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We report diffusion Monte Carlo results for the ground state of unpolarized spin-1/2 fermions
in a cylindrical container and properties of the system with a vortex line excitation. The density
profile of the system with a vortex line presents a non-zero density at the core. We calculate the
ground state energy per particle, the superfluid pairing gap and the excitation energy per particle.
These simulations can be extended to calculate properties of vortex excitations in other strongly
interacting systems, such as superfluid neutron matter using realistic nuclear Hamiltonians.

I. INTRODUCTION

Ultracold Fermi gases are dilute systems with interpar-
ticle interactions that can be controlled through Feshbach
resonances, which allow the access of strongly interact-
ing regimes. Until recently, superfluids were classified
as either Bardeen-Cooper-Schrieffer (BCS) states or the
Bose-Einstein Condensate (BEC). In fact they are limit
cases of a continuum of the interaction strength. The
possibility of tuning the parameters to observe changes
from one regime to the other is conceptually interesting,
but real enthusiasm came from the experimental realiza-
tion of the BCS-BEC crossover [1].

The three dimensional unitary Fermi gas is a strongly
interacting system with short-range interactions of re-
markable properties. When the scattering length a di-
verges, 1/akF → 0 (kF is the Fermi momentum of the
system), the low-energy s-wave scattering phase shift is
δ0 = π/2. The ground state energy per particle E0 is
proportional to the one of the noninteracting Fermi gas
EFG in a box:

E0 = ξEFG = ξ
3

10

~2k2F
M

, (1)

where the constant ξ is known as the Bertsch parameter
and M is the mass of the fermion. In the limit akF →
−∞, quantum Monte Carlo (QMC) results give the exact
value of ξ = 0.372(5) [2], in agreement with experiments
[3, 4].

One signature of superfluidity is the formation of quan-
tized vortices. Since their first observations in superfluid
4He a large body of experimental and theoretical work
has been carried out concerning bosonic systems [5–8].
On the other hand, the discovery of vortex lattices in
a strongly interacting rotating Fermi gas of 6Li [9] was
a milestone in the study of superfluidity in cold Fermi
gases.

A vortex line consists of an extended irrotational flow
field, with a core region where the vorticity is concen-
trated. The quantization of the flow manifests itself in
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the quantized units h/2M of circulation. There is no
evidence for quantized vortices with more than one unit
of circulation. Many questions remain to be answered
concerning the structure of the vortex core for fermions.

In this paper we focus on ultracold Fermi gases, but
our results are useful to also understand properties of re-
lated systems. Ultracold atomic gases and low-density
neutron matter are unique in the sense that both exhibit
pairing gaps of the order of the Fermi energy [10]. The
neutron scattering length is about −18.5 fm which is sig-
nificantly larger than the interparticle spacing and the
interaction range 2.7 fm [11], therefore low density neu-
tron matter is also near unitarity. In this regime both di-
lute cold fermion atoms and neutron matter have similar
properties [12]. The possibility of tuning particle-particle
interactions experimentally in cold atomic gases provides
an emulation of low-density neutron matter, which is be-
yond direct experimental reach. We present results of
the vortex structure in cold atomic gases, that can be
extended to direct simulations of vortices in superfluid
neutron matter using realistic nuclear Hamiltonians.

Here we report results for a single vortex line in the
unitary Fermi gas in a cylindrical geometry. We found
that the density profile is flat at the center of the cylinder.
We separated from the ground state of the system the
wall contribution, and determined an upper bound of the
bulk energy as E0 = (0.50± 0.01)EFG per particle. EFG
is the free Fermi gas energy at the same geometry, defined
as

EFG =
3

10

~2

M

(
3π2A

V

)2/3

, (2)

where A is the number of particles, and V is the volume.
We also estimated an upperbound value of the superfluid
pairing gap for this geometry, ∆ = (1.12±0.02)EFG. For
the system with a vortex line we obtained the density pro-
file with a non-zero density at the core, and an excitation
energy of Eex = (8.6± 0.3)10−3EFG per particle.

We have organized this work as follows. In Section
II we present the methods employed to treat our system.
We begin with the solution of Schroedinger’s equation for
a spinless free-particle in a cylindrical container. In Sec-
tion II B we show that the component of the BCS wave
function with a fixed number of particles can be written

mailto:lucas.madeira@asu.edu


2

as an antisymmetrized product of pairing functions, de-
termined for the cylindrical geometry. We introduce the
ground state wave function and the wave function for the
system with a vortex line in Sections II C and II D, re-
spectively. The QMC methods we employed are briefly
described in Section II E. Section III contains our results.
First we present the spatial distribution of the particles
in the cylinder for both the ground state and the system
with a vortex line. Energy related quantities, such as the
ground state energy, the superfluid pairing gap and the
vortex excitation energy are given in Sec. III B. Finally,
we discuss our results in Section IV.

II. METHODS

Previous calculations on Bose systems like 4He have
often used a periodic array of counter rotating vortices in
order to have periodic boundary conditions to minimize
surface effects. For example, in 4He the calculations of
Ref. 13 used 300 particles and 4 counter rotating vortices
in the simulation cell. In order to use the same number of
fermion pairs we would require a system of 600 fermions.
While a few simulations of fermions have been performed
with this number of particles, the required variance for a
detailed optimization is beyond the goals of this paper.
We used a circular cylindrical simulation cell of radius R
with hard wall boundary conditions, at this radius. The
system is periodic in the axial direction.

We begin our calculations by investigating properties
of the ground state of the system. The model we con-
sidered consists of A spin-1/2 fermions in a cylinder of
radius R and height L. Because the system is dilute, the
interaction is s-wave. Fermions of the same spin do not
interact and we use a short range potential that is at-
tractive, which can reproduce the regime of akF → −∞.
The s-wave potential V (r) acting between particles with
opposite spin has the form

V (r) = −v0
2~2

M

µ2

cosh2 (µr)
, (3)

where v0 can be adjusted to tune the value of akF and µ
controls the effective range reff of the potential. We set
v0 = 1 that for this potential correspond to a = ±∞ and
reff = 2/µ [14, 15]. In this paper all the calculations are
performed with µr0 = 24, and 4πr30n0 = 3, where n0 is
the number density, but the results could be straightfor-
wardly extrapolated as done in Ref. 16.

A. Schroedinger’s equation in cylindrical
coordinates

We considered the free particle solution of
Schroedinger’s equation in a cylinder of radius R
and height L, finite at ρ = 0 and subject to the

boundary conditions

Ψnmp(ρ = R, ϕ, z) = 0,

Ψnmp(ρ, ϕ, z) = Ψnmp(ρ, ϕ+ 2π, z),

Ψnmp(ρ, ϕ, z) = Ψnmp(ρ, ϕ, z + L), (4)

where (ρ, ϕ, z) are the usual cylindrical coordinates. The
solution is given by

Ψnmp(ρ, ϕ, z) = NmpJm (kmpρ) exp [i(kzz +mϕ)], (5)

where Nmp is a normalization constant, Jm(kmpρ) are
Bessel functions of first-kind, kmp = jmp/R, jmp is the p-
th zero of Jm, and kz = 2πn/L. The quantum numbers n
and m can take the values 0,±1,±2, . . . and p = 1, 2, . . .
. The eigenvalues of these functions are

Enmp =
~2

2M

[(
jmp
R

)2

+

(
2πn

L

)2
]
. (6)

The set of states {Ψnmp} is complete, therefore it is used
to expand our many-body trial wave function.

B. BCS wave function projected to a fixed number
of particles

The BCS wave function used to describe the Cooper
pairs in the ground state, is written as

|BCS〉θ =
∏
k

(uk + eiθvkâ
†
k↑â
†
−k↓)|0〉,

u2k + v2k = 1, (7)

where uk and vk are real numbers, θ is a phase, k is

the wave number vector, â†k↑(↓) creates a fermion with

momentum k and spin up (down), and |0〉 represents the
vacuum. However this function is not an eigenstate of
the particle number operator. The BCS wave function
projected to a fixed number A of particles, half of them
with spin up and the other half with spin down, can be
written as the antisymmetrized product [17]

ψBCS(R, S) = A[φ(r1, s1, r2, s2)×
× φ(r3, s3, r4, s4) . . . φ(rA−1, sA−1, rA, sA)], (8)

where R is a vector containing the particle positions ri, S
stands for the spins si and φ is the pairing function. This
wave function can be calculated efficiently as a Slater de-
terminant or a pfaffian [18]. The simulation is performed
by using pairing orbitals constructed from the functions
of Eq. 5, instead of plane waves typically employed in a
periodic box or in an harmonic trap [19]. The pairing
orbitals are given by

φ(r1, s1, r2, s2) =
∑
k

vk
uk
N 2
mpJm

(
jmpρ1
R

)
×

Jm

(
jmpρ2
R

)
exp {i [kz(z1 − z2) +m(ϕ1 − ϕ2)]} ×

[〈s1s2| ↑↓〉 − 〈s1s2| ↓↑〉] , (9)
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where we have explicit included the spin part to impose
singlet pairing.

We also want to simulate systems that are not fully
paired, by including unpaired states using a superposi-
tion of free-particle solutions

Φ(ρ, ϕ, z) =
∑
n,m,p

νnmpΨnmp(ρ, ϕ, z), (10)

where the νnmp are variational parameters. For q pairs
and o unpaired states, A = 2q + o, we have

ψBCS(R, S) =

A[φ(r1, s1, r2, s2) . . . φ(r2q−1, s2q−1, r2q, s2q)×
Φ2q+1(r2q+1) . . .Φ2q+o(r2q+o)]. (11)

as described in Ref. [14].

C. Ground state

For the ground state of fermions in a cylindrical con-
tainer, we use Eq. (8), or Eq. (11) if we have unpaired
particles. The momentum vectors in the cylinder are
quantized and the system has a shell structure that de-
pends on R and L, see Eq. (6). We consider αk ≡ vk/uk
as variational parameters [20] and we assume the pairing
wave functions to be

φ(r, r′) = β̃(r, r′) +
∑
I6IC

αIN 2
mpJm

(
jmpρ

R

)
×

Jm

(
jmpρ

′

R

)
exp {i [kz(z − z′) +m(ϕ− ϕ′)]}, (12)

where we adopted hereafter primed indexes to denote
spin-down particles, unprimed ones to refer to spin-up
particles and we omit the spin part. In Eq. (12), IC is
a cutoff shell number and we assume that contributions
of shells with I > IC are included through the β̃(r, r′)
function, given by

β̃(r, r′) =


N 2

01J0
(
j01ρ
R
)
J0

(
j01ρ

′

R

)
×

×β(r) + β(L − r)− 2β(L/2) for r 6 L/2
0 for r > L/2

and

β(r) = [1 + γbr][1− e−cbr]e
−br

cbr
, (13)

where r = |r− r′| and b, c and γ are variational param-
eters. This functional form of β(r) describes the short-
distance correlation of particles with anti-parallel spins.
We consider c = 10, γ = 5 and b = 0.5 kF .

We also include a one-body Jastrow factor of the form

χ(ρi) =

(
a√

2πσ2
exp

{
(ρi − ρ̄)2

2σ2

}
+ ν

)λ
, (14)

where a, σ, ρ̄, ν and λ are variational parameters. The
correlation between antiparallel spins is included in the
two-body Jastrow factor f(rij′) obtained from solutions
of the two-body Schroedinger equation[

− 1

M
∇2 + V (r)

]
f(r < d) = λf(r < d), (15)

where d is a variational parameter. The boundary con-
ditions are f(r > d) = 1 and f ′(r = d) = 0 [21]. The
total wave function for the ground state of fermions in a
cylindrical container is then written as

ψ0(R) =
∏
k

χ(ρk)
∏
i,j′

f(rij′)ψBCS(R). (16)

D. Vortex line

The simulation of a vortex excitation is done by con-
sidering pairing orbitals that are eigenstates of Lz with
eigenvalues ±~. This is done by coupling single particle
states of quantum numbers m and (−m+1). In this case
we consider pairing orbitals with of form

φV (r, r′) = β̃(r, r′) +

K∑
i=1

α̃iNm;pN−m+1;p {

Jm

(
jmpρ

R

)
J−m+1

(
j−m+1;pρ

′

R

)
×

exp {i [kz(z − z′) +mϕ+ (−m+ 1)ϕ′)]}+

Jm

(
jmpρ

′

R

)
J−m+1

(
j−m+1;pρ

R

)
×

exp {i [kz(z
′ − z) +mϕ′ + (−m+ 1)ϕ)]}} , (17)

whereK is the number of single particle states with quan-
tum numbers (n,m, p) being paired with (−n,−m+1, p).
Since we don’t want to have a winding number in the z
direction, we consider the quantum number n for a par-
ticle and the time-reversed −n for the other. Also, the
largest contribution is assumed to be from states with
the same quantum number p in the radial part.

E. Diffusion Monte Carlo

The Hamiltonian of our system is given by

H = − ~2

2M

∑
i

∇2
i +

∑
i<j

V (rij) . (18)

The diffusion Monte Carlo method (DMC) is used to ex-
tract the lowest energy state of H from an initial state ψT
obtained through Variational Monte Carlo (VMC) calcu-
lations. The propagation of the system in an imaginary
time τ can formally be written as

ψ(τ) = e−(H−ET )τψT , (19)
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where we introduce an energy offset ET , used to control
the normalization of ψ(τ). In the limit τ → ∞, only
the lowest energy component Φ0, not orthogonal to ψT ,
survives

lim
τ→∞

ψ(τ) = lim
τ→∞

e−(H−ET )τψT = Φ0. (20)

The evolution in imaginary time is performed by solving
the integral equation

ψ(R, τ) =

∫
dR′G(R,R′, τ)ψT (R′), (21)

where G(R,R′, τ) is the Green’s function of the Hamil-
tonian, which contains a diffusion term, related to the
kinetic operator, and a branching term depending on
the potential. The exact form of G(R,R′, τ) is known
only for very simple cases, but it can be approximated
in the limit of ∆τ → 0. An importance sampled ver-
sion of Eq. (21) is then solved iteratively with small time
step, for a large number of steps. The DMC method
can only sample positive distributions. A system formed
by fermions has the so-called fermion sign problem. We
overcome this problem by using the usual fixed-node
approximation [22]. For a detailed description of the
DMC algorithm, the importance sample technique and
the fermion sign problem, the reader is referred to the
review Ref. 23 and references therein.

Note that the trial wave function ΨT (R) is used in two
different ways: as an approximation of the ground state
in the VMC calculation and as importance function that
also determines the nodal surface followed by the fixed-
node approximation.

The variational parameters for the pairing functions
and two-body Jastrow factor have been optimized using
the stochastic reconfiguration method [24]. The param-
eters for the one-body term are chosen to maximize the
overlap of the density profile along the radial coordinate
calculated using DMC and VMC.

III. RESULTS

In this section we present the results obtained with the
BCS wave function ψ0 for fermions in a cylinder, Eq. (16);
and the results for the system with a vortex line along
the z-axis, ψV using the pair orbitals of Eq. (17). Ex-
pectation values of operators that do not commute with
the Hamiltonian, such as the density, can be calculated
using a combination of mixed and variational estimators,

〈Φ|Ŝ|Φ〉 ≈ 2〈Φ|Ŝ|ΨT 〉 − 〈ΨT |Ŝ|ΨT 〉
+O

[
(Φ−ΨT )2

]
. (22)

Such combinations of VMC and DMC estimators are
called extrapolated estimators [25].

We have fixed the number density at k3F /(3π
2), which

is the density of the free Fermi gas and we have freedom
to choose the radius R and the height L of the cylinder.

In most simulations we set L = 2R, so that the diameter
is equal to the height of the cylinder; we have verified
that this last choice does not affect the results.

A. Density profile

The spatial distribution of the particles in the cylinder
was studied by calculating the density profile D(ρ) along
the radial direction ρ. The normalization is chosen so
that ∫

V

D(ρ)dv = 1, (23)

where the integral is over the volume V = πR2L of the
cylinder.

The ground state density profile for closed shells of the
system is presented in Fig. 1. Boundary effects decrease
as the number of particles considered is increased. For
the largest system the density has small fluctuations near
the center of the cylinder and it smoothly decreases un-
til it vanishes at the wall. The almost constant density
for small ρ is consistent with the ground state, since it
corresponds to the bulk of the system. For the largest
number of particles we have considered we assume size
effects to be negligible.
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FIG. 1. (Color online) Ground state density profile for sys-
tems with closed shells, corresponding to different number of
particles as indicated in the legend.

We present the density profile for closed shell systems
with a vortex line excitation in Fig. 2. The most in-
teresting feature of this quantity is a non-zero density
at the core, near ρ = 0. Previous calculations using
Bogoliubov-deGennes theory[26, 27] while showing a fi-
nite density at the origin, give a much larger suppression
of the density at the origin. Their density at the origin
and unitarity is about one quarter of the bulk density.
We do not see such a large suppression. The reasons for
these differences could be due to our geometry, the fixed-
node approximation we use, or the approximations in the
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Bogoliubox-deGennes theory. Future calculations using
both methods in the same geometry could help shed light
on these differences.

We calculated the particle number a distance R from
the cylinder axis as

η(R) =

∫ L

0

dz

∫ 2π

0

dϕ

∫ R

0

dρ ρ D(ρ). (24)

We find that the difference between η(R) for the ground
state and the vortex line state is at most 2 particles.
The optimization process is computationally costly and
it may be responsible for the difficulties in resolving the
densities of the two systems.
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FIG. 2. (Color online) Density profile for systems with a
vortex line and closed shells for different number of particles.

B. Energy

1. Ground state

The energy per particle of the system in the cylindri-
cal geometry goes to the value of the bulk energy per
particle in the limit of R,L → ∞. Since the wave func-
tion vanishes at the cylinder walls of our finite system,
the energy has a dependence on the surface area of the
wall, S = 2πRL = 4πR2. However, we still are able to
estimate the bulk energy. We extrapolate the energy per
particle as a function of the radius using the functional
form

E(R) =
E(R)

A
= E0 +

Es
4πR2

, (25)

where E0 and Es are constants, that represent the bulk
and surface energies. The resulting parameters are E0 =
(0.50 ± 0.01)EFG and Es = (55.2 ± 1.0)EFGk

−2
F , and

E(R) is shown in Fig. 3. The E0 parameter in this
geometry is analogous to the Bertsch parameter in the
box with periodic boundary conditions. The energy lev-
els are much more degenerate in the box if compared to

the cylinder. The translational invariance gives a good
basis for plane waves, while Bessel functions are not as
well defined for the radial direction, which leads to a
trial function with more parameters needed to simulate
systems with the same number of particles. For exam-
ple, early QMC calculations in the box [14] obtained
an upper bound of the Bertsch parameter ξ = 0.440(2)
for A = 38 using 5 parameters analogous to the αI of
Eq. (12), so that the highest energy single particle state
has k2max ≈ 1.46 k2F . If we consider the same number of
particles and number density in the cylindrical geometry,
we require 12 αI to reach the same k2max. This increased
degeneracy may account for the higher values of E0 when
compared to the upper bound of the Bertsch parameter
ξ = 0.383(1) [28, 29] and its exact value[2], ξ = 0.372(5).

These differences between the periodic box simulations
and the cylindrical simulations show that the calculated
properties are significantly biased by the geometry. The
clear dependence on system size shown in Fig. 3 further
indicates that the main cause is due to nodal surface
errors in our fixed-node calculations.

FIG. 3. (Color online) Ground state energy per particle for
different system sizes. The solid line corresponds to the en-
ergy per particle as a function of R, Eq. (25).

We performed one simulation doubling the height of
the cylinder and the number of particles we have used in
our calculation with A = 26. The energy per particle for
this system is (0.683±0.001)EFG, which differs less than
1% from the value found for A = 26, (0.678±0.001)EFG,
verifying that our results are independent of the condi-
tion L = 2R.

2. Superfluid pairing gap

Experiments with cold atom gases determined the pair-
ing gap to be approximately half of the Fermi energy
[30, 31]. The pairing gap at T = 0 is calculated using the
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odd-even staggering formula [10]

∆(A+ 1) = E(A+ 1)− 1

2
[E(A) + E(A+ 2)] . (26)

We consider that, for an even number of particles, all of
them are paired. For a system with an odd number of
particles, the unpaired particle is described by Eq. (10),
and we take the coefficients νnmp as variational parame-
ters. We assume that n and m are good quantum num-
bers for the unpaired particle, because we employ peri-
odic boundary conditions in the z-direction and the wave
function must be an eigenstate of Lz. Thus, we chose the
wave function of the unpaired particle to be a linear com-
bination of free particle states with same n and m, but
different p, hence Eq. (10) reduces to a sum only over p.
We perform independent simulations for different values
of n and m and we determine the {νnmp} which minimize
the total energy of the system. In the calculation of the
gap we choose the unpaired orbital that gives the lowest
energy. This is analogous to previous calculations in the
bulk [15, 32]. In Fig. 4 we show the total energy of the
system for 26 6 A 6 58. The pairing gap is estimated
through Eq. (26), ∆ = (1.12 ± 0.02)EFG. It is notewor-
thy that the pairing gap is calculated using the difference
of energy upper bounds, thus the result is sensitive to the
relative quality of the nodal structure. It is likely that
the optimization of the excited state wave function is less
effective, which would overestimate the pairing gap. We
also note that finite size effects might be canceled out in
this calculation that does not consider the vortex line.
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FIG. 4. (Color online) Ground state energy for even (cir-
cles) and odd (triangles) number of particles. The solid lines
correspond to linear fits of the energy as a function of the
number of particles for systems with even and odd number of
particles.

3. Excitation energy

The excitation energy for a system with a vortex line
in our geometry is given by the difference between the

energies of the excited state and the ground state. In
Fig. 5 we present the excitation energy, as well as the
ground state and system with a vortex line energies, for
26 6 A 6 58. The average of the excitation energies per
particle in our geometry for the larger systems (42 6 A 6
58) is Eex = (1.03± 0.04)10−2EFG.
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FIG. 5. (Color online) Excitation energy per particle. The in-
set shows the ground state energies (triangles) and the energy
of the system with a vortex line (circles).

IV. DISCUSSIONS AND CONCLUSIONS

In this work, we have calculated the density profiles
of the ground state and an excited state with a vortex
line for a system of ultracold fermionic atoms at unitarity.
For systems with A > 36 the ground state density profiles
are flat near the center of the cylinder and they smoothly
decrease until the density vanishes at the wall. The most
interesting feature of the density profile of the systems
with a vortex line is a non-vanishing density at the core,
ρ = 0. However, it is lower than the ground state density
by a small amount. Since the Cooper pairs have non-
zero size, it is possible for a pair to have non-zero angular
momentum at the origin and still have a non-zero density
there.

For the cylindrical geometry, we calculated the energy
of the ground state for an even number of particles (all
paired). Because the wave function vanishes at the walls
of the cylinder, we need very large values of R and L
to neglect the effects introduced by this condition. We
proposed a functional form for the energy per particle as
a function of the radius of the cylinder which takes into
account the energy term due to the walls.

The superfluid pairing gap of these ultracold atomic
gases is of interest because it is comparable to the Fermi
energy of the system. The usual odd-even staggering
formula [10] yields a gap of ∆ = (1.12 ± 0.02)EFG.
Previous quantum Monte Carlo simulations of fermions
in a box, using periodic boundary conditions, predicted
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∆ = (0.84± 0.05)EFG [32]; while an experiment at finite
temperature produced the value ∆ = (0.45 ± 0.05)EFG
[31].

Future calculations will include more detailed study of
the vortex structure, the excitations of the fluid in the
presence of the vortex, and calculations of the reduced
density matrices in order to better understand the con-
densate in the presence of vortices.

We developed a wave function to study superfluidity
and vortices in a cylindrical geometry. This geometry
enabled us to simulate a vortex line in a superfluid Fermi
gas using a bare Hamiltonian. These calculations allowed
theoretical predictions of the structure of vortices that
can be compared with experiments. Our results have
implications both for cold atom research and for astro-
physics where the vortex structure in the superfluid crust
of neutron stars is not well understood. This work can be

extended to study vortices in superfluid neutron matter
by extending the calculations of Ref. 18 and 33.
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