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A tractor beam is a travelling wave that transports illuminated objects back to its source, op-
posite to the wave’s direction of propagation, along its entire length. The requisite retrograde
force arises when an object scatters the wave’s momentum density downstream into the direction
of propagation, and then recoils upstream by conservation of momentum. Achieving this condition
imposes constraints on the structure of the wave, which we elucidate in the Rayleigh limit, when the
wavelength exceeds the size of the object. Continuously propagation-invariant modes such Bessel
beams do not satisfy these conditions at dipole order in the multipole expansion, and so cannot
serve as general-purpose long-ranged tractor beams. Modes with discrete propagation invariance,
however, can act as first-order tractor beams. We demonstrate this by introducing a class of mini-
mal solenoidal waves together with a set of design criteria that distinguish tractor beams that pull
objects from repulsor beams that push them.

I. INTRODUCTION

Radiation pressure commonly is understood to push
illuminated objects downstream along the direction of
light’s propagation. The recent realization [1–4] that ap-
propriately structured traveling waves can pull objects
upstream consequently has excited considerable interest.
Retrograde forces arise when an illuminated object scat-
ters more of the wave’s momentum into the downstream
direction than otherwise would have been present [5–7].
The object then recoils upstream to conserve momentum.
This happens, for example, when a small particle enters
the diverging wave downstream of the focus in an optical
trap, redirects light into the forward direction, and then
recoils toward the focus [5–7]. The trapping beam’s di-
vergence, however, inherently limits how far it can pull
an object upstream.

Achieving long-range retrograde transport requires a
non-diffracting or weakly-diffracting mode. A plane wave
cannot serve in this capacity because all of its momen-
tum is directed along the axis of propagation. Remark-
ably enough, some other non-diffracting traveling waves
[1–4, 8] have the requisite characteristics. Such modes
have come to be known as tractor beams because of their
resemblance to the popular science fiction trope [9].

Previously identified tractor-beam modes were discov-
ered empirically [1, 2, 8]. Few have been demonstrated
experimentally [2, 8, 10], and most of these demonstra-
tions have relied on fine tuning of material properties
[8, 10]. Here, we present an analytical theory for op-
tical tractor beams that applies in the simplifying, yet
practically important limit that the transported object
is smaller than the wavelength of light, the so-called
Rayleigh regime. This theoretical framework expresses
the forces experienced by an illuminated object in terms
of the experimentally controllable amplitude and phase
profiles of a vector mode of light. It reveals that the
most commonly discussed tractor-beam mode [1, 3, 4, 11]
is inherently undermined by its continuous propagation
invariance; such beams can pull only under exceptional
circumstances, and then only weakly. These drawbacks

can be avoided by creating tractor beams from modes
that display discrete propagation invariance. We illus-
trate this by introducing a family of minimal solenoidal
tractor-beam modes that exert retrograde forces as first-
order photokinetic effects.

II. PHOTOKINETIC FORCES

The electric and magnetic fields in a monochromatic
beam of light at frequency ω may be projected into Carte-
sian components,

E(r, t) =

3∑
j=1

Ej(r) e−iωt ε̂j and (1a)

B(r, t) = − i
ω
∇×E(r, t) (1b)

=

3∑
j=1

Bj(r) e−iωt ε̂j , (1c)

where Ej(r) and Bj(r) are the complex-valued electric
and magnetic field amplitudes along the Cartesian coor-
dinate ε̂j . For comparison with experimental implemen-
tations, it is convenient to express these field components
in terms of real-valued amplitudes and phases,

Ej(r) = uj(r) eiφj(r), (2)

and similarly for Bj(r). Expressing optical forces in
terms of uj(r) and φj(r) yields insights that are useful
for designing and optimizing beams of light for optical
micromanipulation, including tractor beams.

A. First-order photokinetic forces

Photokinetic forces arise from light’s ability to polarize
small objects. For simplicity and clarity, we will confine
our discussion to optically isotropic objects whose dimen-
sions are small enough relative to the wavelength of light
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that they may be treated as point-like scatterers. In this
so-called Rayleigh regime, the light’s leading-order effect
is to induce electric and magnetic dipole moments,

p(r, t) = αeE(r, t) and (3a)

m(r, t) = αmB(r, t), (3b)

respectively, where αe and αm are the object’s electric
and magnetic dipole polarizabilities.

The induced dipole moments described by Eq. (3) ex-
perience time-averaged forces in gradients of the electric
[12] and magnetic [13] fields,

F e(r) =
1

2
<


3∑
j=1

pj(r, t)∇E∗j (r, t)

 and (4a)

Fm(r) =
1

2
<


3∑
j=1

mj(r, t)∇B∗j (r, t)

 . (4b)

Although Eq. (4) completely describes optical dipole
forces, how to control these forces is more clearly revealed
when they are presented in terms of the amplitudes and
the phase of the fields. Expressed in these terms, the
electric dipole force has the form [14, 15]

F e(r) =
1

4
α′e∇

3∑
j=1

u2j (r) +
1

2
α′′e

3∑
j=1

u2j (r)∇φj(r), (5)

where α′e and α′′e are the real and imaginary parts of αe,
respectively.

Equation (5) and the analogous expression for the
magnetic dipole force constitute the first-order photoki-
netic forces. The first term on the right-hand side of
Eq. (5) describes the manifestly conservative intensity-
gradient force responsible for trapping by single-beam
optical traps such as optical tweezers [5]. The second de-
scribes a non-conservative contribution to radiation pres-
sure that is directed by gradients of the phase [14, 16, 17].
Recognizing that these phase gradients define the local
wave vector [18] and that α′′e and α′′m are positive for
conventional materials, the phase-gradient term tends to
drive objects downstream along the beam of light.

Light’s polarization plays remarkably little role in first-
order photokinetic effects. This can be appreciated be-
cause phase differences among the Cartesian components
that determine the degree of circular polarization are ab-
sent from Eq. (5). Even so, polarization-dependent pho-
tokinetic effects are well documented in the experimen-
tal literature [19–21] and emerge naturally in numerical
studies [19, 22–24]. Such effects can be attributed to
higher-order photokinetic forces.

B. Higher-order photokinetic forces

Higher-order photokinetic effects result both from
forces exerted on higher-order induced multipoles and

also from interference between different types and orders
of multipole scattering [3]. The multipole polarizabili-
ties that parametrize these higher-order terms generally
become rapidly smaller with increasing multipole order,
particularly for objects that are smaller than the wave-
length of light. For Rayleigh particles, the leading-order
corrections to the first-order dipole forces arise from the
interference between the scattered electric and magnetic
dipole fields, and from the induced electric quadrupole
moment. The dipole-interference term in particular pro-
vides a mechanism for creating propagation-invariant
tractor beams.

Dipole scattering by a small isotropic particle gives rise
to a second-order force of the form [3, 13]

F em(r) = − k4

12πε0c
<{αeα∗mE(r, t)×B∗(r, t)} . (6)

Expressing this in terms of the fields’ amplitudes and
phases yields four distinctive contributions,

F em(r) =
εk3

24πε0
={αeα∗m} ∇

3∑
j=1

u2j (r) (7a)

− εk3

12πε0
<{αeα∗m}

3∑
j=1

u2j (r)∇φj(r) (7b)

− εk3

12πε0
<{αeα∗m} ∇ · T(a)(r) (7c)

− εk3

12πε0
={αeα∗m}∇ · T(s)(r), (7d)

where ε is the permeability of the medium and where we
have introduced the antisymmetric (a) and symmetric
(s) components of the Maxwell stress tensor,

T
(a)
ij (r) = ui(r)uj(r) sin

(
φj(r)− φi(r)

)
and (8a)

T
(s)
ij (r) = ui(r)uj(r) cos

(
φj(r)− φi(r)

)
. (8b)

Equation (7) is the complete result for the dipole-
interference contribution, including both electric and
magnetic contributions. The force it describes tends to
be weaker than the first-order dipole force described by
Eq. (5) because k3 |αe| � 1 in the Rayleigh regime. Even
so, each term in Eq. (7) has interesting implications for
optical micromanipulation.

The intensity-gradient term in Eq. (7a) either strength-
ens or weakens the first-order trapping force depending
on material parameters that affect the sign of ={αeα∗m}.
Because <{αeα∗m} >∼ 0 for conventional materials, the
phase-gradient term in Eq. (7b) describes a retrograde
force that could provide the basis for a tractor beam
were it not generally weaker than the first-order phase-
gradient term from Eq. (5).

Equations (7c) and (7d) describe optical forces with
properties distinct from those of dipole forces, and thus
create new avenues for optical micromanipulation. We
can interpret Eq. (7c) by noting that

s(r) =
ε

2ω
={E∗(r, t)×E(r, t)} (9a)
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is the time-averaged spin angular momentum density car-
ried by the beam of light [18, 25–27]. From this, we ob-
tain the general result,

∇ · T(a)(r) =
ω

ε
∇× s(r), (9b)

which identifies Eq. (7c) as a force arising from the curl
of the spin angular momentum density in a nonuniform
beam of light [21]. Spin-curl forces have been a subject
of active research [15, 21, 27–31] and here may be iden-
tified as a second-order photokinetic effect. They may
be directed along the axis of propagation, and thus can
contribute to the retrograde forces in a tractor beam.

The remaining term in Eq. (7d) describes a comple-
mentary curl-free force field directed along the local axis
of linear polarization. This term also can give rise to
a retrograde force in longitudinally polarized traveling
waves of the kind observed in experiments on crossed
plane waves [8].

Induced-quadrupole contributions to the optical force
also arise at second order in the multipole expansion
and so may be comparable in strength to the dipole-
interference force. This contribution has the form [3]

F q(r) =
1

4
<

∑
j,k

Qjk(r, t)∇∂jE∗k(r, t)

 , (10)

where the induced quadrupole moment is

Qjk(r, t) =
1

2
γe [∂jEk(r, t) + ∂kEj(r, t)] (11)

for a neutral particle with scalar quadrupole suscepti-
bility, γe. The induced-quadrupole force is symmetric
under exchange of the Cartesian components of E(r, t).
Consequently, it does not depend on the spin angular
momentum of the light, and does not contribute to spin-
dependent photokinetic effects.

Second-order forces are weaker than first-order forces
for Rayleigh particles. Higher multipole contributions
will be weaker still. We will focus, therefore, on iden-
tifying characteristics of propagation-invariant modes of
light that are useful for creating first-order tractor beams.

III. PROPAGATION-INVARIANT TRACTOR
BEAMS

Achieving long-ranged retrograde transport without
active intervention [32] requires a tractor beam to be
based on a weakly-diffracting or propagation-invariant
mode. Ideally, such a mode would carry retrograde mo-
mentum [33] along its entire length, and thus exert retro-
grade radiation pressure. It is sufficient, however, for the
axial component of the beam’s momentum density to be
smaller than the plane-wave limit. In that case, an illumi-
nated particle can scatter additional momentum down-
stream, and thus recoil upstream. The archetype for such

a tractor beam is the Bessel beam [34–37], which origi-
nally was proposed for this application in the context of
acoustic waves [1].

Bessel beams can be generated from the longitudinal
vector potential

Am,α(r) = um,αAm,α(r)ẑ, where (12a)

Am,α(r) = Jm(kr sinα) eimθ eikz cosα (12b)

is the scalar cylindrical harmonic that is characterized
by convergence angle α and an integer winding number
m. The overall amplitude, um,α, sets the intensity of the
beam. Equation (12) is expressed in cylindrical coordi-
nates, r = (ρ, θ, z), aligned with the propagation direc-
tion, ẑ. The fields in a Bessel beam may be obtained
from Am,α(r) as [34, 35]

ETE
m,α(r, t) = ∇×Am,α(r) e−iωt, (13)

with the magnetic field following from Eq. (1b). Equa-
tion (13) describes a transverse electric (TE) Bessel beam
that is equivalent to the form presented in [3]. The cor-
responding transverse magnetic (TM) mode can be ob-
tained by exchanging the electric and magnetic fields in
Eq. (13). Bessel beams with more general polarizations
may be obtained as linear superpositions of these TE and
TM modes. The range of non-diffracting propagation is
proportional to cscα, and so is longer for beams with
smaller convergence angles, α [37, 38].

Because the Bessel beams form a complete orthogonal
basis, any propagation-invariant mode can be expressed
as a linear superposition of Bessel beams. Those super-
positions comprising Bessel beams with the same con-
vergence angle, α, display continuous propagation invari-
ance. Any such non-diffracting beam lacks axial intensity
gradients as a matter of definition, so that ∂zu

2(r) = 0.
The remaining phase-gradient contribution to the axial
dipole force is purely repulsive for any material with
α′′e > 0 and α′′m > 0. From this, we conclude that no
continuously propagation-invariant beam of light
can serve as a general-purpose first-order tractor
beam.

Non-diffracting modes nonetheless may act as tractor
beams for particles whose scattering properties favor ret-
rograde forces from higher-order contributions [3]. To
illustrate this, we consider the photokinetic force exerted
by TE Bessel beams and contrast this with the perfor-
mance of TM Bessel beams. The axial component of the
force then has the form

F (r) · ẑ =
1

2
k u2m,α

J2
m(kr sinα)

r2
cosα f(α, x), (14)

where x = kr sinα and where f(α, x) is a polarization-
dependent factor describing the particle’s coupling to the
light. The axial force vanishes in the strongly converging
limit because the Bessel beam becomes a standing wave
at α = π/2.
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The coupling factor for a TE-polarized Bessel beam
due to dipole and dipole-interference contributions is

fTE(α, x) = g2m(x)

(
α′′e + α′′m −

εk3

6πε0
<{αeα∗m}

)
+ sin2 α [x2 − g2m(x)]α′′m, (15)

with the mode-dependent geometric factor

g2m(x) = m2 + x2
J ′m

2
(x)

Jm
2(x)

. (16)

The equivalent expression for TM modes is obtained by
transposing αe and αm.

The electric and magnetic quadrupole contributions
to the axial force are strictly repulsive, with the elec-
tric quadrupole repulsion being somewhat weaker in TM-
polarized modes. Quadrupole contributions therefore do
not help to create a second-order tractor beam.

Considering, for the moment, only those contributions
to the axial force arising from dipole terms, the direction
of motion depends on the sign of fTE(α, x), and therefore
on the particle’s position within the beam. Retrograde
forces appear at positions x that satisfy

g2m(x)

x2
<

sin2 αα′′m
εk3

6πε0
<{αeα∗m} − α′′e − cos2 αα′′m

. (17)

The absence of solutions in the limit of small α demon-
strates that weakly converging Bessel beams generally
act as repulsors. More strongly converging modes can
act as tractor beams if the radial component of the force
vanishes at positions that satisfy Eq. (17). This occurs,
for example, in TE modes with m = ±1 along the princi-
pal intensity maximum at r = 0. Such beams can stably
pull an object upstream if the convergence angle satisfies

sin2 α > 1 +
α′′e
α′′m
− εk3

6πε0

(
α′′e + α′e

α′m
α′′m

)
. (18)

Because Eq. (17) neglects the quadrupole contribution,
it constitutes a necessary condition for a Bessel beam to
act as a second-order tractor beam, but is not a sufficient
condition.

Numerical studies involving all orders of multipole
scattering confirm that Bessel beams can act as tractor
beams for some objects that are larger than the wave-
length of light [3, 4, 11]. The present considerations
demonstrate that the necessary pulling force does not
arise at first order, but rather emerges from a competi-
tion between first-order repulsion and higher-order ret-
rograde forces. Because such tractor beams require com-
paratively steep convergence angles, moreover, they do
not lend themselves to long-range transport.

IV. FIRST-ORDER SOLENOIDAL TRACTOR
BEAMS

Relaxing the condition of continuous propagation in-
variance in favor of discrete propagation invariance,

u2(r, θ, z + ∆z) = u2(r, θ, z), (19)

creates opportunities for strong, long-ranged, general-
purpose tractor beams that operate at first order. Axial
intensity gradients in a discretely propagation invariant
beam can establish retrograde forces that counteract re-
pulsive phase-gradient forces. This is the principle by
which an optical conveyor establishes an axial array of
traps [32]. Achieving continuous retrograde transport
in such a beam requires a continuous path through the
beam along which the net optical force acts in the retro-
grade direction. Optical conveyors do not have this prop-
erty, but waves displaying screw invariance can. These
include spiral waves [39] and solenoidal beams [2]. Al-
though solenoidal waves have been described and their
efficacy as tractor beams has been demonstrated experi-
mentally [2], the nature of their force fields has not been
explored previously. Applying the theory of photokinetic
effects reveals that solenoidal modes can act as first-order
tractor beams.

Discretely propagation-invariant beams can be created
by superposing two mutually coherent Bessel beams with
different convergence angles. Because we are interested in
long-range transport, we choose component Bessel beams
with small convergence angles, which may be described in
the paraxial approximation as TEM modes with uniform
polarization, ε̂. The superposition then has the form

E(r, t) = [um,αAm,α(r, t) + un,βAn,β(r, t)] ε̂. (20)

The resulting axial interference pattern is spatially pe-
riodic, as required, and stationary. Superposing modes
with the same winding number creates optical conveyors
[32, 40, 41]. Superposing modes with different winding
numbers creates a solenoidal wave. We will order the
contributions with |m| > |n|. The original description
of solenoidal waves [2] involved superpositions of large
numbers of Bessel modes. Being composed of just two
modes, the solenoidal waves presented here may be con-
sidered minimal realizations of the genus.

We ensure that a solenoidal mode traps particles at a
radius r = R by choosing the convergence angles α and
β so that extremum p of mode m overlaps extremum q of
mode n. This condition ensures ∂r |E(r, t)|2 = 0 along
r = R. Equation (5) then ensures that r̂ · F e(r)|r=R = 0.
The intensity maximum at r = R acts as a potential
energy well along the radial direction for light-seeking
particles with α′e > 0. It is achieved by setting

sinα

j′m,p
=

sinβ

j′n,q
=

1

kR
, (21)

where x = j′m,p is the p-th root of J ′m(x) = 0.
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FIG. 1. (color online) (a) Calculated intensity distribution of
a right-handed solenoidal tractor beam with a vacuum wave-
length of 532 nm and design parameters m = −5 and n = −4,
α = 0.418 rad and β = 0.627 rad, propagating along +ẑ
through water. (b) Computed trajectory of a 50 nm-diameter
silica sphere moving along the tractor beam in (a). The color
bar indicates the local intensity, u2(r).

Interference is optimized if the two components con-
tribute equally to the amplitude, u0, at r = R. This
establishes a relationship between the amplitudes

uα,mJm(j′m,p) = uβ,nJn(j′n,q) =
1

2
u0. (22)

The resulting superposition has the form

E(r, t) = u(r) eiφ(r)e−iωtx̂, (23a)

with amplitude and phase profiles along r = R of

u(r)|r=R = u0 cos

(
m− n

2

[
θ − 2π

z

∆z

])
and (23b)

φ(r)|r=R = `θ +
cosα+ cosβ

2
kz. (23c)

This is a helical mode that carries orbital angular mo-
mentum [42] proportional to its winding number,

` =
m+ n

2
. (23d)

The axial pitch of the solenoid’s spiraling intensity dis-
tribution is

∆z =
2π

k

m− n
cosα− cosβ

. (23e)

Interestingly, solenoidal waves with half-integer wind-
ing numbers do not differ qualitatively from those with

integer winding numbers. The 2`-fold sign changes in
u(r), as defined in Eq. (23b), eliminate the transverse
vortices that otherwise would form in a helical beam with
non-integer winding number [43, 44].

The transverse intensity distribution is proportional to
u2(r) and has a number of maxima equal to |m− n|.
These maxima spiral once around ẑ each time the axial
position z advances by ∆z. The spiral is right-handed
for positive values of ∆z.

For simplicity, we will consider this wave’s influence on
dielectric Rayleigh particles, for which the electric dipole
force described by Eq. (5) dominates the magnetic dipole
force and all other multipole contributions. We then de-
fine the locus, rs(z) = (R, θs, z), of the solenoidal trap to
be the set of points along which intensity-gradient forces
compensate the axial component of the radiation pres-
sure, Fz(rs) = 0. This condition is satisfied along the
spiral curve

θs(z) = 2π
z

∆z
+ θ0, (24a)

with angular offset,

θ0 =
2

m− n
tan−1

(
α′′e
α′e

cosα+ cosβ

cosα− cosβ

)
. (24b)

The path that a particular object takes through the
beam runs parallel to this. Such solutions exist for small
objects regardless of the light-scattering properties en-
coded in αe. Whether or not these solutions act as traps
depends on whether or not the particle also is stably
trapped in the radial direction. Small dielectric parti-
cles are stably trapped along the bright locus described
by Eq. (23); reflecting and absorbing particles might not
be.

A solenoidal trap acts as a tractor beam if the az-
imuthal component of the radiation pressure, Fθ(rs),
drives the trapped particle into a region where the axial
component of the force, Fz(rs), points in the retrograde
direction, Fθ(rs) ∂θFz(r)|r=rs

< 0. This condition is
satisfied if

n cosα > m cosβ. (25)

Flipping the sense of this inequality transforms a tractor
beam into a repulsor that pushes objects downstream
rather than pulling them upstream.

Equation (25) is the principal design requirement
for creating a general-purpose first-order tractor beam.
With this constraint, Eq. (21) then requires q > p. Min-
imizing α and β to maximize pulling range then requires
q = p + 1. Maximizing the pulling force by maximizing
the intensity along the solenoid’s principal spiral then
yields p = 1 and q = 2 as optimal choices.

Equations (21), (22) and (25) constitute previously
lacking design criteria for general-purpose first-order
tractor beams. As described, they establish conditions
on the individual Bessel components’ convergence angles,
α and β, and winding numbers, m and n. Equivalently,
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these conditions may be expressed in terms of the radius,
R, pitch, ∆z, winding number, `, and non-diffracting
range of the desired tractor beam. Previously, functional
solutions had to be sought numerically [2].

The example of a solenoidal tractor beam presented
in Fig. 1(a) was designed according to these princi-
ples. Figure 1(b) shows the computed trajectory of a
50 nm-diameter silica sphere moving through water in
its force field. Because solenoidal tractor beams oper-
ate at dipole order, they should be inherently stronger
than higher-order tractor beams based on continuously
invariant modes.

Accounting for the magnetic field’s contribution to the
optical force shifts θ0 by an amount that depends on
the relative magnitudes of αe and αm. The net effect is
to strengthen the pulling force, at least for conventional
materials.

Polarization also can enhance a solenoidal tractor
beam’s performance. For example, Eq. (7c) shows that
a solenoid beam created with right-circularly polarized
light has a transverse spin-curl force of the form

F sc(r) =
εk3

24πε0
(α′eα

′
m + α′′eα

′′
m)

(
r̂

r
∂θ − θ̂∂r

)
u2(r).

(26)
When applied to a right-handed solenoidal tractor beam,
this increases Fθ(r) for r < R and decreases it for r >
R. By moderating the trapped particle’s speed in this
way, F sc(r) contributes to a kinematic trap that tends
to localize an object near r = R as it is transported by
the beam.

V. DISCUSSION

The two-component solenoidal tractor beams de-
scribed here illustrate the process by which first-order
tractor beams may be designed and optimized using the
theory of photokinetic effects. More sophisticated super-
positions [2] may have superior properties, but at the

cost of additional complexity. For some applications,
solenoidal waves based on other helical modes, such as
Laguerre-Gaussian beams, may be preferable.

Beyond its immediate application to designing trac-
tor beams, the theory of photokinetic effects offers addi-
tional benefits for optical micromanipulation. Express-
ing optical forces in terms of experimentally accessible
quantities helps to elucidate the origin of experimen-
tally observed phenomena. The polarization-dependent
contribution from Eq. (7d), for example, explains why
linearly polarized optical tweezers exert anisotropic in-
plane forces [16, 23]. The circulation of optically isotropic
spheres in circularly polarized optical tweezers similarly
may be identified with the spin-curl force from Eq. (7c).
Polarization-dependent size selectivity in the force cre-
ated by crossed plane waves [8] can be explained as aris-
ing from competition between the phase-gradient terms
in Eq. (5) and Eq. (7b). Such observations provide guid-
ance for designing and optimizing new modes of optical
micromanipulation, including tractor beams.

The development presented here directly addresses
the forces experienced by objects that are substantially
smaller than the wavelength of light. For larger particles,
the forces described by Eqs. (5) and (7) are augmented
and possibly dominated by higher-order multipole contri-
butions. For Rayleigh particles, we expect the first-order
forces described by Eq. (5) to be substantially stronger
than any higher-order contributions, including those de-
scribed by Eq. (7). Applying these considerations to the
particular case of tractor beams, we conclude that Bessel
beams generally push small objects whereas appropri-
ately designed solenoidal waves can pull them.
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