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Nonlinear mode coupling in whispering-gallery-mode resonators

Giuseppe D’Aguanno* and Curtis R. Menyuk!
Department of Computer Science and FElectrical Engineering, University of Maryland,
1000 Hilltop Circle, Baltimore, Maryland 21250, United States

We present a first principle derivation of the coupled nonlinear Schrédinger equations that gov-
ern the interaction between two families of modes with different transverse profiles in a generic
whispering-gallery-mode resonator. We find regions of modulational instability and the existence of
trains of bright solitons both in the normal and in the anomalous dispersion regime.

PACS numbers: 42.62.Eh, 42.65.Hw, 42.65.5f, 42.65.Tg

I. INTRODUCTION

Whispering gallery modes (WGMs) have been a source
of fascination to physicists since at least the work of
Lord Rayleigh in 1910 [1], when he explained the phe-
nomenon that a whisper in one end of the gallery of
St. Paul’s Cathedral could be heard at the other end.
This phenomenon has practical implications as well, since
WGMs in resonators with cylindrical or spherical sym-
metry can have very high quality (Q) factors. In the last
two decades, micro-cavity resonators have been increas-
ingly used to generate and filter narrowband light [2, 3].
The quest to obtain pure optical frequency sources was
revolutionized in 2000 with the invention of locked fre-
quency comb lasers [4, 5]. This revolution was enabled
by technology that allowed the inventors of the comb
laser to achieve a factor of two (an octave) of bandwidth.
However, these sources have the drawback that they are
typically bulky and expensive. Today, we may be on the
verge of a second revolution in frequency generation. In
fact, in the past eight years it has been demonstrated
that it is possible to use WGM micro-resonators to gen-
erate solitons and hence broadband combs [6, 7] and,
within the past year, they have been used to generate
nearly an octave of bandwidth and to lock the carrier-
envelope phase [8]. However, the process by which these
modes are generated remains poorly understood. It has
been demonstrated that single modes are governed by the
Lugiato-Lefever equation (LLE) [9-11]; however, there
is recent experimental evidence that mode coupling can
play a critical role in obtaining a broad bandwidth comb
[12, 13]. That is particularly the case at optical and
near-ultraviolet (UV) wavelengths at which the modes
typically have normal dispersion and solitons cannot be
obtained from a single mode.

In this Letter, we present for the first time coupled
LLEs that describe the coupling of two WGMs in a res-
onator in which chromatic dispersion, the Kerr nonlinear-
ity, and an external pump are all present. These equa-
tions resemble the coupled nonlinear Schrédinger equa-
tions (NLSEs) that describe mode coupling in optical
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fibers and waveguides [14] and Bose-Einstein condensates
[15]. However, the presence of the pump and the peri-
odicity of the resonator change the equations in a funda-
mental way. It is no longer possible to remove the phase
velocity difference from the equations by separately shift-
ing the central frequencies of each of the modes because
that changes their frequency difference from the pump. It
is natural to choose the central frequency for each mode
so that it matches the pump frequency. Moreover, peri-
odic boundary conditions must be imposed along the spa-
tial coordinate of the resonator. Among consequences, we
will find that solitons typically form on a broad pedestal,
and it is possible to obtain the modulational instability
MI in the normal dispersion regime. While our own fo-
cus is on applications to micro-resonators, we note that
the LLE has a broad range of applications throughout
physics. Since nonlinear mode coupling is a phenomenon
that occurs in many physical systems, we anticipate that
the equations and the phenomena that we describe here
will have a similarly broad range of applications.

II. RESULTS AND DISCUSSION

Our aim in this paper is twofold: First, we provide
an ab initio derivation of the set of externally driven,
coupled, damped, NLSEs, or coupled LLEs, that account
for nonlinear mode coupling in a WGM resonator with a
Kerr (x®) nonlinearity. Second, we apply the equations
that we derive to discuss the onset of the modulational
instability and the formation of trains of mode-locked
bright solitons.

The two coupled LLEs are given by
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are the overlap integrals of the two dominant modes,
V, is the resonator volume, 7m and W) (6, t) are respec-
tively the azimuthal number and the spatio-temporal en-
velope of the dominant modes, 6 is the azimuthal coor-
dinate of the WGM resonator, 7) is the photon life-
time in the cavity, dw() = w,(%) — wp is the detuning
of the frequency of the pump field with respect to the
frequency of the dominant mode, w,(%) and w,, are respec-
tively the dominant mode frequency and the pump fre-
quency, P,(—,f ) is the pump field coupled to the resonator,
x® > 0 is the self-focusing Kerr nonhnearity of the res-
onator material, and C(j) (1/2)( m+1 (])7 1) is the
free spectral range (FSR) of the resonator calculated at

w(g). The coefficient C(] = w(g) ( ) 4w de

notes, at lowest order, the dev1at10n from equlablstlance
of the eigenfrequencies adjacent to w(J ) and plays a role
analogous to the group velocity dispersion (GVD) of a
standard optical fiber, while C,Ej ) with k > 2 are higher-
order dispersion coefficients. We note that CQ(j ) <0
corresponds to the normal dispersion regime in which
the group velocity decreases for increasing frequencies,
while Céj ) >0 corresponds to anomalous dispersion.
We also introduce, as is customary, the GVD parame-
ter 5§j) = —(éj) = 2w,(7{) — wg) w(-]) 1, so that the
dispersion is normal when ﬁéj ) > 0 and anomalous when
,Béj) < 0. A detailed derivation of Eq. (1) and (2) from
Maxwell’s equations is given in the Appendix. We intro-
duce the following dimensionless variables and parame-
ters: T = t/7, the time normalized to the average cavity
photon lifetime of the two modes [T = (7'(1) + 7(2))/2]
Ck 7, the

normalized dispersion coefficients; ) = Tw(J ) /2 = Tw,/2;
the cavity Q-factor referred to the average cavity photon
lifetime; 1) = \/2y® Qe ¥ the dimensionless
field envelope; and A7) = PY),/2xB1Q3 the dimension-
less pump field. Using the coordinate transformation
0 — 0 — ™7 mod[2r], where (™) = (&M + ¢Py)2
is the average group velocity, and only keeping terms up
to n = 2, we find that Eq. (1) becomes

al) = §w7, the normalized detuning; Ck
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with j = 1,2. The quantity §¢) = C(av) E(j) is the group
velocity mlbmatch (GVM) of the two envelope fields with
respect to the average group velocity and 55 = —¢\)
is the GVD parameter. Note that in the retarded co-
ordinate system traveling at the average GVD we have

2

s = —63) = 5. Equation (3) has the form of two
coupled Lugiato-Lefever equations (LLEs) [11, 16], plus
the additional term 6U)9¢ () /96 representing the GVM.

We now discuss the particular situation of degenerate
interacting modes. In this case, we find § = 0, BS) =
_§2) =By, 7/ = 7/7) =1 and oV = a® = a. It
is useful to rescale Eq. (3) by introducing the following
variables and parameters: o = 0/(|B2])*/?, the scaled az-
imuthal coordinate, U = v D11y the scaled field
envelope, PU) = DOLDBG2 the scaled pump power,
ge = D(2’1)/D(1’1)7 the cross-coupling parameter, and
gs = D@2 /DY the self-coupling parameter. Equa-
tion (3) now becomes
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where sgn(-) is the sign function. The reader will note
a formal analogy between our Eq. (4) and the equations
that describe self-focusing of waves with different polar-
izations in a Kerr medium [14]. We also note that in the
limit of negligible cross-coupling, i.e. g. — 0, Eq. (4) de-
composes into two uncoupled LLEs, as expected. Since
mode coupling has already been observed to play an im-
portant role in microresonators [12, 13|, we anticipate
that these equations and their extension to more than
two modes will have a broad range of applications. Here,
we focus on the modulational instability (MI) for two par-
ticular classes of continuous-wave (CW), spatially homo-
geneous solutions admitted by Eq. (4). We write these so-
lutions as Uéj ). The formation of a periodic pulse train is
generally initiated by the MI of the CW solutions [17, 18].
As is usually done when the MI is studied, we first write
the field envelope as UU) = [Uéj) + v 4 iw], where
v (o, 7) and w) (o, 7) are small perturbations, and we

next linearize Eq. (4) around U, ) t6 obtain:
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We look for traveling-wave solutions in the form v =
Re{z") expli(Ko —Qr)]} and w?) = Re{y") expli( Ko —
O7)]}, where Q is the frequency shift with respect to
the carrier frequency of the dominant mode and K is
the corresponding shift in the wavenumber. Substituting
the traveling wave solutions into Eq. (5), we arrive at
the following system of linear, homogeneous, algebraic
equations:

A,y 2@ y&NT =0, (6)

where A is a 4 x 4 matrix whose elements a; ; are given
by:
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a4 = 29 Im(UMIm(U?) (7.h)
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The compatibility condition for the existence of traveling-
wave solutions,i.e. det(A4) = 0, yields the dispersion rela-
tion, Q(K). The MI occurs at those values of K at which
Re(i€2) < 0, which physically give rise to an exponential
growth of the amplitude of the traveling waves. Due to
the 27-periodicity of the system in the azimuthal coor-
dinate #, the wavenumber K can only assume discrete
values, K = p(|Ba])'/?, where p = m —m = +1,42, ...
is the shift of the mode number of the perturbation with
respect to the mode number m of the dominant mode.
We find by substitution into Eq. (4) that a particular
class of CW solutions is the one given by

UM =ivPm, U =iva - PO, (8)

with P?) = o — P and gy = g. = 1, where 0 < P <
a. The dispersion relation is given by
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Equation (9) implies that the MI only occurs for this
particular class of solutions in the anomalous dispersion
regime, for which sgn(f;) = —1, and only for a > 1
and Q) = Q). The range of allowed wavenumbers
at which the MI occurs is K_ < |K| < Ky, where
Ky =[a+2v/a?7—1)""

To verify the results of our analytical study for this
particular case, we have performed a numerical integra-
tion of Eq. (4), using a symmetrized fast Fourier trans-
form, split-step algorithm [19] with the following initial
conditions

U9 (0,7 = 0) = U + Re {xm exp (i KU)]
+iRe [y(j) exp (iKU)} ) (10)

with 5 = 1,2, where Uéj) is given by Eq. (8) and
[x(l), yM, 2@ y(z)]T is the eigenvector corresponding to



the eigenvalue i€ ) calculated for the conditions that
allow the MI to occur. Explicit expressions for the eigen-
vector components are
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where A = 2[1 —iQ_ )] and C is an arbitrary con-
stant that quantifies the modulation around the CW so-
lutions. Here, we take C' = 0.1. The initial conditions
described in Eq. (10) and (11) are the CW solutions
modulated by the solutions of the linearized system, i.e.
Eq. (5). In the spirit of the induced MI [18], we ex-
pect that these initial conditions will initiate the forma-
tion of trains of bright solitons. For the numerical inte-
gration, we use the following parameters: B, = —0.01,
a =2 PY =05 P® =15 g =g = 1. For
o = 2, the range of the allowed wavenumbers for the
MIis [4—2v3]"" < |K| < [4+2v3]"*. I partic-
ular, we take K = 15(|32])*/? for the case described in
Fig. 1 and K = 8(|$32])/? for the case described in Fig. 2.
Figure 1 shows the formation of two trains of 15 mode-
locked, bright solitons for K = 15(|B2|)'/2. In this case,
the soliton trains have the same period as the initial con-
ditions. On the contrary, in Fig. 2 we show soliton trains
for K = 8(|Ba])'/2, where the period of the soliton train
is twice that of the initial conditions. In both figures, we
also show the Fourier transform of |[UW|2, F[|UU?|],
which corresponds to the radio frequency spectrum that
would be obtained after a photodetector, and which we
have normalized with respect to the largest spectral com-
ponent in both modes.

It is often assumed that the MI can only exist in the
anomalous dispersion regime, as is the case for the solu-
tion that we just presented; however, we will show that
the MI instability and bright solitons can also exist in
the normal dispersion regime for Eq. (4). In fact, an-
other class of CW solutions of Eq. (4) is given by

UV =0 =iva/(1+ ), (12)

where P = P®) = a/(1+g.), gs = 1 and a > 0. Both
the pump detuning and the cross coupling coefficient play
a critical role. In this case, the dispersion is given by
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In this case, the MI takes place both in the normal and in
the anomalous dispersion regime. In particular, we find
an instability in the normal dispersion regime when
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FIG. 1. (a): Two trains of 15 mode-locked bright solitons at
7 = 150 calculated by the numerical integration of Eq. (4)
with the following parameters: 82 = —0.01, a = 2, PV =
0.5, pP@ = 1.5, gc = gs = 1. The input conditions (dashed
curves) are described by Eq. (10) and (11) with a wavenumber
K = 15(|B2|)'/2. The lower curves refer to mode-1 and the
upper curves refer to mode-2. The Fourier transform (F;)
of the intensity of the soliton trains (F:[JUY)|?]) is shown
respectively in (b) for mode-1 and (c) for mode-2. The mode
number spacing between two adjacent spectral lines is 15.

The range of allowed wavenumbers in the MI region is:
K_ <|K| < K., where
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We have performed a large scale numerical integration of
Eq. (4) in the parameter space (g, a) to search for cou-
pled bright solitons in the normal dispersion regime. We
have used the initial conditions described in Eq. (10),
where, in this case, Uo(j ) is the CW solution given by
Eq. (12) and [z, ¢y 23y is the eigenvector cor-
responding to the eigenvalue i€2_ ;). Explicit expres-
sions for the eigenvector components are

W =C, (16.a)
y() = Csgn(B2)K?/A (16.b)
ngn(Bg)K2agC
@) _ _
T T TN A K4 1 sgn(Ba) K2a)(1 + g0) (16.)
O — CK*age/[A(1 + gc)] (16.d)
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FIG. 2. Same parameters as in Fig. 1 except that here K =
8(|B2/)*2. In (a) the lower curves refer to mode-1 and the
upper curves refer to mode-2. The period of the soliton trains
is twice that of the input conditions. In this case, the mode
number spacing between two adjacent spectral lines is 16.

where A = 2[1 —iQ_ ;)] and C = 0.1. The wavenumber
K has been chosen near the center of the allowed range
of wavenumbers in the MI region, i.e. K = (|f2|)'/?p
and p = (K4 + K_)/(2(|B2])'/?)], where |-] is the floor
function. The results of this computational study are
summarized in Fig. 3. Trains of mode-locked bright soli-
tons are found near the border of the MI region. Figure
4 shows one example.

The existence of coupled bright solitons in the normal
dispersion regime is an important result from both a con-
ceptual standpoint and for possible applications. The MI
in the normal dispersion regime and new solitary waves
for the standard coupled NLSE for optical fibers, i.e.,
with no pump term, no detuning and no loss, has been
studied in the past [20]. However, in the context of WGM
resonators, where the pump term, the detuning and the
loss are all present and all play a fundamental role, the
existence of coupled bright solitons in the normal disper-
sion regime has never been predicted or studied before.
This finding is potentially important for applications in
light of the recent theoretical and experimental efforts
aimed at obtaining bright solitons in normally dispersive
WGM resonators [21, 22]. Cuwrrently fabricated WGM
resonators for nonlinear frequency comb generation are
based on dielectric materials, such as glass, which have
anomalous dispersion in the near-IR and longer wave-
lengths. On the other hand, it would be highly desir-
able for many applications to achieve nonlinear frequency
comb generation in the visible and near-UV range. One
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FIG. 3. Parameter values (shaded) in the parameter space
with normal dispersion for which the MI occurs. The open
squares indicate the position in the parameter space of the
coupled bright solitons obtained by the numerical integration
of Eq.(4) with #2 = 0.01. Tt is noted that bright solitons exist
near the border of the MI region.
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FIG. 4. (a): Two trains of 15 mode-locked bright soli-

tons at 7 = 150 calculated by the numerical integration of
Eq. (4) with the following parameters: f2 = 0.01, o = 3.1,
ge = 2. The input conditions (dashed curves) are described by
Eq. (10) and (16) with a wavenumber K = 15(|82|)'/2. The
lower dashed curve refers to mode-1 and the upper dashed
curve refers to mode-2. The Fourier transform (F;) of the in-
tensity of the soliton trains (F3[|U)|?]) is shown respectively
in (b) for mode-1 and (c) for mode-2. The mode number
spacing between two adjacent spectral lines is 15.



way to obtain anomalous dispersion at shorter wave-
lengths is to counteract the natural dispersion of the
material with the geometrical dispersion that is induced
by modifying the resonator shape [23] and/or its bound-
ary conditions [24, 25]. However, it is difficult to obtain
anomalous dispersion deep into the visible wavelengths.
Other approaches recently proposed include the use of a
phase/amplitude modulated pump instead of a pump at
a fixed frequency [21] or the use of soliton Cherenkov ra-
diation [22]. The nonlinear mode-coupling that we have
studied in this work may offer an alternative and more ef-
ficient approach for the generation of mode-locked trains
of bright solitons in the normal dispersion regime.

IIT. CONCLUSIONS

In conclusion, we have studied nonlinear mode cou-
pling in WGM resonators and we have demonstrated the
possibility of generating trains of mode-locked bright
solitons in the normal dispersion regime.

Recent experiments show that strong modification of
the effective dispersion properties of the resonator with
respect to the material properties can occur in spectral
regions near the avoided-mode-crossing points of the
resonator [13, 26]. In these regions, two frequency-
degenerate guided modes of the resonator undergo a
strong linear interaction with a GVM practically equal
to zero. This strong interaction leads to the formation
of two new hybrid guided modes, that are no longer
frequency-degenerate, whose frequency splitting depends
on the coupling strength of the frequency-degenerate
modes. This phenomenon may cause, for example, one
of the two hybrid modes to acquire anomalous GVD in
a spectral region that would otherwise be characterized
by normal GVD. In such a scenario, it is important to
study the nonlinear interaction of these hybrid modes,
and Eq. (3) can be used for this purpose by considering
a null GVM (6) = 0). This topic will be the subject of
future investigations.
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V. APPENDIX

Our starting point is the wave equation for the real
electric field E:

_ 1 92 * =
VxVxBE- L+ / (F)B(r,t — 7)dr+

c2 0t?
cO)(E.B)E Wprp b
XV(E-EE| =- 2 E, cos(wpt) , (A.1)
where
“+o0
é(r) = (1/2m) / er(w) exp|—iwT]dw (A.2)

is the linear dielectric response of the medium in the
time domain with é(7 < 0) = 0 due to causality, €,(w)
is the relative electric permittivity in the frequency do-
main, ¥ is the cubic nonlinearity, E, is the fraction of
the pump field coupled with the resonator and acts as
the source term, w, the pump frequency, ¢, , is the elec-
tric permittivity at the pump frequency, and ¢ the speed
of light in the vacuum. Eq. (A.1) is valid if we assume
that the linear and nonlinear response of the material is
local and isotropic and we also assume that the nonlin-
ear response of the material is instantaneous. The as-
sumption that the response is instantaneous corresponds
physically to just considering the fast nonlinear electronic
response of the medium and neglecting the contribution
of the molecular vibrations (Raman effect) [27, 28]. It
is convenient to pass from the real to the complex field
representation: E = (1/2)[E + complex conjugate] and
E, cos(wpt) = (1/2)[E, exp(—iw,t)+complex conjugate)].
With reference to Fig. 5, we can expand the complex elec-
tric field E by using the guided modes of the resonator
in cylindrical coordinates as

E(p,0,z,t) = Z ADDFD (p, z) exp [i(mb — wDt)]
Jsm
(A.3)
and we can expand E,, as

E,(0) = e, Y Epmexp (imf) (A.4)

where the AY (t) are the time-dependent envelope func-
tions, j = 1, 2 labels the two families of transverse modes
with amplitudes F(p, 2) and F?(p, 2), and eigenfre-
quencies w%) and wy(,%), e, is the polarization vector of
the pump field, 6 is the azimuthal angle and finally
m € [1,2,...,N] is the azimuthal number that labels
the eigenfrequencies in each family. We note that, while
we restrict our analysis here to two families of modes,
our coupled mode theory can be extended to an arbi-

trary number of families. The field profile f‘fi) (p,0,2) =
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FIG. 5. Sketch of the geometry investigated. A pump field
is coupled to an axially symmetric WGM resonator placed
in the vacuum. The resonator has an azimuthal angle 6 and
relative electric permittivity e,. The field E, is the fraction
of the pump field that is coupled to the resonator.

FY)(p, 2) exp(imf) solves the eigenmode equation

e (J)) (4)2

ErlWm Jeom gD, g 2y, (A5)
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subject to the orthonormality condition

V) [ BB AV = bt
v
where dV = pdpdfdz is the elementary volume in cylin-
drical coordinates, V, is the volume occupied by the res-
onator, and dj; is the Kronecker d-function. In Eq. (A.5)
we take into account the material as well as the waveg-
uide dispersion, since we explicitly consider the electric
permittivity as a function of frequency. Expressing
Eq. (A.1) in the complex field representation and using
Eqs. (A.3) and (A.4), as well as the eigenmode equation,
g- (A.5), and, finally, by invoking the slowly varying en-
velope approximation |A(J)\ < w(j)|A7(%)| < w%)2|Aff@)|,
the dot and double dot denote respectively the first and
second time derivative, we arrive at the following equa-
tion, containing just the first order time derivatives of
the envelope functions,

> er(wiler]
J,m

i@ ST 24D (D IELPFY exp li(ml — wdt
X m m m p m

Jym

ZW(J)QA (¢

(A.6)

DAD OFD exp [i(mh — wPt)] =

)E - E)FY* exp [—i(mf — w)t)]

1
+§iw12,er7p exp (—iwpt)e, Z E,mexp (imd), (A7)
where x® = ¥ /4 and
EP= Y ADAYFEY FY"x
a,B,7,6
. §
exp{if(a — 8)8 — (W — wg MY, (AS)
E-E= Y APAYFEY Fx
«a,B,7,0
. 5
exp {il(a+ B)0 — (W +wiHt}, (A9
with (o, 8) € [1,2,...,N] and (v,d) € [1,2]. From now

on, we omit the dependence of the envelope functions on
t and the dependence of the field profiles on p, 6 and z.
In order to arrive at coupled mode equations, we project
Eq. (A.7) on the modes, and we use their orthonormality,
which yields

i _ M AP*)?
Ay =i <1> T O Alars AV AT W s
( wn a,3,7,6,j
_ 5 1) (7,6
exp [i(w(!) — Ww(ﬂ) 1o~ Wi+ ))t]ngj,a,)ﬁ(v :
@ ()% ) 4(9),,0)2
- 2 (1) o Z A—n+a+ 7 Ag Wonta+ps ™
e (wn )wn a,B3,7,6,j
. § s ,0
exp [z(wﬁ,l) + w£]7)7+a+ﬁ —w) - wé )) ]va]a,)gm )
Asll) 1 9 €rp 1 1
S R : expli(wit) — w, )t PLY,
A el
(A.10.a)
(2 _ (1) A0)* ,(9)2
A =i <2> @ > AL s A AP W
( Wi a,B,y,6,

expli(w] @) _ w(J) s = WO + w ) ]G(J 2)(%5)
(3)
. X
o
>

Wn " a,B,7,6,

A “/)A(é) (4)2 «

()=
A Wintats

—n+a+pB

expli(wy (2) 4 )@ —w (5))t]H(j72)(%5)

—nta+B —Ws 0,08
A7(72) 1.5 €rp i[w(? It
Ty iR _ilen ekt p(2) (A 10.b)
2 p 2 2 n
2 e (wwy?

We have introduced the following overlap integrals, in-
volving just the transverse profile of the guided modes in
the resonator FY) (p, 2),

Ly
Ve

Ve

PY = Fﬁlj)* e, dV, (A.1l.a)



(")) _ L ) Gy () L d)*
Goapg = Vc/(F"*aW'Fﬂ] JF -FgM)av,
Ve

(A.11.b)

()8 _ L () i)« (4
00 = 5 (B9 BPOED By
V.

(A.1l.c)
The integration for the overlap integrals is extended only
over the resonator volume V, because () is zero outside
the resonator, and E,, is by definition the fraction of the
pump field coupled with the resonator. The coefficient
P(J ) is the effective field for the mode 1 of the family j,

while the terms x(*) G(”7 )9) and y( H(”ﬂ)(%é) are the

effective nonlinear couphng coefficients, gue respectively
to the self-phase modulation (SPM) and the four-wave
mixing (FWM) cubic nonlinearity. Equation (A.10) de-
scribes two nonlinear four-wave mixing processes. The
first is due to the SPM cubic nonlinearity and has a fre-
quency detuning given by [wy (1.2) wéj3a+ﬁ W + wgs)]
for the families 1 and 2. The second is due to the FWM
cubic nonlinearity and has a frequency detuning given
by [wy (12 4 w(j7)7+a+6 —wi - w(é)] for the families 1
and 2 The detuning for both processes would be zero if
the eigenfrequencies were equidistant, which would corre-
spond to perfect phase matched interactions and infinite
coherence length. In practice, the perfect phase match-
ing condition is never fulfilled in WGM resonators where
instead the deviation from equidistance of the eigenfre-
quencies plays a fundamental role, as we will show later.
The effect of the finite bandwidth of the cavity modes has
been taken into account in Eq. (A.10) by the phenomeno-

logical introduction of the decay terms —AD 7D into
the equations, where 7’ = 2/ Aw$ is the photon life-

time in the cavity and Aw%) is the bandwidth of the
resonance.

Equation (A.10) is an exact representation of the elec-
tromagnetic problem stated in Eq. (A.1). However, the
direct numerical integration of these coupled mode equa-
tions is computationally inefficient because it is necessary
to integrate a system of 2/NV equations, each one contain-
ing 2- 8- N2 terms, and a microresonator typically con-
tains N ~ 1000 to 10,000 modes. We now decouple the
transverse field evolution from its azimuthal evolution
by using only two dominant modes for the transverse

field profile, one for each family, namely: Fg) (p, z) with
7 = 1,2 where m is the azimuthal number corresponding

to the closest to the pump eigenfrequency for each family,

iew,= wg) for j = 1,2. This approximation is justified

because the dependence of the transverse field profile of a
guided mode on the propagation wavevector—in our case
on the azimuthal number m—is usually weak. Hence,
we may assume that the transverse profile is nearly the
same as for the respective dominant modes. In this way,

Eq. (A.3) can be rewritten in the following form

2
E(p,0,2,t) = Y F9 (p, 2) expli(m — wd )]0 (0, 1),
Jj=1

(A.12.a)
where
N .
VO @0,4) = > AP (t) exp{i[(m—m)0— () —wi )]},
" (A.12.)

is the spatio-temporal envelope of the total field. By tak-
ing the partial time derivative of Eq. (A.12.b) we obtain:
oV (0,1) &

()Y 40)
| WA ()] x

[ AR () -

m=1

i(wl) —
(Wi — Wt}

can be expressed through a

exp{i[(m — m)0 — (A.13)

where the term (wy;, () _ (J))

Taylor expansion as

) ) = S Ry — )

k=1

(A.14)

The coefficient (:fj) = (1/2)(%(7{1_1 - w,(%) 1) is the free
spectral range (FSR) of the resonator at the frequency
(]) and the coefficient C(]) = wgll 2w,(%)+wf%)71 equals,

at lowest order, the deviation from equidistance of the

eigenfrequencies adjacent to %(n) and plays a role analo-

gous to the group velocity dispersion (GVD) of a stan-
dard optical fiber. In particular, Céj ) <0 corresponds
to the normal dispersion regime in which the group ve-
locity decreases for increasing frequencies, while Cz(j )>0
corresponds to the anomalous dispersion. It is also cus-

tomary to introduce the GVD parameter Béj ) — —Céj ) =
ng) fﬂrl ﬁi) 1, so that the dispersion is normal

when 85 > 0 and anomalous when 8 < 0. Using a

Taylor expansion of the term (w%) - wg)) and the fol-
lowing identity

kg (3) N .
fi’“aalgk = (m—m)FAY) x
m=1

exp{i[(m —m)§ — (W —wd)t]},

we can recast Eq. (A.13) in the form

ov () n - Czij) PIAIE))
ot ;1 =) S o
N .
m)f — (WP —wi)}, (A.16)

+ Z AW exp{i[(m —
m=1

where the time derivatives of the field envelopes in the
the last term at the right-hand side can be explicitly cal-
culated by using the coupled mode Eq. (A.10). Our goal



is to write Eq. (A.16) in a form that just includes enve-
lope fields W) (6, t), so that we obtain coupled nonlinear
wave equations for W) (6,¢). In doing so, we make sev-
eral approximations. First, we suppose that the decay
times for all the modes of the same family are the same:
7 = 1/7r0). For high-Q WGM resonators, we gener-
ally have decay times on the order of 700 ~ 1 us and
Q-factors given by QU) = w%)/Aw%) ~ 10°. Second, we
suppose that, as is usual in nonlinear optical phenomena,
the effects of the nonlinearity and of the pump on the en-
velope field occur on a much slower time scale than the
time scale necessary for the field to complete one round-
trip in the resonator. In a typical WGM resonator with
~ 1 mm radius, the round trip time is ~ 100 ps, while
the time scale on which the nonlinearity and the pump
field produce significant effects on the field envelope is
in the ps or ms range. Hence, once the time deriva-
tive of the field envelopes is calculated using Eq. (A.9),
the nonlinear terms and pump terms in Eq. (A.14) can
be averaged over the azimuthal coordinate 6 from 0 to
27. Hence, all the terms proportional to exp[i(m —m)d],
with m # m, do not effectively contribute to the pro-
cess because they average to zero and can be neglected.

Third, we approximate the overlap integrals as follows:
G(w)('yé ~ D) 44 H( 5:0)(1:0) o p7(5:9)(7,9)

m,m,m m,m,m , con-

swten‘f with the weak dependenceﬁof the radial field pro-
files on the azimuthal number. Moreover, in the pump
term we simplify €, , /e, (w (3)) >~ 1 and wp/w(j) >~ 1, and
we introduce the detuning of the pump field with re-

spect to the dominant modes, dw(?) = w(jl) — Wp. Fourth7

we expand wfn) atB and w 7)n+0+5 around m = m and
keep only the lowest order. Finally, we collect the nonlin-
ear terms oscillating with the same detuning and retain
only the nonlinear terms whose frequency detuning van-

ishes, i.e., we only retain the frequency-matched terms

wfvjz) - w(*s) wf;f) + w(—) 0. We then obtain two inco-

herently coupled, externally driven, damped, generalized
NLSEs or LLEs

ow (@) n - 1C ) k() 1 )

_ } : _ (4)
o =2 T g T )
P,

2
+ix® W) g) Z DUD D2,
=1

(A.17)

where

o(li—1l-1)

er(w (J))VC

/ (B 2RE 2+ [FD L2+ [FD-FL 2]V, (A18)

Ve

pUh —

are the overlap integrals of the interacting modes. Note
that D2 = D@1, Equations (A.17) and (A.18) are
our starting points, Eqs. (1) and (2).

[1] Lord Rayleigh, Philos. Mag. 20, 1001 (1910).

[2] K. J. Vahala, Nature, 424, 839 (2004).

[3] M. Notomi, Proceedings of the IEEE 99, 1768 (2011).

[4] J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett.
25, 25 (2000).

[5] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L.
Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T.
Udem, and T. W. Hénsch, Phys. Rev. Lett. 84, 5102
(2000).

[6] P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R.
Holzwarth, and T. J. Kippenberg, Nature 450, 1214
(2007).

[7] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kon-
dratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat.
Phot. 8, 145 (2013).

[8] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Va-
hala, Optica 2, 1078 (2015).

[9] A. Matsko, A. Savchenkov, W. Liang, V. Ilchenko, D.
Seidel, and L. Maleki, Opt. Lett. 36, 2845 (2011).

[10] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo,
Opt. Lett. 38, 37 (2013).

[11] Y. K. Chembo and C. R. Menyuk, Phys. Rev. A 87,
053852 (2013).

[12] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang,
D. E. Leaird, M. Qi, and A. M. Weiner, Nature Photon-
ics, 9, 594 (2015).

[13] S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R.
Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson,and
A. L. Gaeta, Optics Letters 39, 5134 (2014).

[14] A. L. Berkhoer and V. E. Zakharov, Sov. Phys. JETP
31, 486 (1970) [Zh. Eksp. Teor. Fiz. 58, 903 (1970)].

[15] Y. Ma, G. Huang, and B. Hu, Phys. Rev. A 71, 043609
(2005)

[16] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209
(1987).

[17] V. E. Zakharov and L. A. Ostrovsky, Physica D 238, 540
(2009).

[18] A. Hasegawa, Opt. Lett. 9, 288 (1984).

[19] J. A. Fleck, Jr., J. R. Morris, and M. D. Feit, Appl. Phys.
10, 129 (1976).

[20] M. Haelterman, A. P. Sheppard, Phys. Lett. A 185, 265
(1994).

[21] V. E. Lobanov, G. Lihachev, T. J. Kippenberg and M.
L. Gorodetsky, Opt. Expr. 23, 7713 (2015).

[22] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H.
P. Pfeiffer, M. L. Gorodetsky, T. J. Kippenberg, Science
(2015); DOI: 10.1126/science.aad4811

[23] J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, Opt. Expr.
20, 26337 (2012).

[24] M. Haelterman, S.Trillo, and S. Wabnitz, Opt. Lett. 17,
745 (1992).

[25] S. Coen and M. Haelterman, Phys. Rev. Lett. 79, 4139
(1997).



10

[26] Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. [28] A. Hasegawa and Y. Kodama Solitons in Optical Com-
Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, munications (Oxford University Press, 1995).
Optica 1, 137 (2014).

[27] G. P. Agrawal Nonlinear Fiber Optics 3" Edition (Aca-
demic Press, 2001).



