
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Itinerant chiral ferromagnetism in a trapped Rashba spin-
orbit-coupled Fermi gas

Shang-Shun Zhang, Wu-Ming Liu, and Han Pu
Phys. Rev. A 93, 043602 — Published  4 April 2016

DOI: 10.1103/PhysRevA.93.043602

http://dx.doi.org/10.1103/PhysRevA.93.043602


Itinerant chiral ferromagnetism in a trapped Rashba spin-orbit coupled Fermi gas

Shang-Shun Zhang1,2, Wu-Ming Liu1, and Han Pu2,3
1Beijing National Laboratory for Condensed Matter Physics,

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics and Astronomy, and Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA

3Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China

We consider a repulsive two-component Fermi gas confined in a two dimensional isotropic har-
monic potential and subject to a large Rashba spin-orbit coupling. The single-particle dispersion
can be tailored by the spin-orbit coupling term, which provides an opportunity to study itinerant
ferromagnetism in this system. We show that the interplay among spin-orbit coupling, correlation
effect and mean-field repulsion leads to a competition between ferromagnetic and non-magnetic
phases. The weakly correlated non-magnetic and the ferromagnetic phases can be well described by
the mean-field Hartree-Fock theory, while the transition between the ferromagnetic and a strongly
correlated non-magnetic phase is driven by beyond-mean-field quantum correlation effect. Further-
more, the ferromagnetic phase of this system possesses a chiral current density induced by the
Rashba spin-orbit coupling, whose experimental signature is investigated.

PACS numbers: 03.75.Ss, 05.30.Fk, 75.70.Tj, 67.85.-d

I. INTRODUCTION

Synthetic non-Abelian gauge field recently realized in
ultracold atomic systems [1–5] has provided a new plat-
form to study physics related to spin-orbit (SO) coupling,
such as quantum spin Hall effects and topological insu-
lators/superfluids, both of which have attracted tremen-
dous attention in condense matter community over the
past few years [6, 7]. SO coupled cold atoms thus serve
as an ideal quantum simulator that simulates condensed
matter systems in which SO coupling plays essential roles
[8, 9]. On the other hand, SO coupling in cold atoms may
also give rise to completely new physics due to unique fea-
tures of atomic systems. One particular example along
this line concerns the ‘dynamic’ SO coupling arising from
either the atom-atom interaction [10] or the coupling be-
tween the atom and a cavity photon field [11]. In the
current work, we consider a Rashba SO coupled repul-
sive two-component Fermi gas confined by a two dimen-
sional (2D) isotropic harmonic potential. The trapping
potential is necessary for any cold atom experiment as
it provides atomic confinement. However, in the cur-
rent situation, it plays an additional role: Together with
the Rashba SO coupling, it produces a Landau level-like
single-particle spectrum whose band flatness can be con-
trolled by the SO coupling strength [12–14], which as we
will show is crucial for the existence of magnetic phases
in our system.

For a single spin-1/2 particle trapped in a 2D isotropic
harmonic potential subject to Rashba SO coupling, the
physics is well understood. The ground state of such a
system is a half vortex [12]. An interesting feature of
the system is that, under the limit of large SO coupling
strength (more specifically, when the SO coupling energy
scale is much larger than the harmonic level spacing), the
single-particle spectrum exhibits Landau level-like struc-
ture. In the case of an ensemble of zero temperature
spin-1/2 bosons, as previous works have shown [13, 14],

intriguing spin textures and strongly correlated phases
may emerge, which can be attributed to the near flat
single-particle band structure. Our current work tries to
answer the question: What happens when we have an en-
semble of repulsive spin-1/2 fermions? More specifically,
does this system exhibit ferromagnetism?

Based on Stoner’s argument, a fermionic system in
continuum may become ferromagnetic when the repul-
sive interaction strength exceeds a critical value [15].
In the context of a spin-1/2 Fermi gas, ferromagnetism
means that the two spin species tend to phase sepa-
rate to form spin domains as such a configuration ob-
viously reduces interaction energy. Attempt to realize
ferromagnetic state in repulsive Fermi gas was made by
the MIT group in 2009 [16]. Although some indirect evi-
dences were present, spin domain formation was not ob-
served. Later it was clarified that their system suffers
from strong atom loss as the atoms tend to form tightly
bound dimers, and ferromagnetism was therefore not ex-
pected [17]. From perhaps a more fundamental point of
view, even if a repulsive Fermi gas is stable, it is not
completely clear whether a ferromagnetic state will re-
sult. This is because the Stoner’s criterion is based on
a mean-field argument, in which ferromagnetism arises
once the mean-field repulsion overcomes the kinetic en-
ergy. It has been conjectured that, under strong repulsive
interaction, the Fermi gas may form a strongly corre-
lated non-magnetic state [18, 19] whose total energy may
be lower than that of the ferromagnetic state. Here the
quantum correlation effects, neglected in the mean-field
argument, play a more dominant role.

In this paper, we will elucidate the relationship be-
tween ferromagnetism and interaction effects. We ad-
dress this problem by an exact diagonalization (ED)
method combined with a mean-field Hartree-Fock calcu-
lation. We may roughly divide the interaction effects into
two parts: (1) it leads to a mean-field repulsion between
the two spin species; (2) it builds up quantum correla-
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FIG. 1. (Color online) Phase diagram in the g-λ̃ plane. Here
we consider 6 repulsively interacting spin-1/2 fermions con-
fined in a 2D harmoinc trap, subject to Rashba SO cou-
pling. g is the interaction strength, and is normalized to
g0MF = 2π~2/M which is the mean-field critical interaction

strength for a 2D Fermi gas without SO coupling. λ̃ is the
dimensionless SO coupling strength. We can see that the
phase diagram contains three phases: the weakly correlated
non-magnetic phase, chiral magnetic phase and strongly cor-
related non-magnetic phase. The dashed line represents the
mean-field results which contains only two regimes: a non-
magnetic phase below the dashed line and a ferromagnetic
phase above the dashed line.

tions in the system. We will show that the former favors
ferromagnetism, whereas the latter has an opposite ef-
fect. The competition between these two parts gives rise
to the phase diagram shown in Fig. 1, where a ferro-
magnetic phase occupies a finite region in the parameter
space spanned by the interaction strength and the SO
coupling strength.

The structure of this paper is organized as follows: In
Sec. II, we introduce our model Hamiltonian and de-
scribe the mechanism for tuning the band structure via
SO coupling. In Sec. III, we describe our ED results for
the ground state properties and entanglement and corre-
lation properties. Then, in Sec. IV, we present our HF
results and made comparisons with the ED calculations.
The role of correlated interaction is elaborated. In what
follows, we extend our previous result to systems with
larger fermion number in Sec. V and explain the multi-
band effects. Finally, we propose experimental method
on how to detect the chiral density current in Sec. VI. A
summary is given in Sec. VII.

II. THE MODEL

We consider a spin-1/2 Fermi gas, with atomic massM
and chemical potential µ, confined in the x-y plane by an

isotropic harmonic trap V (r) = 1
2Mωr2 (r =

√

x2 + y2),
subject to a Rashba SO coupling Vsoc = λ(pyσx − pxσy),
where σx,y are Pauli matrices. The model Hamiltonian
is given by H = H0 +Hint where

H0 =

∫

d2~rΨ†

[−~
2∇2

2M
− µ+ Vsoc + V (r)

]

Ψ, (1)

FIG. 2. (Color online) Left column: (a1)-(a3) show the
ground state angular momentum per particle Jz/N , entangle-
ment entropy (EE) and ground state spin fluctuations (∆Sz)
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as a function of interaction strength for λ̃ = 7, N = 6. The
non-zero Jz/N indicates a magnetic ground state. Right col-
umn: (b1)-(b3) show three representative single-particle oc-
cupation number nm of state |m〉 for interaction strengthes
marked by the yellow triangles in (a1).

with Ψ = (Ψ↑,Ψ↓)
T being the atomic field operator, is

the single-particle Hamiltonian, and

Hint = g

∫

d2~rΨ†
↑(~r)Ψ

†
↓(~r)Ψ↓(~r)Ψ↑(~r), (2)

with g > 0 decribes repulsive s-wave contact interac-
tion. In what follows, we will adopt the trap units
~ = M = ω = 1, in which the units for length and
energy are given by aho =

√

~/(Mω) and ~ω, respec-
tively. Under this unit system, the interaction strength
g has be units of ~ωa2ho = ~

2/M . We also define a di-

mensionless SO coupling strength λ̃ =Mλaho/~
2. In the

limit λ̃ ≫ 1, the single-particle spectrum exhibits Lan-
dau level-like structure and the curvature of each Lan-
dau band is proportional to 1/λ̃2, which provides a way
to control the band flatness. Flat band structure will
have two effects on an interacting many-body system:
On the one hand, it may reduce the critical interaction
strength for the ferromagnetic transition according to the
Stoner’s criterion. On the other hand, it makes quantum
correlation more pronounced. Which of these two effects
become more dominant determines whether the system
is ferromagnetic or not.

III. ED RESULTS

The Landau level structure of the single-particle spec-
trum allows us to use the ED method to study a few-
body system, where we restrict our calculation to the
lowest Landau level (LLL). The single-particle Hamilto-
nianH0 conserves the total angular momentum Jz, which
is the sum of the orbital and the spin angular momen-
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FIG. 3. (Color online) (a) shows the spin texture of the ferro-
magnetic state and (b) shows the total number density (color
map) and the chiral current density (arrows) of the ferromag-
netic state.

tum. Single-particle states in the LLL can be labeled by
a single quantum number |m〉, whose total angular mo-
mentum is Jz = m+ 1/2, and whose energy (apart from

a constant) is approximately m(m+1)/(2λ̃2) [12–14]. A
set of such states form a Fock space basis, upon which
the total Hamiltonian can be expanded [14]. For details,
see Appendix A.

We present our ED results for a system of N = 6
fermions. Under the total HamiltonianH, Jz of the whole
system remains as a good quantum number. Figure 2(a)
displays Jz of the ground state as a function of the inter-
action strength g for a fixed SO coupling strength λ̃ = 7.
As one can see, Jz = 0 for small g, becomes finite for
intermediate g, and vanishes again at large g. The single-
particle occupation number nm = 〈a†mam〉, with am the
annihilation operator associated with state |m〉, for the
three representative cases are plotted in Fig. 2(b1)-(b3)
as a function of m. For a weakly interacting system, as
shown in Fig. 2(b1), interaction induces a few particle-
hole excitations near the “Fermi surface”. However, the
ground state still preserves the time reversal symmetry,
i.e., nm = n−m−1. The density profiles for the two spin
species are identical. One can also calculate the local spin
vector ~s(~r) = 〈Ψ†(~r)~σΨ(~r)〉 and show that it vanishes ev-
erywhere. Hence the state is a non-magnetic state.

At intermediate interaction strength, as shown in
Fig. 2(b2), the ground state breaks time reversal sym-
metry with nm 6= n−m−1, the two spin species possess
non-overlapping density profiles, and non-vanishing local
spin vector ~s(~r) emerges, see Fig. 3(a). This indicates
that the state is a ferromagnetic state. Furthermore, we
calculated the current density of this state. With Rashba
SO coupling, the current density is given by

~j(~r) =
∑

m

~jmorbitnm + λ̃ẑ × ~s , (3)

where ~jmorbit = i[(∇φ†m)φm − φ†m∇φm]/2 comes from the
orbital motion where φm represents the wave function of
the single-particle state |m〉. Due to the the time reversal

symmetry of the Hamiltonian, we have ~jmorbit = −~j−m−1
orbit .

In the non-magnetic state, nm = n−m−1 and ~s = 0, both
terms on the right hand side of Eq. (3) vanish. However,

for the ferromagnetic state, they are both finite, leading
to a chiral current as shown in Fig. 3(b). As a result,
we call the magnetic state chiral ferromagnetic. Let us
comment on our result in the light of Bloch-Bohm theo-
rem which states that the ground state of a many-body
system cannot possess finite total momentum or total an-
gular momentum [20, 21]. In the ferromagnetic phase we

obtained here, the local current ~j(~r) 6= 0, but due to rota-

tional symmetry, we have ~j(~r) = −~j(−~r), hence the total
current

∫

d~r~j(~r) = 0. However, the state does possess a
circulating current and hence finite angular momentum.
Therefore, this state apparently violates the Bloch-Bohm
theorem. To understand this point, we note that the
proof of the Bloch-Bohm theorem concerning the angu-
lar momentum requires the system to be macroscopic,
whereas we are concerned with a fintie-size trapped sys-
tem [22]. More essentially, the proof of the Bloch-Bohm
theorem assumes that the system does not possess spin-
orbit coupling. As a result, the Bloch-Bohm theorem
does not apply to our system. Intuitively, this can be
understool in the following: In a system with spin-orbit
coupling, the increase in the kinetic energy due to fi-
nite (angular) momentum can be compensated by the
decrease of the effective Zeeman energy associated with
the interaction between the spin and the effective mag-
netic field. This is clearly manifested in the chiral ferro-
magnetic state studied here: The presence of the circu-
lating current is always accompanied by a nontrivial spin
texture.
At large interaction strength, as shown in Fig. 2(b3),

the time reversal symmetry is restored, and once again
we have ~s(~r) = 0 and ~j(~r) = 0 as in the weakly in-
teracting regime. The fluctuations of nm indicates that
this non-magnetic state is strongly correlated. To quan-
tify the quantum correlation and fluctuation, we calcu-
lated the entanglement entropy (EE) of the system (see
Appendix B), and the total spin fluctuation (∆Sz)

2 =

〈Ŝ2
z 〉−〈Ŝz〉2, and plot them as functions of g in Fig. 2(a2)

and (a3), respectively. Both EE and (∆Sz)
2 for the large

interaction regime are significantly higher than those in
the other two regimes.
With the above results and similar calculations for

other SO coupling strengths, we can present the phase
diagram as shown in Fig. 1. For λ̃ > 13, there exists
a window of ferromagnetic phase at intermediate val-
ues of g. As g increases from zero to a lower critical
value (represented by the red solid line with filled cir-
cles), the weakly correlated non-magnetic state becomes
ferromagnetic. Note that this lower critical value is much
smaller than g0MF = 2π~2/M , the mean-field ferromag-
netic critical interaction strength of a 2D Fermi gas with-
out SO coupling [23, 24]. This can be understood from
the Stoner’s argument and the flat band single-particle
spectrum. In Ref. [25], it was shown that the critical
interaction strength for ferromagnetic transition in a re-
pulsive Fermi gas can also be reduced by adding a weak
optical lattice, as the lattice potential helps to quench
the kinetic energy. The essential physics here is similar
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to our situation. Howver, as g further increases to an
upper critical value (represented by the blue solid line
with empty squares), the ferromagnetic state gives its

way to a strongly correlated non-magnetic state. As λ̃
increases, i.e., the single-particle band becomes flatter,
this window of ferromagnetic phase shrinks quickly, and
eventually vanishes for λ̃ ? 13. At such large SO cou-
pling strength, the single-particle band becomes so flat
that a very small interaction strength gives rise to strong
correlations that disfavor the ferromagnetic state.
If it is the correlation effects that destroy the ferromag-

netic state, then one should not expect this to occur in
a mean-field theory, which neglects quantum correlation.
To examine this, we now turn to a mean-field Hartree-
Fock calculation.

IV. HARTREE-FOCK RESULTS

Under the Hartree-Fock (HF) theory, the many-body
wave function takes the form:

ΨHF =
1√
N !

∑

P

(−1)Pφ1(~r1)φ2(~r2)...φN (~rN ) ,

where P represents permutations, and φα’s are single-
particle orbitals that satisfy the following HF equations:

[

−1

2
∇2 + iλ̃ (−∂yσx + ∂xσy) +

1

2
r2

+
g

4
n(r)− g

4
~m(r) · ~σ

]

φα(~r) = ξα φα(~r) , (4)

where

n (r) =
N
∑

α=1

|φα(~r) |2 , ~m (r) =
N
∑

α=1

φ†α(r) ~σ φα(~r) ,

are local density and spin vector, respectively.
We numerically solve the HF equations self-

consistently without invoking the LLL approximation (for
details, see Appendix C). In Fig. 4 we plot density pro-
files from this calculation. Here we also take N = 6 and
λ̃ = 7 in order to make comparisons with the ED re-
sults. However, we also performed HF calculations up
to N = 200 and found no qualitative differences from
the N = 6 results presented here. For small interaction
strength g = 0.018g0MF [Fig. 4(a)], both HF and ED tell
us that the state is non-magnetic with identical density
profiles for both spin species. Furthermore, the results
from the two theories agree with each other very well.
At g = 0.03g0MF [Fig. 4(b)], ED predicts a non-magnetic
state, whereas HF indicates that the system already en-
ters the ferromagnetic regime. In fact, HF calculation
predicts a critical interaction strength gHF ≈ 0.025g0MF,
while the corresponding critical interaction strength for
ED is gED ≈ 0.055g0MF. That gED > gMF can be at-
tributed to the fact that the quantum correlation in the
ED calculation disfavors the ferromagnetic phase. At

FIG. 4. (Color online) Density profiles of each spin species for

different interaction strengths with N = 6 and λ̃ = 7, by both
ED (red solid lines: thick lines for spin up and thin lines for
spin down) and HF (black dashed lines: thick lines for spin
up and thin lines for spin down) methods.

g = 0.173g0MF [Fig. 4(c)], HF and ED agree with each
again, both predicting a ferromagnetic state. At a large
interaction strength g = 0.234 [Fig. 4(d)], discrepancies
arise between the two calculations again: ED predicts
a non-magnetic state, while HF gives a ferromagnetic
state. In fact, as we have expected, for g > gHF, HF
always predicts a ferromagnetic state. In contrast, our
ED calculation shows that for large g, strong correlation
destroys the ferromagnetic state.

In the phase diagram of Fig. 1, the dashed line rep-
resents gHF, which separates the phase space into non-
magnetic (below the dashed line) and ferromagnetic
regimes (above the dashed line). gHF decreases quickly

as λ̃ increases (which can again be understood as due to
the band flattening), but never terminates as in the case
of ED. To demonstrate further the effects of quantum
correlation, we plot in Fig. 5 the energy as a function of
interaction strength at λ̃ = 7. Figure 5(a) shows how the
total energy EG, the kinetic energy Ekin and the inter-
action energy Eint from the ED calculation change as g.

FIG. 5. (Color online) (a) ED results for the ground state en-
ergy EG, the kinetic energy Ekin, and the interaction energy
Eint as functions of interaction strength. (b) The ratio of the
interaction energy from the ED calculation and that from the
HF calculation. The two vertical lines separate the parame-
ter space into three phases according to the ED calculation:
from left to right, we have the weakly correlated non-magnetic
phase, the ferromagnetic phase, and the strongly correlated
non-magnetic phase. Here N = 6 and λ̃ = 7.
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FIG. 6. (Color online) (a) Critical interaction strength gc for

λ̃ = 20, above which the system is ferromagnetic. The two
red triangles indicate the position where a new Landau level
starts to be populated. (b) The single-particle energy bands
(solid curved lines) and the Fermi level (dashed horizontal
lines) for N = 58 (upper panel) and N = 138 (lower panel).

As g increases, EG keeps increasing monotonically, while
Eint decreases at phase transition point (shown by the
vertical lines) at a cost of increasing Ekin. In Fig. 5(b)
we plot the ratio of the interaction energy, which is sim-
ply g times the density-density correlation between the
two spin species integrated over all space, from the ED
and the HF calculation. As it shows, in the weakly cor-
related non-magnetic and the ferromagnetic regimes, the
ED and the HF results are comparable to each other. By
contrast, in the strongly correlated regime, the interac-
tion energy from the ED calculation is significantly lower
than that from the HF calculation. This clearly shows
that how the system can develop nontrivial quantum cor-
relations such that, even though the density profiles of
the two spin species completely overlap with each other,
the joint probability of finding two unlike spins at the
same position is strongly suppressed. This indicates that
microscopically the strongly correlated state is somewhat
like the projected state proposed by Gutzwiller [18, 19].

V. SCALING WITH PARTICLE NUMBER AND
MULTI-BAND EFFECTS

The previous sections have shown the interplay be-
tween Hartree-Fock interaction and strong correlation ef-
fects which is well controlled by the SO coupling strength.
Their competition leads to the weakly and strongly corre-
lated non-magnetic state and chiral ferromagnetic state.
Now we extend our previous findings to a larger particle
number N regime. We first address this problem through
the HF calculation and then ED calculation for smaller
system size.
We present in Fig. 6(a) the critical interaction strength

gc chacterizing the boundary between the weakly corre-
lated non-magnetic phase and the ferromagnetic phase,
obtained by the HF calculation. For N < Nλ̃ where

Nλ̃ ≈ 2
√
2λ̃ is roughly the number of atoms that the

LLL can host before the next Landau level is populated,
the physics is dominated by the lowest Landau level as in-

dicated by the upper panel in Fig. 6(b). We find that the
critical interaction strength gc is nearly linear with atom
number N . This result is consistent with the Stoner’s
picture: gc is proportional to the inverse of density of
states near the Fermi level, where the density of states of
the Landau level is roughly proportional 1/N .

FIG. 7. (Color online) (a) Critical interaction strength gc
obtained by ED calculation as a function of fermion number
N with SO coupling strength fixed at λ̃ = 3. (b) The oc-
cupation number in each band (red circles: lowest Landau
level; green squares: second Landau level) shown for different
particle number with g = 0.2g0MF.

As the atom number increases further, the higher ly-
ing Landau levels begin to be occupied. Meanwhile, new
Fermi surfaces emerged. The multi-band structure cut
off the linear scaling relationship gc ∝ N . As shown
in Fig. 6(a), the critical interaction strength has a steep
drop whenever a new Landau level starts to be populated.
This phenomenon may be attributed to the multi-band
structure. As new Landau level being occupied, new
Fermi surface with roughly the same density of states as
the lowest one appears. Based on the intuitive Stoner’s
argument, the newly emerged Fermi surface drives the
ferromagnetic transition at a smaller gc. Hence when-
ever a newly occupied Landau level emerges, gc exhibits
a sudden drop. In between two such steep drops, gc has
a rather complicated dependence on N , probably due to
the presence of multiple Fermi surfaces.
To check this idea by a full quantum treatment, we

performed an ED calculation generalized to a two band
model by including two lowest Landau levels. Results for
the critical interaction strength gc as a function of N is
shown in Fig. 7(a). As long as only the LLL is populated
(N ≤ 10), we have roughly gc ∝ N , and gc has a sudden
drop as the second Landau level begins to be occupied.
This is in full agreement with the HF result. In Fig. 7(b),
we show the occupation on the two Landau levels for
different fermion number with fixed g = 0.2g0MF. It shows
that as N increases from 6, the weight in the second
band becomes larger but the system still stays at non-
magnetic phase for N ≤ 10. As N further increases, we
find there are more occupations in the second band and
the system becomes magnetic. This calculation ensures
that for large particle numbers, the ferromagnetic phase
can still be reached for a small interaction strength. In
other words, the transition from the weakly correlated
non-magnetic phase to the ferromagnetic phase is not
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limited to small atom numbers.
Finally, we checked the importance of the quantum

correlation with respect to the atom number N . We per-
formed ED calculations for N = 4, 6, 8. The phase dia-
gram obtained for different particle numbers are shown in
Fig. 8(a). We find that with increasing N , the quantum
correlation effect is somewhat weakened and the regime
where the mean-field theory applies is enlarged. Corre-
spondingly, the ferromagnetic regime in the g-λ̃ phase
diagram is enlarged with increasing N . In Fig. 8(b), we
plot the entanglement entropy as a function of interac-
tion strength for λ̃ = 9 and atom number N = 4, 6,
8. We clearly find that as N increases, the EE is dra-
matically decreased in the ferromagnetic regime where
the Hartree-Fock interaction dominates. Note that the
mean-field HF calculation cannot capture the transition
from the ferromagnetic to the strongly correlated non-
magnetic phase at an upper critical interaction strength.
Hence how the upper critical interaction strength scales
as N is beyond the scope the this work.
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FIG. 8. (Color online) (a) Ferromagnetic regime (shaded re-
gions) obtained by ED calculation for different atom number
N = 4, 6, 8. (b) The EE as a function of interaction strength

for atom number N = 4, 6, 8 and SO coupling strength λ̃ = 9
(indicated by the red dashed line in (a)).

VI. EXPERIMENTAL DETECTION OF CHIRAL
CURRENT

Finally, we propose an experimental procedure to de-
tect the chrial current associated with the ferromagnetic
state. The procedure goes as follows: First the ground
state (either magnetic or not) is prepared. Then the
harmonic trap is suddently distorted from isotropic to
anisotropic. For a non-magnetic state, as shown in the
upper panel of Fig. 9 obtained from a time-dependent HF
calculation (see Appendix D), this induces a quadrupole
mode. By contrast, for an initial chiral ferromagnetic
state, the whole cloud also undergoes an angular rota-
tion, analogous to the scissors mode in a condensate with
vortices [26].
We have carried out similar time-dependent HF cal-

culations for particle numbers N up to a few hundred
and find very similar behavior as presented in Fig. 9. In
Fig. 10, we present how the average angular momentum
per particle Lz/N of the system scales with N . In this

calculation, we fix the interaction strength g = 0.1g0MF,

but scale the trap frequency as ω = ω0/
√
N , where ω0 is

the trap frequency at N = 1. This scaling is to keep
the density at the trap center as roughly a constant.
As a consequence, the dimensionless SO coupling strenth
scales accordingly as λ̃ = Mλaho/~

2 = λ̃0N
1/4. Fig. 10

shows that for large N such that multiple Landau levels
are occupied, Lz/N oscillates, but exhibits no obvious
decay for N up to 300. The oscillation in Lz/N can
also be attributed to the multi-Landau level effects. This
gives further evidence that the chiral ferromagnetic state
can survive for large particle numbers. Computational
resource limits our calculation to N = 300. But this is
not an unrealistic number. Note that, experimentally, a
two-dimensional Fermi gas is obtained by tightly confine
the atoms along the perpendicular direction. The atom
number is restricted to N > 103 so that only the single-
particle ground state in the tight confinement direction
is occupied [27]. From a theoretical point of view, the
physics discussed in our work relies on the Landau level-
like structure in single-particle spectrum, which only ex-
ists in the presence of the harmoic trap. Hence it is not
meaningful to take the N → ∞ thermodynamic limit,
under which the trap frequency vanishes.

VII. CONCLUSION

In summary, we have shown that how the Landau level-
like band structure of a 2D Rashba SO coupled Fermi gas,
with a controllable band flatness, can be exploited to ex-
hibit itinerant ferromagnetism. The near-flat band struc-
ture dramatically reduces the critical interaction strength
required for the ferromagentic phase transition. We em-
ployed two complementary methods, the fully quantum
EDmethod and the mean-field HF method, to investigate
this problem. Our calculation elucidates the interplay be-
tween the mean-field repulsion and the quantum correla-
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FIG. 9. (Color online) Time evolution of the atomic cloud
after a suddent trap deformation. At t = 0, the trapping fre-
quency along the y-axis is suddently changed from ω to 3.16ω,
while that along the x-axis remains at ω. The upper (lower)
panel shows the dynamics of a non-magnetic (ferromagnetic)

state. Here N = 6, λ̃ = 7 and τ0 = 1/ω.
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FIG. 10. (Color online) Average angular momentum per par-
ticle Lz/N as a function of N . Note that the spin population
oscillate in space such that the average spin per particle Sz/N
is very small. Hence Lz/N ≈ Jz/N . Here we fix the inter-
action strength g = 0.1g0MF, the trap frequency is scaled as
ω = ω0/

√
N , and the dimensionless SO coupling strength is

scaled accordingly as λ̃ = λ̃0N
1/4. In the calculation, we take

λ̃0 = 6.

tion effects, and shows that the former favors while the
latter tends to destroy ferromagnetism. The emergence

and disappearance of the ferromagnetic phase result from
the competition between these two factors. We have also
shown that the ferromagnetic phase in our system is ac-
companied by a chiral density current resulting from the
SO coupling, and proposed a way to detect this current
in experiment. We hope our work may open new avenues
of research in both SO coupling and itinerant magnetism
in cold atoms.
Finally, we comment that Dresselhaus SO coupling has

recently been realized by the Shanxi group [28, 29]. The
single-particle spectrum of a harmocally trapped 2D spin-
1/2 particle remains exactly the same if the Rashba SO
coupling is changed to the Dresselhaus coupling. Our re-
sults for the repulsive Fermi gas remain essentially the
same under Dresselhaus coupling (see Appendix E). The
only difference would be the spin texture of the ferromag-
netic state as shown in Fig. 3(b).
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Appendix A: Exact diagonalization scheme

For a single spin-1/2 particle with Rashba spin-orbit (SO) coupling confined in a two dimensional (2D) isotropic
harmonic trap, the single-poarticle Hamiltonian is given by H0 in the main text. The spatial wave function of the
eigenstates take the form:

Φn,m(~r) =

(

fnm(r)
gnm(r)eiφ

)

eimφ , Φn,−m−1(~r) =

(

gnm(r)e−iφ

−fnm(r)

)

e−imφ , n = 0, 1, 2, ...; m = 0,±1,±2, ... (A1)

which form a degenerate time reversed pair with eigenenergies ǫn,m = ǫn,−m−1. In the limit that the dimensionless

SO coupling strength λ̃≫ 1, the eigenenergies (apart from a constant) take the following approximate form:

ǫn,m = ǫn,−m−1 ≈
[

n+
m(m+ 1)

2λ̃2

]

~ω .

For a few-body system with weak interaction and small particle number, the Hilbert space is limited to the lowest
Landau level (LLL) which is specified by the quantum number n = 0. We introduce a cutoff m∗ which further reduces
the Hilbert space to that with −m∗− 1 < m < m∗. The value of m∗ is determined by values of N and g. Specifically,
we first make sure that the single-particle energy for the m∗ state is well below the next Landau level. After the
calculation is done and the ground state |G〉 is found, we calculate the occupation number for single particle states
m which is given by nm = 〈G|c†mcm|G〉 and make sure that nm is small near the cutoff values of m∗ and −m∗ − 1.
Finally, we also vary m∗ to make sure that our results do not depend on the choice of the cutoff. Given N fermionic
particles filled to M = 2m∗ + 2 single particle states, we obtain totally M !

N !(M−N)! Fock states. Due to the rotational

symmetry of this system, we are able to divide the full truncated Hilbert space into several independent subspaces

with fixed total angular momentum Jz =
∑N

i=1(mi+
1
2 ), which considerably reduces the dimension of the Hamiltonian

that needs to be diagonalized.

Next we present the main steps for the ED scheme for specific subspace with Jz and particle number N . The Fock
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states are denoted by |pi〉 = a†m1
a†m2

...a†mN
|0〉, i = 1, 2, ..., D with the convention m1 < m2 < ... < mN . For later use,

we associate each occupied single particle-state mi with a number Nmi
(for example, Nm1

= 1). The single-particle
part of the Hamiltonian H0 is diagonal under this basis:

〈pi|H0|pj〉 =
N
∑

α=1

ǫmα
δij . (A2)

where ǫm = ǫn=0,m. Under the same basis, the diagonal matrix elements of the interacting Hamiltonian Hint take the
form:

〈pi|Hint|pi〉 =
g

4

∫

d2~r (ρ2 − ~s2) , (A3)

where ρ(r) = 〈pi|ρ̂|pi〉 and ~s = 〈pi|~̂s|pi〉 represent the local density and spin vector, respectively. This diagonal matrix
elements can be regarded as the mean-field Hartree-Fock interaction energy associated with the Fock state |pi〉. The
non-diagonal matrix elements of Hint are non-vanishing only between two Fock states that differ by two single-particle

states, say |p〉 = ...a†m...a
†
n...|0〉 and |q〉 = ...a†k...a

†
l ...|0〉 with the constraint m+ n = k + l:

〈q|Hint|p〉 = (−1)Nm+Nn+Nk+Nlg

∫

d2~r
[

Ψ∗
l↑Ψk↓Ψm↓Ψn↑ +Ψ∗

k↑Ψl↓Ψn↓Ψm↑ −Ψ∗
k↑Ψl↓Ψm↓Ψn↑ −Ψ∗

l↑Ψk↓Ψn↓Ψm↑

]

,

where Ψmσ, σ =↑, ↓ denotes the wave function of the single particle state in the lowest Landau level. The non-diagonal
part of Hint builds up correlations between different Fock states. It mixes Fock states with different spin polarization,
therefore tends to suppress the magnetic phase.

Appendix B: Calculation of entanglement entropy (EE)

Entanglement measure is useful to analyze correlation properties of the ground state. We calculate EE in the
following way. We first divide the system into two subsystems (denoted as A and B) and then analyzing the reduced
density matrix in one of the subsystems. In our system, the subsystems can be distinguished by the single particle
angular momentum jz = m+ 1

2 : the Subsystem A includes all the positive jz states, while the Subsystem B includes
all the negative jz states. The total ground state density matrix is given by ρ = |G〉〈G| with |G〉 denoting the ground
state. By the standard procedure, we trace out the Subsystem B to find the reduced density matrix for Subsystem A:

ρA =
∑

n
−jc ,...,n

−

1

2

〈n−jc , n−jc+1, ..., n−1/2|ρ|n−jc , n−jc+1, ..., n−1/2〉, (B1)

where jc = mc+1/2 denotes a finite-size cutoff of this system. The eigenvalues of the reduced density matrix ρAi give
rise to the entanglement spectrum ξi = − ln ρAi . For pure Fock state without any correlation, there will be only one
non-zero eigenvalue ρAi = 1 and all the others equal to zero. Therefore, we can observe only one point with ξi ∼ 0
and other points ξi ≫ 1 in the entanglement spectrum for less correlated ground state. While for strongly correlated
ground state, the entanglement spectrum has a broad and flat structure. We can further calculate the ground state
EE by EE = −trρA ln ρA = −∑

i ρ
A
i ln ρAi . We will find EE ∼ 0 for less correlated ground state while EE ≫ 1 for

strongly correlated ground state.

Appendix C: Hartree-Fock equation for trapped spin-orbit coupled Fermi gas

For weakly correlated states, the mean-field Hartree-Fock (HF) approximation captures the key physics. The HF
approximation neglects quantum correlations of the state by assuming:

ΨHF =
1√
N !

∑

P

(−1)Pφ1(~r1)φ2(~r2)...φN (~rN ), (C1)

where P denotes all permutations, and φα’s are orthonormal single-particle orbitals to be determined. With this
assumption, we can obtain the HF Hamiltonian as follows (adopting the trap units):

HHF =

∫

d2~r ψ†

[

−1

2
∇2 + iλ̃ (−∂yσx + ∂xσy) +

1

2
r2 +

g

4
n(r) − g

4
~m(r) · ~σ

]

ψ, (C2)



9

where the constant terms (g/4)
∫

dr[~m(r)2 − n(r)2] has been dropped, and n(r), ~m(r) are respectively the averaged
local density and spin vecotr:

n (r) =

N
∑

α=1

|φα(~r) |2 , ~m(r) =

N
∑

α=1

φ†α(~r)~σ φα(~r) . (C3)

To manipulate the interaction term in a spin rotational invariant way, we have rewritten the interaction term as:
g
8

∫

dr
(

n2 − ~s2
)

in the above calculation. The single-particle wave functions φα with α = 1, 2, ..., N satisfy the HF
equations:

[

−1

2
∇2 + iλ̃ (−∂yσx + ∂xσy) +

1

2
r2 +

g

4
n(r)− g

4
~m(r) · ~σ

]

φα(~r) = ξα φα(~r) , (C4)

which, together with Eq. (C3), form a closed set and can be solved self-consistently.

In our calculation, φα’s are expanded onto the single-particle eigenstates defined in Eq. (A1): φα(r) =
∑

nm uα;nmΦn,m(r). Note that in our HF calculation, we do not restrict to the LLL. So we have to introduce a
cutoff Nc for quantum number n, in addition to the cutoff for quantum number m. Under this expansion, the HF
equations take the form:

Nc
∑

n2=1

(

ǫn1mδn1n2
+
g

4
Nm

n1n2
− g

4
Sm
n1n2

)

uα;n2m = ξαuα;n1m, (C5)

where Nm
n1n2

=
∫

d2~rΦ†
n1,mΦn2,mn (r) , S

m
n1n2

=
∫

d2~rΦ†
n1,m~σΦn2m · ~m (r). Due to the rotational symmetry, m is a

conserved quantum number. The Hartree-Fock wave function ΨHF would be obtained through iteratively solving the
above equations until self consistency is reached. While the ED calculation can only hand a few particle numbers (up
to 8 in our calculation), we have done HF calculations up to 200 particle number. From our calculation, we found that
the mean-field critical interaction strength at which the non-magnetic state changes to ferromagnetic state roughly
scales as gHF ∝ N/λ̃2.

Appendix D: Time-dependent Hartree-Fock theory

To study the dynamics, we extend the HF calculation to time-dependent situation. The time-dependent Hartree-
Fock equations take the form:

(

−1

2
∇2 + iλ̃ (−∂yσx + ∂xσy) + V (~r, t) +

κ

4
[n (r, t)− ~m (r, t) · ~σ]

)

φα (~r, t) = i∂tφα (~r, t) , (D1)

where we have assumed that the trapping potential V (~r, t) is time-dependent. The initial wave function at t = 0 is
taken as the ground state wave function under V (~r, t = 0). The orthonormality of the single-particle orbitals φα(~r, t)
at time t is guaranteed by the unitary time evolution. The local density and spin vector n and ~m are still given by
Eqs. (C3) with the explicit time dependence.

Appendix E: Mapping to Dresselhaus SO coupling

In our calculation, we have taken the SO coupling to be of Rashba form: Vsoc = λ(pyσx − pxσy). The results can
be easily generalized if the SO coupling is of Dresselhaus form: VD

SO = λ(pyσx + pxσy). The system with Dresselhaus
SO coupling can be mapped to a system with Rashba SO coupling through a unitary transformation in spin space:
U = iσx, under which the Pauli matrices are transformed as

σx → σx , σy → −σy , σz → −σz ,

and the Rashba SO coupling is then transformed to the Dresselhaus form. The s-wave interaction is spin SU(2)
invariant and will not be changed under the above unitary transformation. So, all the results achieved in our main
text hold for Dresselhaus SO coupling case after this spin space transformation. For example, the single-particle wave
function is obtained by iσxΦn,m(~r), the single-particle and many body energy spectra are unchanged. The main
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difference is the change of the ground state spin texture, where the local spin transforms as:

sx → sx , sy → −sy , sz → −sz ,

as schematically shown in Fig. 11. The density current operator coming from the Dresselhaus SO coupling is also

modified to be ~j
(D)
s = λ(sy , sx, 0), which keeps the density current in the ground state invariant (Fig. 11).

（a）                                     (b)

Rashba Dresselhaus

FIG. 11. (Color online) The schematic plot of the spin polarization (black arrow) and density current (red arrow) for (a)
Rashba SO coupled system and (b) Dresselhaus SO coupled system, respectively.
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and P. Öhberg, Phys. Rev. Lett. 110, 085301 (2013).
[11] L. Dong, L. Zhou, B. Wu, B. Ramachandhran, and H.

Pu, Phys. Rev. A 89, 011602(R) (2014); L. Dong, C.
Zhu, and H. Pu, Atoms 3, 182 (2015).

[12] C. Wu, I. Mondragon-Shem, and X.-F. Zhou, Chin. Phys.
Lett. 28, 097102 (2011).

[13] H. Hu, B. Ramachandhran, H. Pu, and X. -J. Liu, Phys.
Rev. Lett. 108, 010402 (2012).

[14] B. Ranachandhran, H. Hu, and H. Pu, Phys. Rev. A 87,
033627 (2013).

[15] E. Stoner, Philos. Mag. 15, 1018 (1933).
[16] G.-B. Jo, Y.-R. Lee, J.-H. Choi, C. A. Christensen, T. H.

Kim, J. H. Thywissen, D. E. Pritchard, and W. Ketterle,
Science 325, 1521 (2009).

[17] C. Sanner, E. J. Su, W. Huang, A. Keshet, J. Gillen, and
W. Ketterle, Phys. Rev. Lett. 108, 240404 (2012).

[18] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); Phys.
Rev. 137, A1726 (1965).

[19] H. Zhai, Phys. Rev. A 80, 051605(R) (2009).
[20] D. Bohm, Phys. Rev. 75, 502 (1949).
[21] Y. Ohashi, and T. Momoi, J. Phys. Soc. Jpn. 65, 3254

(1996).
[22] For a mesoscopic finite-sized system, a generalized Bloch-

Bohm theorem states that there exists an upper bound
for the circulating current. See, for example, G. Vignale,
Phys. Rev. B 51, 2612 (1995).

[23] G. J. Conduit, Phys. Rev. A 82, 043604 (2010).
[24] A. Ambrosetti, G. Lombardi, L. Salasnich, P. L. Silver-

strelli, and F. Toigo, Phys. Rev. A 90, 043614 (2014).
[25] S. Pilati, I. Zintchenko, and M. Troyer, Phys. Rev. Lett.

112, 015301 (2014).
[26] C. Lobo, A. Sinatra, and Y. Castin, Phys. Rev. Lett. 92,

020403 (2004); C. Lobo, and Y. Castin, Phys. Rev. A 72,
043606 (2005).

[27] P. Dyke, E. D. Kuhnle, S. Whitlock, H. Hu, M. Mark,
S. Hoinka, M. Lingham, P. Hannaford, and C. J. Vale,
Phys. Rev. Lett. 106, 105304 (2011).

[28] L. Huang, Z. Meng, P. Wang, P. Peng, S.-L. Zhang, L.
Chen, D. Li, Q. Zhou, and J. Zhang, arXiv:1506.02861.

[29] Z. Meng, L. Huang, P. Peng, D. Li, L. Chen, Y. Xu, C.
Zhang, P. Wang, and J. Zhang, arXiv: 1511.08492.


