h(1)
n (x) = jn(x) + iyn(x). (11)

Thus, the real and imaginary parts of the eigenvalues are

Re(Γn) = Nγj2n(k0R), (12)

Im(Γn) = Nγjn(k0R)yn(k0R). (13)

For small atomic shell k0R ≪ 1 Eqs. (12) and (13) yield

Re(Γn) ≈ Nγ
(k0R)2n

[(2n+ 1)!!]2
, (14)

Im(Γn) ≈ − Nγ

(2n+ 1)

1

k0R
, (15)

while in the large sample limit k0R ≫ 1 we obtain

Re(Γn) ≈ Nγ
sin2(k0R− πn/2)

(k0R)2
, (16)

Im(Γn) ≈ −Nγ
sin(2k0R − πn)

2(k0R)2
. (17)

For spherically symmetric eigenstate n = 0 Eqs. (12)
and (13) reduce to

Re(Γ0) = Nγ
sin2(k0R)

(k0R)2
, (18)

Im(Γ0) = −Nγ
sin(2k0R)

2(k0R)2
. (19)

Eq. (18) shows that spherically symmetric state with
n = 0 has the fastest decay rate

Re(Γ0) = Nγ (20)

in the small sample limit k0R ≪ 1. However, collec-
tive Lamb shift for such state is very large and goes as
Im(Γ0) = −Nγ/k0R in this limit.
On the other hand, states for which

k0R = Anl, (21)

where Anl are zeroes of the spherical Bessel function
jn(x) are trapped. For such states Re(Γ) = 0. Collective
Lamb shift for such states also vanishes. In particular,
for n = 0 we obtain that state is trapped for

k0R = πl, (22)

where l = 1, 2, 3, . . ..
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State trapping can be understood as follows.
Maxwell’s equations for the electromagnetic field have
the following normal modes in spherical coordinates

E(r, θ, φ) = E0jn(k0r)Ynm(r̂). (23)

If for r = R the electric field in the mode vanishes then
such a mode is not coupled with the atomic spherical
shell of radius R. This is the case if spherical Bessel
function jn(x) has a zero at x = k0R. As a result atoms
in the state Ynm(r̂) cannot emit photon into this mode
and state does not decay even in the presence of virtual
transitions.
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FIG. 2: Collective decay rate (red solid line) and frequency
shift (blue dash line) of a spherical atomic shell as a function
of the radius of the sphere R. Initially atoms are prepared in
a symmetric state β(r) = 1.

By changing radius of the spherical shell one can con-
trol how fast the state decays. As a demonstration, in
Fig. (2) we plot collective decay rate (red solid line) and
frequency shift (blue dash line) of a spherical atomic shell
as a function of the radius of the sphere R for a symmet-
ric eigenstate β(r) = 1. For small shell radius k0R ≪ 1
the state undergoes superradiant decay with the rateNγ.
However, when k0R = π, 2π, . . . the symmetric state is
trapped and decay rate is equal to zero.
In Fig. (3) we plot collective decay rate (red solid line)

and frequency shift (blue dash line) as a function of the
radius of the sphere R for the first spherical harmonic
β(r) = cos(θ) (n = 1, m = 0). For small shell such
state is trapped. However, it becomes superradiant if we
increase the shell size. The decay rate for such state is
maximum for k0R = 2.08 and is equal to 0.19Nγ.
In Fig. (4) we plot decay rate of several spherical har-

monics β(r) = Ynm(θ, φ) (n = 0, 1, 2, 3) as a function
of the radius of the sphere R. For each spherical har-
monic there is a range of the shell radii for which such
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FIG. 3: The same as in Fig. (2) but for the initial eigenstate
β(r) = cos(θ).
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FIG. 4: Decay rate of spherical harmonics β(r) = Ynm(θ, φ)
(n = 0, 1, 2, 3) of a spherical atomic shell as a function of the
radius of the sphere R.

harmonic has the fastest decay rate. Thus, if we want to
make atoms decay fast for a certain radius of the sphere
we must prepare state of the sample to be a particular
spherical harmonic.
Finally we discuss collective decay of an atomic state

prepared by absorption of a plane-wave photon with the
wave vector k0. We assume that initial state of atoms is

β(0, r) =
1√
4π

eik0·r. (24)
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Expanding the initial state into eigenstates (5) (spherical
harmonics) we obtain

β(0, r) =
√
4π

∞
∑

n=0

n
∑

m=−n

injn(k0R)Y ∗

nm(k̂0)Ynm(r̂),

(25)

where k̂0 is a unit vector in the direction of k0. Evolution
of the initial state (24) is given by

β(t, r) =
√
4π

∞
∑

n=0

n
∑

m=−n

injn(k0R)Y ∗

nm(k̂0)Ynm(r̂)e−Γnt,

(26)
where Γn is the eigenvalue corresponding to the eigen-
state Ynm(r̂). We calculate the probability P (t) that
atoms in the shell are excited as a function of time

P (t) =

∫

|β(t, r)|2dΩr, (27)

where integration is over the solid angle. Using Eq.
(26) and taking into account orthogonality condition for
spherical harmonics (9) we obtain

P (t) = 4π

∞
∑

n=0

n
∑

m=−n

j2n(k0R)Y ∗

nm(k̂0)Ynm(k̂0)e
−2Re(Γn)t.

(28)
Finally using Unsöld’s theorem

n
∑

m=−n

Y ∗

nm(k̂0)Ynm(k̂0) =
2n+ 1

4π
(29)

and expression for the eigenvalues (12) we find

P (t) =

∞
∑

n=0

(2n+ 1)j2n(k0R)e−2Nγj2
n
(k0R)t. (30)

Since

∞
∑

n=0

(2n+ 1)j2n(k0R) = 1 (31)

at initial moment of time P (0) = 1, that is P (t) is prop-
erly normalized.
In Fig. 5 we plot P (t) given by Eq. (30) for differ-

ent radii of the spherical shell k0R = 0.1, 1, 2, 3 and 5.
The vertical axis has logarithmic scale and, thus, an ex-
ponentially decaying function would appear as a straight
line. Figure illustrates that for k0R ≪ 1 the state de-
cays exponentially with a rate Nγ until probability to
find atoms excited mostly decays. On the other hand,
for k0R & 1 the decay is not exponential because in this
limit the initial state overlaps with many eigenstates of
the system. The decay of atoms is now much slower. In
Fig. 6 we plot P (t) for a very large shell size, namely,
k0R = 10. In this case the non-exponential decay of the
initial state becomes very pronounced.
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FIG. 5: Probability to find atoms excited as a function of
time for different radius of the spherical shell. Initially atoms
are prepared in the state (24). Vertical axis has logarithmic
scale.
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FIG. 6: The same as in Fig. 5 but for k0R = 10.

III. CYLINDRICAL SHELL

In this section we consider infinitely long cylindrical
shell of radius R (Fig. 1b) and use cylindrical coordinates
r = (ρ, ϕ, z). Atoms are continuously distributed on the
cylinder surface with the density n(r) = n0δ(ρ−R)/2πR,
where n0 is the number of atoms per unit length of the
cylinder. For such geometry eigenfunction Eq. (3) reads

− iγn0

2πk0

∫ 2π

0

dϕ′

∫

∞

−∞

dz′K(ϕ−ϕ′, z−z′)β(ϕ′, z′) = Γβ(ϕ, z),

(32)
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where

K(ϕ, z) =
exp

[

ik0
√

2R2 − 2R2 cos(ϕ) + z2
]

√

2R2 − 2R2 cos(ϕ) + z2
. (33)

To find eigenfunctions and eigenvalues of the integral
equation (32) we use the following expansion

K(ϕ, z) =

i

2

∫

∞

−∞

dk
∞
∑

m=−∞

Jm(
√

k20 − k2R)H(1)
m (

√

k20 − k2R)eikzeimϕ,

(34)

where Jm(x) andH
(1)
m (x) are the Bessel and Hankel func-

tions of the first kind. We look for solution of Eq. (32)
in the form

β(ϕ, z) = einϕeikzz, (35)

where n is an integer number and kz is the wave number
of the mode along the cylindrical axis z. Substituting
this into Eq. (32), using Eq. (34) and

∫

∞

−∞

dzei(kz−k)z = 2πδ(k − kz), (36)

∫ 2π

0

dϕ′ei(n−m)ϕ′

= 2πδnm, (37)

we obtain the following expression for the eigenvalues Γ

Γ =
πγn0

k0
Jn(

√

k20 − k2zR)H(1)
n (

√

k20 − k2zR). (38)

For kz ≤ k0 it is convenient to write the Hankel func-
tions as a combination of the Bessel functions of the first
and the second kind

H(1)
n (x) = Jn(x) + iYn(x). (39)

On the other hand, for kz > k0 we use the relations

Jn(ix) = inIn(x) and H
(1)
n (ix) = 2Kn(x)/πi

n+1, where
In(x) and Kn(x) are the modified Bessel functions of the
first and second kind. This yields the following answer
for the real and imaginary parts of the eigenvalues. For
kz ≤ k0

Re(Γ) =
πγn0

k0
J2
n(
√

k20 − k2zR), (40)

Im(Γ) =
πγn0

k0
Jn(

√

k20 − k2zR)Yn(
√

k20 − k2zR), (41)

while for kz > k0

Re(Γ) = 0, (42)

Im(Γ) = −2γn0

k0
In(

√

k2z − k20R)Kn(
√

k2z − k20R). (43)

Equation (42) shows that states with kz > k0 are
trapped. For such states the probability amplitude to
find atoms excited evolves as

β(t, r) = ei[kzz−Im(Γ)t]einϕ (44)

and atomic excitation propagates along the cylinder
without emitting a photon outside the cylinder. States
with kz > k0 never emit a photon in free space and be-
come evanescent waves.
For kz ≤ k0 photon can be emitted outside and states

decay. Equation (40) shows that the timed-Dicke state
(with n = 0 and kz = k0)

β(ϕ, z) = eik0z (45)

has the fastest decay rate

Re(ΓTD) =
πγn0

k0
. (46)

However, collective Lamb shift for such state logarithmi-
cally diverges since Y0(x) ≈ (2/π) ln(x/2) for small x.
On the other hand, states for which

√

k20 − k2zR = Anl, (47)

where Anl are zeroes of the Bessel function Jn(x) are
trapped. For such states Re(Γ) = 0 and collective Lamb
shift also vanishes: Im(Γ) = 0.
As an example, let us consider a state

β(ϕ, z) = e−i∆·zeik0zeinϕ, (48)

where 0 ≤ ∆ ≪ k0. If

∆ =
A2

nl

2k0R2
(49)

the state is trapped, however it is superradiant for other
values of ∆.
In Fig. 7 we plot collective decay rate (solid red line)

and frequency shift (dash blue curve) of the axially sym-
metric state β(r) = eikzz as a function of the wave
number kz along the z−axis for atoms continuously dis-
tributed on the surface of infinitely long cylinder of ra-
dius k0R = 10. For kz > k0 the state is trapped and
Re(Γ) = 0. On the other hand, for kz ≤ k0 photon
is emitted and atomic decay rate can be controlled by
changing kz or radius of the cylinder R.
Next we explore how one can control collective decay

rate by changing shape of the atomic shell.

IV. SPHEROIDAL SHELL

In this section we consider a general geometry in which
N atoms are uniformly distributed on a surface of a
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FIG. 7: Collective decay rate (solid red line) and frequency
shift (dash blue curve) of the axially symmetric state β(r) =
eikzz as a function of the wave number kz along z−axis for
atoms continuously distributed on the surface of infinitely
long cylinder of radius k0R = 10.

spheroidal shell with semi-axes a and b shown in Fig.
1c. A spheroid, or ellipsoid of revolution, is a surface
obtained by rotating an ellipse about one of its principal
axes. In Cartesian coordinates x, y, z the equation of a
spheroid with z as the symmetry axis is given by

x2 + y2

b2
+

z2

a2
= 1. (50)

The semi-axis b is the equatorial radius of the spheroid,
and a is the distance from centre to pole along the sym-
metry axis. There are two possible cases: a < b (oblate
spheroid) and a > b (prolate spheroid). The case of a = b
reduces to a sphere.
It is mathematically convenient to adopt prolate

spheroidal coordinates ξ, η and ϕ defined by the coor-
dinate transformation with Cartesian coordinates [93]

x = f
√

(ξ2 − 1)(1− η2) cosϕ,

y = f
√

(ξ2 − 1)(1− η2) sinϕ,

z = fξη,

where f =
√
a2 − b2, −1 < η < 1, ξ ≥ 1 and 0 ≤ ϕ ≤ 2π.

The limits ξ → ∞, f → 0, fξ = r and η = cos θ produce
spherical polar coordinates.
For a > b the surface ξ = a/

√
a2 − b2 forms prolate

spheroid given by Eq. (50). For the spheroidal shell
geometry Eq. (3) reads

− iγN

4π

∫ 1

−1

dη′
∫ 2π

0

dϕ′
exp(ik0|r− r

′|)
k0|r− r′| β(η′, ϕ′) = Γβ(η, ϕ),

(51)

where in terms of prolate spheroidal coordinates

|r− r
′| =

[

(η − η′)2a2+

(

2− η2 − η′2 − 2
√

(1− η2)(1− η′2) cos(ϕ− ϕ′)
)

b2
]1/2

.

(52)
We look for solutions of Eq. (51) in the form

β(η, ϕ) = Snm(k0
√

a2 − b2, η)eimϕ, (53)

where Snm(c, η) are spheroidal angle functions, n = 0, 1,
2, . . . and m = −n, −n+ 1, . . . , n− 1, n. Kernel of the
integral equation (51) can be expanded in terms of the
spheroidal radial and angle functions as [93]

exp(ik0|r− r
′|)

k0|r− r′| =
i

2π

∞
∑

n=0

n
∑

m=−n

R(1)
nm (k0f, ξ)R

(3)
nm (k0f, ξ)×

Snm(k0f, η)Snm(k0f, η
′)eim(ϕ−ϕ′), (54)

where

f =
√

a2 − b2,

ξ =
a√

a2 − b2
,

R
(1)
nm and R

(3)
nm are spheroidal radial functions of the

first and third kind. Spheroidal angle and radial func-
tions are generalizations of Legendre functions and spher-
ical Bessel functions for spheroidal coordinates rather
than for the spherical polar coordinates in which the
latter functions usually occur. Spheroidal radial func-

tion R
(1)
nm(c, ξ) becomes a spherical Bessel function in

the limit of zero c, while R
(3)
nm(c, ξ) becomes a spherical

Hankel function. The transition to the oblate spheroid
(a < b) is obtained by replacing

√
a2 − b2 with i

√
b2 − a2.

Spheroidal functions occur in many contexts, e.g., they
are used to describe scattering by nonspherical nuclei,
wave functions of diatomic molecules, analysis of band-
limited random noise and anisotropy of the cosmic mi-
crowave background radiation.
Derivation of eigenfunctions of Eq. (51) is similar to

the case of spherical shell. Using the orthogonality con-
dition for spheroidal angle functions

∫ 1

−1

dηSnm(c, η)Sn′m(c, η) = δnn′ (55)

and Eq. (37) we find the following answer for eigenvalues

Γnm = NγR(1)
nm (k0f, ξ)R

(3)
nm (k0f, ξ) . (56)

Taking into account that

R(3)
nm (c, ξ) = R(1)

nm (c, ξ) + iR(2)
nm (c, ξ) ,



8

where R
(2)
nm (c, ξ) is the spheroidal radial function of the

second kind, we obtain that real and imaginary parts of
the eigenvalues are given by

Re(Γnm) = Nγ
[

R(1)
nm (k0f, ξ)

]2

, (57)

Im(Γnm) = NγR(1)
nm (k0f, ξ)R

(2)
nm (k0f, ξ) . (58)

For a < b we should replace
√
a2 − b2 with i

√
b2 − a2,

that is ξ → iξ. Spheroidal functions R
(1)
nm and R

(2)
nm re-

main real-valued in spite of this replacement. Equations
(57) and (58) allow us to investigate cross-over between
spherical and cylindrical geometries and study how shape
of the atomic shell affects collective emission of the pho-
ton.
Next we discuss several interesting examples. In Fig. 8

we plot collective decay rate of eigenstates of a spheroidal
shell with quantum numbers (n,m) = (0, 0), (1, 0), (2, 0)
and (3, 0) as a function of the axes length ratio a/b. We
assume that spheroidal shell has semi-axes a (axis of rev-
olution) and b and length of b is fixed such that k0b = 0.5.
When a ≪ b we are in the small sample limit in which the
symmetric state (0, 0) is superradiant and other states are
trapped. If we start to stretch spheroidal shell along the
a−axis (increase a) the trapped states become superra-
diant and their decay rates merge with the decay rate of
the (0, 0) state.
Figure 9 shows collective decay rate of eigenstates of a

spheroidal shell with quantum numbers (n,m) = (3, 0),
(3, 1), (3, 2) and (3, 3) as a function of the axes length
ratio a/b. We assume that length b is fixed such that
k0b = 5. If a = b (spherical shell) the states are degen-
erate. However, if we deform the sphere the degeneracy
is lifted and states start to evolve with different decay
rates.
Finally, in Fig. 10 we plot collective decay rate of an

eigenstate of a spheroidal shell with quantum numbers
(n,m) = (0, 0) as a function of the axes length ratio a/b.
We assume that length b is fixed at a special value of
k0b = 5π. If a = b such state is trapped (collective decay
rate vanishes). However, if we compress the sphere along
the a−axis (decrease a) the state decay rate oscillates
between zero and a maximum value. Thus, by changing
shape of the spheroid we can manipulate the state dy-
namics between superradiant emission and trapping of
atomic excitation.

V. CONCLUSION

Cooperative spontaneous emission of a single photon
by atomic ensemble is an interesting physics which com-
bines virtual transitions and Lamb shift with many-
particle effects. Collective nature of photon emission
can result in radiation speed up or light trapping. To-
tal suppression of spontaneous decay can occur for cer-
tain atomic geometries despite the presence of virtual

0 5 10 15 20 25 30
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0.2

0.4

0.6

0.8

1.0

Spheroidal shell

�/�

��[Γ]

	


(�,�) = (0,0)

��

��� = 0.5

(1,0)

(2,0)

(3,0)

FIG. 8: Collective decay rate of eigenstates of a spheroidal
shell with quantum numbers (n,m) = (0, 0), (1, 0), (2, 0) and
(3, 0) as a function of the axes length ratio a/b. Length b is
fixed such that k0b = 0.5.

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.02

0.04

0.06

0.08

0.10

Spheroidal shell

�/�

��[Γ]

	
 (�,�) = (3,3)

��

��� = 5

(3,0)

(3,1)

(3,2)

FIG. 9: Collective decay rate of eigenstates of a spheroidal
shell with quantum numbers (n,m) = (3, 0), (3, 1), (3, 2) and
(3, 3) as a function of the axes length ratio a/b. Length b is
fixed such that k0b = 5.

transitions. Change in the shape of the atomic system
or its size can yield superradiant decay of the otherwise
trapped state. Such property could be useful for quan-
tum information storage and design of optical switches.

In this paper we found eigenstates, their collective de-
cay rates and frequency shifts for two dimensional atomic
structures of various shapes. Such two dimensional struc-
tures can be made by bombarding crystals with atomic
beams and creating defects at the sample surface. Ni-
trogen vacancy centers on the surface of diamonds is an
example of the shell-like two dimensional configurations.
Preparation of various collective atomic states in shell-
like structures is substantially easier than for bulk atomic
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0.0 0.5 1.0 1.5 2.0
0.000

0.002
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FIG. 10: Collective decay rate of eigenstate of a spheroidal
shell with quantum numbers (n,m) = (0, 0) as a function of
the axes length ratio a/b. Length b is fixed such that k0b = 5π.

samples for which resonant photons get absorbed in a
thin layer near the sample surface.

It is remarkable that eigenstates for spherical, cylin-
drical and spheroidal atomic shells that we study can be
obtained analytically even when virtual processes are in-
cluded. This is usually not the case for bulk atomic sam-
ples. Our exact solutions provide useful insight on the
problem of collective atomic emission by showing pre-
cisely how shape and size of the shell influences dynam-
ics of the photon emission. They can help us to design
atomic structures with desired properties, e.g. superra-
diant or light trapping configurations. Our solution for
spheroidal shell also demonstrate how collective atomic
emission changes during transition between spherical and
cylindrical geometries.
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