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A major challenge for post-classical Boson Sampling experiments is the need for a large number of
coupled optical modes, detectors, and single photon sources. Here we show that these requirements
can be greatly eased by time-bin encoding and dispersive optics-based unitary transformations. De-
tecting consecutively heralded photons after time-independent dispersion performs Boson Sampling
from unitaries for which no efficient classical algorithm is reported, to our knowledge. We also show
that time-dependent dispersion can implement general single-particle unitary operations. More gen-
erally, this scheme promises an efficient architecture for a range of other linear optics experiments.

PACS numbers: 42.50.Ex, 03.67.Lx, 42.50.Dv, 42.65.Lm

Unitary transformations on optical modes have been
used to implement single particle quantum gates [1, 2],
quantum simulations [3], and Boson Sampling [4–11].
Traditionally, these transformations are implemented on
spatial modes using a system of beamsplitters. How-
ever, building a large interferometer implementing such a
unitary transformation is experimentally challenging and
the largest number of modes so far has been 21 [9].

A particularly interesting application which requires a
large number of spatial modes is Boson Sampling. Boson
Sampling is the process of estimating the output pho-
ton distribution after passing multiple identical photons
through a passive linear interferometer. Aaronson and
Arkhipov have proposed that Boson Sampling is compu-
tationally hard for classical computers because it requires
the estimation of the permanents of independent and
identically distributed (iid) Gaussian matrices, a problem
that is believed to reside in the #P -complete complexity
class [4]. Boson Sampling has also been proposed as a
method for certain quantum chemistry simulations [12].
The only ‘effective interaction’ between photons in such
a system is due to the bosonic statistics of these iden-
tical photons at the detectors. The need for only linear
optics and photodetection could make the Boson Sam-
pling problem easier than general quantum computing
approaches with photons, which require nonlinear mate-
rials [13] or feed-forward schemes [14]. Furthermore, un-
like other quantum computing schemes that require on-
demand sources, Boson Sampling with probabilistic but
heralded input photons has been proposed to be compu-
tationally hard for a classical computer [15].

In conventional Boson Sampling schemes that use spa-
tial modes (which we now refer to as ‘Spatial Mode Boson
Sampling’ or SMBS), multiple identical photons enter
a high-dimensional transformation over spatial modes,
such as a system of beamsplitters and phase shifters,
while the output probability distribution is monitored
with detectors at each of the output modes [5–11], as
shown in Fig. 1. Specifically, photons are injected into

∗ mpant@mit.edu

input modes 1, . . . , j, . . . , n. The system then trans-
forms the creation operator for input spatial mode j as

â†j →
∑
i Uij â

†
i , at which point photons in each mode are

measured using single photon detectors [4–9]. As we de-
scribe, Boson Sampling can analogously be performed in
time by replacing spatial mode aj with temporal mode atj
and by replacing the beamsplitter array with dispersion
(Fig. 2).
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FIG. 1. Schematic of spatial mode Boson Sampling (SMBS)
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FIG. 2. Schematic of TMBS with time-independent disper-
sion

SMBS entails several difficult challenges, that, as we
show, favor temporal mode encoding. First, Boson Sam-
pling requires an extremely large number of modes to be
classically computationally difficult. Strictly speaking,
the complexity argument for Boson Sampling assumes
that, if n is the number of photons in the system and
m is the number of modes, m = Ω(n5 log2 n). Although
Aaronson and Arkhipov have conjectured that the com-
plexity arguments still hold when m = O(n2) [4], the
number of modes is still large: e.g., even with m = n2
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and n = 30, the interferometer would require 900 modes.
Furthermore, the experiment would require 900 detec-
tors and, if the photons came from heralded sources, 900
sources [15]. To date, experimental demonstrations of
SMBS have been limited to 5 photons in 21 modes [9].
The number of modes in temporal mode Boson Sampling
(TMBS) can be increased simply by increasing the dis-
persion or reducing the temporal width of input pho-
tons. Even with 10000 ps/nm dispersion, which can be
achieved with off-the shelf components, and 100 ps de-
tector jitter, which can be routinely achieved with silicon
avalanche photodiodes or with superconducting nanowire
single photon detectors [16], the number of modes in
TMBS is orders of magnitude higher than SMBS. In prin-
ciple, the experiment can be implemented in a single fiber
with only a single photon source and only two detectors:
one to herald input photons and one to detect the output
state, regardless of the number of interfering photons in
the system. Given the dead time tdt of single photon de-
tectors, the output may have to be split between a larger
number of detectors. However, in general, the number
of detectors is smaller than required in SMBS (Appendix
A).

Furthermore, uncertainty in the time when photons
are injected into different modes leads to distinguisha-
bility and loss of boson interference. This is a particular
problem in SMBS with heralded sources based on sponta-
neous parametric down conversion (SPDC). Most SMBS
experiments to date have relied on downconverted pho-
tons. Temporal or spectral filtering could improve the
interference, but at an exponential loss in multi-photon
throughput. In TMBS, the lack of control over the input
time of our photons only corresponds to a lack of con-
trol over the choice of our input modes; however, as long
as the input modes are known, this does not affect the
ability to perform Boson Sampling [15].

Previous proposals have considered temporal modes
for Boson Sampling [17, 18] but they relied on temporar-
ily converting temporal modes to spatial modes and
then mixing the modes with beamsplitter operations.
Hence, increasing the number of output modes (m� n)
requires a large number of effective beamsplitter oper-
ations. They also require active elements that operate
on a picosecond time scale. Furthermore, since they are
based on the interference of narrow photon packets, they
suffer from the same issues with temporal mismatch as
SMBS. In TMBS, detector jitter can limit the accu-
racy with which the input mode can be heralded but
this limitation can be overcome by using large dispersion.

Time-Independent Dispersion - We first consider the
simplest case of Boson Sampling in time with identically
shaped input photons and time-independent dispersion
(Fig. 2). If we use an SPDC source with idler photons
heralded at times tj and signal photons used as input

photons, the input state is given by |Ψin〉 =
(∏

j â
†
Aj

)
|0〉

where |0〉 is the multimode vacuum state and â†Aj ≡

∫∞
−∞ dt â†(t)A(t − tj) represents the creation operator

for the input state centered at tj . â†(t) is the creation
operator for time t and ω0 is the central frequency of the
input photons. We assume that the photon state after
heralding of the idler is a pure state of the form A(t−tj).
However, a realistic detector projects the signal photon
into a mixed state with tj varying over the timescale of
the detector jitter; the effect of this temporal mismatch
can be reduced with large dispersion (Appendix B 1).

â†Aj can be expanded in the frequency domain as

â†Aj =
∫∞
−∞ dωâ†(ω)F{A(t− tj)} where â†(ω) is the cre-

ation operator for frequency ω and F{A(t − tj)} is the
Fourier transform of A(t − tj). After passing through
a dispersive element with dispersion relation β(ω) and
length L, frequency components at ω are multiplied by
a factor e−iφ(ω) where φ(ω) ≡ β(ω)L. The wavefunction
of the multi-photon system is then given by |Ψout〉 =(∏

j b̂
†
j

)
|0〉 where b̂†j ≡

∫∞
−∞ dωâ†(ω)F{A(t−tj)}e−iφ(ω).

Going back to the time domain, b̂†j =
∫∞
−∞ dtâ†(t)U(t, tj)

with

U(t, tj) = A(t− tj) ∗ F−1{e−iφ(ω)} (1)

where ‘∗’ is the convolution operator.
If dispersion parameters are chosen such that U(t, tj)

does not change appreciably when t varies in a win-
dow of width ts (Appendix B 2), the modes can be
discretized so that the transformation is well approx-

imated by â†Aj →
∑
i Uij â

†
ti where â†ti represents the

creation operator at the discretized time step near

ti, i.e. â†tj =
∫ tj+ts
tj

dtâ†(t)/
√
ts. We can then

write the transformation as â†Aj →
∑
i Uij â

†
ti =∫∞

−∞ dtU(t, tj)â
†(ti). If we assume that U(t, tj) is ap-

proximately constant for a small time step ts, we can

approximate Uij â
†
ti ≈ U(ti, tj)

∫ tj+ts
tj

dtâ†(t). Hence, we

have Uij =
√
tsU(ti, tj). â

†
Aj →

∑
i Uij â

†
ti where

Uij =
[√

tsA(t− tj) ∗ F−1{e−iφ(ω)}
]
t=ti

(2)

Eq. 2 shows the class of unitary transformations from
which we can sample using time-independent disper-
sion. The unitary is band-diagonal because of the time-
invariant nature of the system. Classical algorithms exist
for the computation of the permanent of banded matri-
ces with a banded inverse which is polynomial in the size
of the matrix but exponential in the number of bands
[19]. The inverse of a unitary banded matrix is banded.
However, because the number of bands is extremely large
and the number of bands/dispersion is increased with the
number of photons, a classical simulation using the algo-
rithm from [19] would be inefficient.

The shape of the input pulses A(t) is incorporated into
the unitaries in Eq. 2 because, unlike conventional uni-
tary implementations, the input states and measurement
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have different bases; the input photons have shape A(t)
but the measurement is in the time basis (with eigen-
functions δ(t − tj)). The results of an experiment will
be the same as a spatial unitary implementing Eq. 2.
Imagine a fictitious experiment where the input photons
are δ(t − tj). They then go through a unitary U1 which
puts them in a superposition of the form A(t) (physically,
this is the state of the photons going into the dispersion).
The photons then go through another unitary U2 which is
the dispersion and the total unitary implemented by this
system is U1U2. The output of this system will be the
same as our scheme. Although a wavefunction δ(t − tj)
is unphysical, the detector sees the same output state as
if the operator U1U2 was applied to photons of the form
δ(t− tj).

It is possible to sample from a larger class of uni-
taries by shaping the temporal form of the input pho-
tons. Methods for shaping single photons with arbitrary
amplitude and phase in time have been proposed [20]
and an experimental demonstration of shaping the spa-
tial waveform of single photons had been reported [21].
With pulse-shaping, the input waveform A(t − tj) is re-
placed by a more general set of functions Aj(t) so that
the accessible set of unitaries becomes

Uij =
[√

tsAj(t) ∗ F−1{e−iφ(ω)}
]
t=ti

(3)

If it were possible to choose any set of functions Aj(t),
then the unitary could be chosen column by column using
Aj and simply detecting the photons without any disper-
sion would be equivalent to Boson Sampling. However,
it is experimentally challenging to prepare multiple over-
lapping photons with a specific waveform. Hence, for re-
alistic implementation, the photon wave-packets should
be separated in time. This limits the possible unitaries
represented by Eq. 3.

Although we have no proof of the hardness of sampling
from such a unitary, there is to our knowledge no reported
efficient classical algorithm for sampling from a general
unitary of this form. Sending a train of photons through
a time-independent dispersion could allow for a Boson
Sampling experiment with more photons and more modes
than can be currently achieved with SMBC.

An arbitrary functional form for the dispersion φ(ω)
can be obtained by using approaches used in optical func-
tional design [22] and femtosecond pulse-shaping [23].
There are even commercial products for implementing
arbitrary dispersion used for pulse-shaping in telecom-
munication [24].

A central feature in spatial boson collision experiments
is the bunching of bosons in the output modes i.e., Hong-
Ou-Mandel interference [25]. An analogous feature ap-
pears in the temporal modes. Consider a heralded input
state of two photons, a†(t− ti1)a†(t− ti2) |0〉. If this state
passes through group velocity dispersion in a fiber of
length L (Fig. 3(a)): β(ω) = β0 +β1(ω−ω0)+1/2β2(ω−
ω0)2, φj = βjL, j ∈ {0, 1, 2}. For simplicity, we have
assumed a Gaussian input shape of the form

A(t) =

(
1

σcor
√

2π

)1/2

exp

[
− t2

4σ2
cor

]
exp[iω0t], (4)

where we have assumed that the correlation time σcor
of the photons from the heralded photon source is much
shorter than the biphoton coherence time. SPDC pho-
tons are often approximated as Gaussians in time. How-
ever, the two photon interference effects would be visible
with any shape in general. After passing through this
dispersive element, the probability of detecting the pho-
tons at times to1 and to2 corresponds to the magnitude
squared of a 2 × 2 permanent and assuming φ2 � σ2

cor,
the probability goes to zero when (Appendix C)

∆ti∆to = (2m+ 1)πφ2 (5)
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FIG. 3. (a) Setup for seeing ’HOM-like’ interference (b) The
joint probability of detecting the first photon at to1 and the
second photon at to2 when two input photons near t = 0 and
separated by 100 ps are sent through a second order disper-
sive element. σcor = 200 fs and the dispersive element has
a GVD parameter of magnitude |D| = 2πcφ2/λ

2 = 10000
ps/nm. ts = 10 ps

In Fig. 3, the joint probability of observing a photon at
to1 and to2 is plotted when two photons with σcor = 200 fs
and a Gaussian temporal waveform centered at ti1 = −φ1
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and ti2 = −φ1 + 100 ps are sent through a dispersive
element with a GVD parameter of magnitude |D| =
2πcφ2/λ

2 = 10000 ps/nm. The assumption φ2 � σ2
cor

has not been used. At the time-scale of a few nanosec-
onds, the output resembles a Gaussian pulse centered at
to = 0, as would be expected from single photon input
at ti = −φ1. However, at the time scale of hundreds of
picoseconds, two-photon interference effects can be seen
in clear dips in the two-photon output probability, as
predicted by Eq. 5. The plot has been discretized with
ts = 10 ps. We chose a low value of ts here to clearly
show the shape of our interference pattern; such timing
resolution is not necessarily required to resolve the
two-photon interference pattern. Experimentally, these
dips would be easily resolved using detectors with a
jitter of 100 ps. The predicted correlation measurement
is provided in Fig. 5 of Appendix C. The increase in the
size of each bin would also increase the probability of
detecting photons in each time bin by a factor of 100.
It should be noted that the “HOM-like” interference
that we see here used a setup of the form shown in
Fig. 3(a). The intereference effect is distinct from tradi-
tional HOM and works with temporally separated pulses.
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t2 t3t4 t5...... ..
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t
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FIG. 4. Schematic of TMBS with time-dependent dispersion

Time-Dependent Dispersion - With time-dependent dis-
persion, it is possible to implement any arbitrary unitary
transformation on temporal modes.

An arbitrary single mode continuous variable uni-
tary transformation on temporal modes can be writ-

ten as e−if(t̂p,ω̂p) where t̂p =
∫

dt′ t |t′〉 〈t′| and ω̂p =∫
dω ω |ω〉 〈ω| are the time projection and frequency

projection operators analogous to x̂ and p̂ [26–29] and
[t̂p, ω̂p] = i/2. It should be noted that t̂p is the time
projection operator corresponding to the photon’s tem-
poral waveform and not the time over which the system
evolves.

Given the ability to realize arbitrary continuous vari-
able single particle unitaries over t̂p, any discrete unitary
transformation can be implemented by making the trans-
formation constant over the output time bins. Such an
experiment with multiple photons would be equivalent
to Boson Sampling and if the discrete unitary is chosen
with Haar measure, the results are believed to be clas-
sically intractable [4]. We describe two ways to realize
the required continuous variable single particle unitary

e−if(t̂p,ω̂p).
In the previous section we discussed methods for im-

plementing arbitrary time-independent dispersion. Since
the dispersion implements a different phase shift on each
frequency component, it can be written as e−iφ(ω̂p) where
φ is an arbitrary real function. If the elements in the
dispersion are made to change with time, pulses reach-
ing the dispersive element at different times see a differ-
ent φ(ω̂p). Hence, the resulting phase shift operator is

f(t̂p, ω̂p) and we get the desired unitary e−if(t̂p,ω̂p) with
time-dependent elements that allow for changes in the
frequency spectrum of the pulses which was not possible
with time-independent dispersion.

Another option for realizing the required unitary would
be to cascade time-independent dispersion and phase
modulators (time-dependent refractive index). The
Hamiltonians corresponding to dispersion and phase
modulators are φ(ω̂p) and g(t̂p) respectively.

Following previous work on realizing arbitrary Hamil-
tonians for continuous variable systems [27–29], one can
construct Hamiltonians of the form [g1(t̂p), φ1(ω̂p)] +

[g2(t̂p), [g3(t̂p), φ3(ω̂p)]] + . . . using the properties

e−iÂδte−iB̂δteiÂδteiB̂δt = e[Â,B̂]δt2 +O(δt3) (6)

eiÂδt/2eiB̂δt/2eiB̂δt/2eiÂδt/2 = ei(Â+B̂)δt +O(δt3). (7)

The following Hamiltonians can be cascaded to gen-
erate a Hamiltonian that can be any polynomial in t̂p
and ω̂p [27]: t̂p, ω̂p, t̂

2
p + ω̂2

p and a Hamiltonian of the

form ω̂np where n ≥ 3. The Hamiltonians ω̂p and t̂p are
first order dispersion (inverse group velocity) and a linear
varying refractive index. A high order Hamiltonian ω̂np
can be realized with higher order dispersion. t̂2p + ω̂2

p can
be realized with a combination of second order disper-
sion and a quadratically varying refractive index using
Eq. 7. Although such a decomposition allows us to build
arbitrary Hamiltonians with a number of elements which
increase as a small polynomial in the number of photons
[30], more efficient decompositions are often possible with
fewer elements [28].

Furthermore, as opposed to the conventional construc-
tion of f(x̂, p̂) [27] which uses low-order polynomials in
x̂ and p̂ (high order polynomials require a non-linear
medium), a unitary of the form g(t̂p) or φ(ω̂p) can be
of any arbitrary functional form without requiring an ex-
plicit Kerr-type nonlinearity.

In conclusion, we have introduced new methods of im-
plementing unitary transformations on temporal modes
based on dispersion and pulse shaping that require a
much smaller number of sources and detectors and do
not require a large system of beamsplitters. In principle,
using only fixed dispersion, a single heralded source and
two detectors, one can observe multi-photon interference
and perform a Boson Sampling experiment for which no
efficient classical algorithm is known, to our knowledge.
By using time-dependent dispersion, it is possible to sam-
ple from arbitrary unitaries.
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Appendix A: Number of detectors

In this section we show that the number of detectors
in TMBS can be much smaller than SMBS

In Fig. 3, if photon detection is binned in steps of 100
ps, there are 1934 modes. The number of modes is de-
fined as the number of time bins within which the abso-
lute value of the dispersed wavefunction is greater than
90% of the peak value.

We assume that our detectors have a dead time of 1
ns and look at the failure rate of our boson sampling
scheme with 2000 input and output modes and 30 pho-
tons when each photon output is passively and equally
split between 30 detectors. We assume that each time bin
on the heralding as well on the output detector bank is
equally likely to receive a photon. We post-select on the
cases where there are a total of 30 photons incident on
each detector bank (as in conventional scattershot boson
sampling).

The scheme is considered a failure if two photons are
incident on any detector within the dead time. Based on
a Monte-Carlo simulation of the system, we find that the
probability of failure is less than 10%

The assumption of photons being equally likely to ar-
rive at any bin is accurate for the heralding detector
bank. For the detector bank which detects photons after
going through the unitary, the assumption may lead to
an underestimated failure rate. However, we can postse-
lect on the number of photons detected after the unitary
being equal to the number of heralded photons and hence
a higher failure rate is tolerable. An accurate simulation
of the failure rate with a 30 photon, 2000 mode system
is expected to be close to the limit of current computing
capabilities.

Hence, TMBS can allow for a 30 photon 2000 mode ex-
periment with 60 detectors, whereas an equivalent SMBS
experiment would require 4000 detectors. It is interesting
to observe that for the same number of photons and dead
time bins, the number of detectors required for TMBS
goes down with an increase in the number of modes since
there is a smaller chance of detecting multiple photons
within a dead time. In SMBS, the number of detectors
is equal to twice the number of modes.

Appendix B: Error bounds

We find bounds on the error in the sampling distribu-
tion due to detector jitter and discretization. U is the

ideal unitary that we wish to implement, Ũ is the uni-
tary with errors and DU and DŨ are the corresponding
probability distributions over outcomes.

It has been shown in [31] that if there are n photons
in the system,

‖DŨ −DU‖ ≤ n‖Ũ − U‖op (B1)

If the relative error of each matrix element has a upper
bound of R i.e. |Ũij − Uij | ≤ R|Uij | for all i, j,

‖DŨ −DU‖ ≤ n‖RU‖op
‖DŨ −DU‖ ≤ nR (B2)

where we have used the fact that U is unitary.
Hence, in order to have ‖DŨ −DU‖ = o(1), R = o

(
1
n

)
.

1. Error due to detector jitter

We have shown that the in the case of input photons
with a fixed shape A(t − tj) sent through a dispersion
β(ω)L, the resulting unitary sampled from is

Uij =
√
tsU(ti, tj) (B3)

=
√
tsA(ti − tj) ∗B(ti)

=
√
tsA(ti) ∗B(ti − tj)

where B(t) = F−1{e−iφ(ω)}.
Due to detector jitter, there is an uncertainty in tj . If

the maximum timing error due to detector jitter is te,

R =

∣∣∣∣A(ti) ∗B(ti − tj + te)−A(ti) ∗B(ti − tj)
A(ti) ∗B(ti − tj)

∣∣∣∣
≈

∣∣∣∣∣A(ti) ∗ Ḃ(ti − tj)
A(ti) ∗B(ti − tj)

te

∣∣∣∣∣ (B4)

If we write the dispersion in the form

φ(ω) = φ′(φsω) (B5)

where φs is used to scale the dispersion. It can be seen
that Ḃ(ti − tj)/B(ti − tj) = o(1/φs). Hence, if A(t) is
chosen independent of n, R = o(te/φs). Therefore, in
order to limit the error due to detector jitter, te/φs =
o(1/n).

2. Error due to discretization

In the case of time independent dispersion, the wave-
function generated after dispersion is treated discretely
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in order to draw a parallel with the original formalism
for Boson Sampling [4].
Uij =

√
tsU(ti, tj). The relative error can be written

as

R < maxt

{∣∣∣∣U(t, tj)− U(ti, tj)

U(ti, tj)

∣∣∣∣}
≈ maxt

{∣∣∣∣∣ U̇(t, tj)

U(ti, tj)

∣∣∣∣∣
}
ts (B6)

where t ∈ [ti − ts/2, ti + ts/2]. If we define ζ =

maxt{U̇(t, tj)/U(ti, tj)}, we can see that R = o(ζts). As
discussed previously, we have ζ = o(1/φs). Hence, in
order to limit the error, ts/φs = o(1/n).

Appendix C: Temporal analog of the HOM dip

In this section, we derive the two-photon wavefunction
obtained on passing two photons with Gaussian envelopes
through second order dispersion which is used to derive
Eq. 5.

Using Eq. 1, a single photon with temporal waveform

A(t) =
(

1
σcor

√
2π

)1/2
exp

[
− t2

4σ2
cor

]
exp[iω0t] on passing

through second order dispersion results in the temporal
waveform

Ã(t) = (2π)−1/4
√

σcor
σ2
cor + iφ2/2

e−iφ0eiω0t (C1)

exp

[
− (t− φ1)2

4(σ4
cor + φ22/4)

(
σ2
cor − i

φ2
2

)]
Hence, for two sets of entangled photons generated

from a heralded source with idlers are detected at times
ti1 and ti2, after passing through the dispersive element,
the wavefunction is given by

|Ψ〉 =

∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′â†(t′)â†(t′′)

Ã(t′ − ti1)Ã(t′′ − ti2) (C2)

Every combination of a†(t1)a†(t2) is repeated twice
under the integrals. The repetition can be removed by
rewriting the expression as

|Ψ〉 =

∫ ∞
−∞

dt′
∫ ∞
t′

dt′′â†(t′)â†(t′′)
σeiω0(t

′+t′′)−i2φ0

√
2π(σ2

cor + iφ2/2){
1 + exp

[
−σ2

cor + iφ2/2

4σ4
cor + φ22

{2(ti1 − ti2)(t′ − t′′)}
]}

exp
[−σ2

cor + iφ2/2

4σ4
cor + φ22

{(t′ − ti1 − φ1)2

+(t′′ − ti2 − φ1)2}
]
|0〉 (C3)

assuming that the pulse broadening due to the dis-
persion is much greater than the correlation time of the
photons from the entangled source (φ2 � σ2

cor), this is
reduced to

|Ψ〉 =

∫ ∞
−∞

dt′
∫ ∞
t′

dt′′â†(t′)â†(t′′)
σeiω0(t

′+t′′)−i2φ0

√
2π(σ2

cor + iφ2/2){
1 + exp

[
i
(ti1 − ti2)(t′ − t′′)

φ2

]}
exp

[−σ2
cor + iφ2/2

4σ4
cor + φ22

{(t′ − ti1 − φ1)2

+(t′′ − ti2 − φ1)2}
]
|0〉 (C4)

From the equation above, Eq. 5 follows immediately.

Using â†tj =
∫ tj+ts
tj

dtâ†(t)/
√
ts to discretize Eq. C3,

we get

|Ψ〉 =
∑
t1

∑
t2>=t1

â†t1 â
†
t2Per(M) |0〉 (C5)

where

Mjk =

(
tsσ√

2π(σ2
cor + iφ2/2)

)1/2

eiω0tj−φ0 (C6)

exp

[
−σ2

cor + iφ2/2

4σ4
cor + φ22

(tj − tik − φ1)2
]

Hence, the probability of detecting photons at to1 and to2
is given by [|Per(M)|2/(rin!rout!)]tj=toj where rin(rout) =

2 if the the input(output) photons are in the same mode
and 1 otherwise.

The joint probability of detecting two photons at to1
and to2 is plotted in Fig. 3 with ti1 = −φ1, ti2 = −φ1 + 100
ps, |D| = 2πcφ2/λ

2 = 10000 ps/nm and σcor = 200 fs.
In the main paper the detection time has been binned in
10 ps steps which is hard to achieve because of detector
jitter. In Fig. 5 here, the two photon interference pattern
is visible even when the binning is increased to 100 ps
which is much easier to achieve experimentally.
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FIG. 5. The joint probability of detecting the first photon
at to1 and the second photon at to2 when two input photons
near t = 0 and separated by 100 ps are sent through a second
order dispersive element. σcor = 200 fs and the dispersive el-
ement has a GVD parameter of magnitude |D| = 2πcφ2/λ

2 =
10000 ps/nm. The probability has been binned into buckets
of 100 ps which corresponds to a jitter achievable with cur-
rently available silicon and superconducting nanowire single
photon detectors [16]
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