
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamic interference in the photoionization of He by
coherent intense high-frequency laser pulses: Direct

propagation of the two-electron wave packets on large
spatial grids

Anton N. Artemyev, Anne D. Müller, David Hochstuhl, Lorenz S. Cederbaum, and Philipp
V. Demekhin

Phys. Rev. A 93, 043418 — Published 25 April 2016
DOI: 10.1103/PhysRevA.93.043418

http://dx.doi.org/10.1103/PhysRevA.93.043418


Dynamic interference in the photoionization of He by coherent intense high-frequency

laser pulses: Direct propagation of the two-electron wave packets on large spatial grids

Anton N. Artemyev,1 Anne D. Müller,1 David Hochstuhl,2 Lorenz S. Cederbaum,3 and Philipp V. Demekhin1, 4, ∗

1Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
2Institut für Theoretische Physik und Astrophysik, Leibnizstraße 15, 24098 Kiel, Germany

3Theoretische Chemie, Physikalisch-Chemisches Institut,

Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
4Research Institute of Physics, Southern Federal University, Stachki av. 194, 344090 Rostov-on-Don, Russia

(Dated: April 5, 2016)

The direct ionization of the helium atom by intense coherent high-frequency short laser pulses is
investigated theoretically from first principles. To this end, we solve numerically the time-dependent
Schrödinger equation for the two-electron wave packet and its interaction with the linearly-polarized
pulse by the efficient time-dependent restricted-active-space configuration-interaction method (TD-
RASCI). In particular, we consider photon energies which are nearly resonant for the 1s → 2p
excitation in the He+ ion. Thereby, we investigate the dynamic interference of the photoelectrons
of the same kinetic energy emitted at different times along the pulse in the two-electron system.
In order to enable observation of the dynamic interference in the computed spectrum, the electron
wave packets were propagated on large spatial grids over long times. The computed photoionization
spectra of He exhibit pronounced interference patterns the complexity of which increases with the
decrease of the photon energy detuning and with the increase of the pulse intensity. Our numerical
results pave the way for experimental verification of the dynamic interference effect at presently
available high-frequency laser pulse sources.

PACS numbers: 33.20.Xx, 41.60.Cr, 82.50.Kx

I. INTRODUCTION

The possibility of interference in the time domain was
first discussed in the multiphoton absorption regime by
optical lasers pulses [1–6]. Intense optical pulses couple
different discrete electronic states of a system and cause
relative ac Stark energy shifts [7], which follow the time-
envelope of the pulse. As a consequence, the temporally
coherent pulses may lead to the interference owing to ex-
citation of the time-separated transient resonances on the
rising and falling fronts of the pulse. Such interference
appears as distinct multiple-peak pattern in the spectrum
of particles emitted via relaxation of the system, as has
been theoretically predicted for the strong field autoion-
ization [1, 2], resonant fluorescence [3, 4], and resonant
multiphoton ionization [5, 6] spectra. Later on, oscilla-
tions in the total multiphoton ionization yield were mea-
sured as a function of laser intensity and explained by the
interference of electrons emitted at different times [8, 9].

The presently available attosecond lasers [10], high-
order harmonic generation sources [11, 12], and free elec-
tron lasers [13, 14] allow one to produce pulses with pho-
ton energies, which are by far above the ionization thresh-
old of any matter. These unprecedentedly strong and
short high-frequency pulses enable one to reinvestigate
various fundamental light-matter interaction processes
under extreme field conditions (see, e.g., Refs. [15–36]
and references therein). Recently, dynamic interference
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was also reinvestigated in the high-frequency regime [37–
43]. It was identified theoretically in the (i) photoion-
ization and above-threshold ionization (ATI) spectra of
model anions [37, 38]; (ii) direct photoionization spec-
tra of atoms [39, 40]; (iii) resonant Auger decay spectra
of atoms induced by free electron laser pulses [41–43];
and (iv) sequential multiphoton ionization of atoms by
high-frequency pulses [43]. In all those works, theoretical
consideration was restricted to a single active electron.
Exposed to strong pulses, an atom with several elec-

trons can undergo several ionization steps creating differ-
ently charged ions and even bare nuclei [15–18]. More-
over, a many-electron system exhibits usually several
open ionization channels, and different final ionic states
can be produced in each of the photoionization step.
In the present work we study how the dynamic inter-
ference effect, investigated previously in the one-active-
electron approximation, modifies in systems with more
electrons. In particular, we investigate here the pho-
toionization of He under conditions amenable to current
experiments. The paper is organized as follows. Sec. II
describes the process under consideration and outlines
present theoretical approach and computational details.
Results of numerical calculations are discussed and ana-
lyzed in Sec. III. We conclude with a brief summary.

II. THEORY

A. The process

The process relevant to the present study is schemati-
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FIG. 1: (Color online) Sketch of the presently studied pro-
cess, in which absorption of a photon of energy ω from a
high-frequency pulse promotes one of the two electrons of He
into the photoionization (PI) continuum of energy εPI. Subse-
quent absorption of another nearly-resonant photon from the
same pulse can either couple the 1s and 2p states of the second
electron remaining in the He+ ion, or promote the photoelec-
tron into continuum state of higher energy εATI via the above
threshold ionization (ATI) process. The two coupled ioniza-
tion thresholds He+(1s1) and He+(2p1) repel each other and
follow a time-dependent energy shifts ∆(t) provided by the
laser pulse. These shifts result in the dynamic interference in
photoelectron spectrum of He.

cally drawn in Fig. 1. It implies a direct photoionization
of the He atom by a coherent intense laser pulse with a
carrier frequency close to the He+(1s → 2p) excitation
energy. The resonant photon energy ω = 1.50 a.u. =
40.817 eV is larger than the ionization potential of neu-
tral He (24.587 eV [44]), but smaller than the ionization
potential of He+ (54.418 eV [44]). The intense resonant
laser pulse couples the He+(1s1) electronic state, remain-
ing after photoionization, with the He+(2p1) state, and
creates a Rabi doublet by the ac Stark [7] or Autler-
Townes [45] effect. The energy splitting between these
ionic states adiabatically increases and decreases, respec-
tively, when the pulse arrives and expires [43]. Conse-
quently, the energy of photoelectrons, which see these
ionic states as their photoionization thresholds, follows
the pulse intensity envelope too. This gives rise to dy-
namic interference of photoelectrons emitted with the
same kinetic energy on the rising and falling edges of
the pulse [39].
We should note that the described process was origi-

nally proposed in our previous work [39]. In the supple-
mental material document of this reference, it was con-
sidered as the two-step process, in which the dynamics
of the photoelectron was treated separately from that
of the electron remaining in the ion. The latter intro-
duces the time-dependent energy shift to the ionization
threshold included in the former. In the present work,
we consider the aforementioned coupled dynamics of the
two electrons of He simultaneously. We should also no-
tice that the processes with similar conditions, i.e., where
the carrier frequency of the driving pulse was chosen to
be resonant for the transitions between the final states
of atomic Auger decay [19], as well as atomic [21] and
molecular [26] photoionization, were already discussed in
the literature. However, dynamic interference was ne-
glected in those theoretical treatments or considered to
be irrelevant for those processes owing to the laser field

conditions.
Theoretical description of the presently studied process

requires the solution of the time-dependent Schrödinger
equation for the two-electron wave function Ψ(~r1, ~r2, t)
of He exposed to intense coherent linearly-polarized laser
pulse. In the electric dipole approximation, the total
Hamiltonian of the system reads (atomic units are used
throughout)

Ĥ(t) = −1

2
~∇2

1 −
1

2
~∇2

2 −
2

r1
− 2

r2
+

1

|~r1 − ~r2|
+ (z1 + z2) E0 g(t) cos(ωt). (1)

Here, g(t) is the time-envelope of the pulse, ω is its carrier
frequency, and E0 is the peak amplitude related with the
peak intensity via I0 = 1

8παE2
0 , where α ≃ 1/137.036 is

the fine structure constant, and 1 a.u. of intensity is
equal to 6.43641×1015 W/cm2.
Desirable theoretical and computational approaches

for atoms, required to propagate multi-electron wave
packets in real time and space, are already available [46–
58]. A straightforward implementation of the most ac-
curate multi-configuration time-dependent Hartree-Fock
(MCTDHF) method [46–51] to the solution of the present
problem is a formidable computational task, even if it as-
sumes propagation of only two active electrons in He. As
has been demonstrated in our previous work [59], in or-
der to allow the dynamic interference to occur, one has
to propagate the undisturbed photoelectron wave packet
during the pulse, without implying a complex absorption
potential at the boundary. This requires radial spatial
grids of at least 104 a.u., even for relatively short few
femtosecond ionizing pulses.
In order to tackle this challenging computational prob-

lem, we restricted the present theoretical consideration
only to the dominant relevant physical processes evoked
by the high-frequency pulse in He (see Fig. 1 and its de-
scription in the text). In particular, we neglected the
very weak two-photon non-sequential double-ionization
of He, which may occur already at the photon energies
above ω = 39.508 eV [51]. In addition, we forbad the
second electron in the He+ ion to be ionized, since this
requires a sequential absorption of at least three pho-
tons from the pulse, i.e., by the He+(1s → 2p) exci-
tation and subsequent ionization. We thus keep one
of the electrons always bound to the nucleus. Finally,
we limited the two-electron space of active configura-
tions as justified in Sec. II C. Hence, the time-dependent
restricted-active-space configuration-interaction method
(TD-RASCI, [52, 57, 58]), which can also be viewed as
a restricted form of MCTDHF, was the computational
approach of our choice. It is known to allow for a consid-
erable simplification of the problem by a clever selection
of the active configurational space.

B. Theoretical approach

The present theoretical approach is based on the par-
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ticular realization of the TD-RASCI method described in
Ref. [52]. The implemented numerical procedure is partly
reported in our previous works Refs. [59, 60]. There-
fore, only its essential relevant points are outlined below.
Briefly, the radial coordinate is described by the finite-
element discrete-variable representation (FEDVR) basis
set of the normalized Lagrange polynomials χik(r), con-
structed over a Gauss-Lobatto grid {rik} as introduced
in Ref. [61–63]:

χik(r) =
1√
wik

∏

µ6=k

r − riµ
rik − riµ

. (2)

Here, index i runs over the finite intervals [ri, ri+1] and
index k counts the basis functions in each interval. As in
[60], we further introduce the basis element in the three-
dimensional space:

ξλ(~r ) ≡ ξik,ℓm(~r ) =
χik(r)

r
Yℓm(θ, ϕ). (3)

As justified in the preceding section, we use two differ-
ent one-electron spatial basis sets for the two electrons
in He. In particular, dynamics of the electron which re-
mains bound to the nucleus is described by a few selected
localized orbitals {φnℓm(~r ) ≡ φα(~r )}. These stationary
orbitals are composed of the basis elements ξλ as

φα(~r ) =
∑

λ

dα
λ ξλ(~r ), (4)

and they are normalized according to the condition

〈φα|φα′ 〉 = δα,α′ = δn,n′δℓm,ℓ′m′ . (5)

In addition, we introduce the time-dependent wave pack-
ets of a photoelectron {ψα

ℓm(~r, t) ≡ ψβ(~r, t)}

ψβ(~r, t) =
∑

λ

cβλ (t) ξλ(~r ), (6)

which are constrained by the following condition

〈φα|ψβ(t)〉 = 0, ∀ α, β, t. (7)

The wave-packets (6) are built to be orthogonal to all
discrete orbitals φα. Therefore, the full dynamics of the
photoelectron in the whole discrete and continuous spec-
trum can be described by the unification of the two one-
electron basis sets {φα ∪ ψβ}.
Since the Hamiltonian (1) preserves the total spin of

the 1s2 1S singlet ground state of He, the spatial part of
the two-electron wave function must be symmetric with
respect to permutation of two coordinates ~r1 and ~r2. We
thus introduce the following symmetrized ansatz for the
total two-electron wave function Ψ(~r1, ~r2, t)

Ψ(~r1, ~r2, t) =
∑

α

aα(t)φα(~r1)φα(~r2)

+
∑

α>α′

bαα′(t)
1√
2
[φα(~r1)φα′ (~r2) + φα′(~r1)φα(~r2)]

+
∑

αβ

1√
2
[φα(~r1)ψβ(~r2, t) + ψβ(~r1, t)φα(~r2)] , (8)

where the one-electron basis is defined in Eqs. (4–7).
The present calculations were performed by using the
two-electron wave functions with well-defined total or-
bital angular momentum quantum numbers L and M ,
which were constructed via usual Clebsch-Gordon ex-
pansion [64] over electronic states with given quantum
numbers ℓ and m.
The matrix elements of the Hamiltonian (1) can be

computed as described in detail in Refs. [59–63]. For
completeness, we list here final working expressions in the
basis of the three-dimensional elements (3). The matrix
element of the one-electron kinetic energy operator reads
(note that λ ≡ {ik, ℓm} is four-dimensional index)

〈ξλ| −
1

2
~∇2|ξλ′ 〉 = δℓm,ℓ′m′

{
ℓ(ℓ+ 1)

2r2ik
δik,i′k′

+
1

2
(δi,i′ + δi,i′±1)

∫ ∞

0

dr
d

dr
χik(r)

d

dr
χi′k′ (r)

}
. (9)

It can be analytically evaluated in terms of the first
derivatives of the basis functions (2) as

χ′
ik(rik′ ) =

(rik − rik′ )−1

√
wik

∏

µ6=k,k′

rik′ − riµ
rik − riµ

, k 6= k′;

=
1√
wik

∑

µ6=k

(rik − riµ)
−1, k = k′. (10)

The matrix element of the one-electron potential energy
operator is given by:

〈ξλ| −
2

r
|ξλ′〉 = − 2

rik
δℓm,ℓ′m′δik,i′k′ . (11)

The dipole transition matrix element for the interaction
with the linearly-polarized field can be computed via:

〈ξλ|z|ξλ′〉 = rik δik,i′k′

√
4π

3
〈ℓm|1 0|ℓ′m′〉, (12)

where 〈ℓm|KQ|ℓ′m′〉 stands for the integral of the three
spherical harmonics [65].
The matrix element of the two-electron Coulomb oper-

ator is evaluated using its standard expansion over spher-
ical harmonics [64]

〈
ξλξλ′

∣∣∣∣
1

|~r1 − ~r2|

∣∣∣∣ ξλ′′ξλ′′′

〉
=

∑

KQ

4π

2K + 1

〈
χikχi′k′

∣∣∣∣
rK<
rK+1
>

∣∣∣∣χi′′k′′χi′′′k′′′

〉

× 〈ℓm|KQ|ℓ′′m′′〉〈ℓ′′′m′′′|KQ|ℓ′m′〉∗, (13)

where r< and r> are, respectively, the smallest and the
largest of r1 and r2 values. The radial matrix element in
Eq. (13) can be further evaluated as [63]

〈
χikχi′k′

∣∣∣∣
rK<
rK+1
>

∣∣∣∣χi′′k′′χi′′′k′′′

〉
= δik,i′′k′′δi′k′,i′′′k′′′

×
(

2K + 1

ri′k′

√
wi′k′ rik

√
wik

[2T ]
−1

i′k′,ik +
rKi′k′ rKik
R2K+1

max

)
, (14)



4

where Tik,i′k′ is the matrix of the one-electron kinetic
energy operator defined in braces of Eq. (9) with ℓ = K,
and Rmax is the last point of the radial grid.
In order to follow time-evolution of the total wave func-

tion (8), we collect the time-dependent expansion coef-

ficients aα(t), bαα′(t), and cβλ (t) in a single vector ~A(t),
which is propagated according to the Hamiltonian (1)
with the matrix elements given by Eqs. (9–14):

~A(t) = exp
{
−iP Ĥ(t)P

}
~A(0). (15)

Here, the one-particle projector, P = 1 − ∑
α |φα〉〈φα|,

acts on the
{
cβλ (t)

}
part of the vector ~A(t) to ensure

constrain (7). The propagation was managed by the
short-iterative Lanczos method employing the algorithm
of Ref. [66]. The multi-configurational initial ground
state of the He atom in the absence of the field (i.e., the
~A(0) vector) was obtained via the imaginary time prop-
agation. The three-dimensional momentum distribution
of the emitted photoelectrons can be obtained from the
Fourier transformation of the final electron wave pack-
ets at large times ψβ(~r ) = ψβ(~r, t = ∞). Because of
the normalization condition (5), the total photoemission
probability is given by

W (~k ) =
1

(2π)3

∑

β

∣∣∣∣
∫
ψβ(~r ) e

−i~k·~rd3~r

∣∣∣∣
2

. (16)

C. Computational details

We, first, discuss the basis set of the discrete functions
φα taken for the bound electron in He and justify the
present restrictions to the active space of configurations
in Eq. (8). In order to be as close as possible to the
ground state of neutral He, we include the 1sHF Hartree-
Fock orbital in this basis set. Thereby, the two-electron
ansatz (8) includes the |1s2HF〉 configuration, as well as
the corresponding |1sHFψ

1s
ℓm〉 configurations. The former

approximates the ground states of He, whereas the lat-
ter describes the one-photon – one-electron ionization in
the ψ1s

ℓm continuum. Apart from the 1sHF orbital, the
present one-electron basis set φα includes the 2pion or-
bital of He+. Thereby, the active space is extended to the
|2pionψ2p

ℓm〉, and the |1sHF2pion〉 and |2p2ion〉 configura-
tions. The former allows for the 1sHF → 2pion excitation
in the ion, which gives rise to the dynamic interference,
whereas the latter two configurations ensure complete-
ness of the present configurational space.
Although the already selected active space is sufficient

to describe the dynamic interference effect, it yields low
1sHF → 2pion excitation energy and underestimates the
resonant carrier frequency. In order to correct for this
inaccuracy, one should allow for relaxation of the 1sHF

orbital in the ion to the 1sion orbital (the radial parts of
the 1sHF and 1sion orbitals orbitals are compared in the
upper panel of Fig. 2). For this purpose, the basis set φα
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FIG. 2: (Color online) Radial parts of the one-electron func-
tions, r ·φα(r), used as the basis functions for the bound elec-
tron in the two-electron TD-RASCI ansatz Eq. (8). Shown
are the 1sHF Hartree-Fock orbital of the He atom, 1sion and
2pion orbital of the He+ ion, and the correlation functions 2̃s
and 3̃p defined via Eqs. (17) and (19), respectively.

must include a complete set of the nsion functions, which
is rather complicated. However, there is an alternative
procedure to describe the 1sHF → 1sion relaxation in the
ion by a single function.
Here, we included the following normalized difference

between those two orbitals in the basis set φα

|2̃s 〉 = N2s

(
|1sion〉 − |1sHF〉〈1sHF|1sion〉

)
, (17)

where N2s stands for the normalization coefficient. The
radial part of the 2̃s function is depicted in the upper
panel of Fig. 2 by solid line. This function satisfies the
condition (5), i.e., it is orthogonal to the 1sHF orbital. It
is also localized in the same region as the 1sHF and 1sion
functions. Therefore, a proper mixture of the 1sHF and

2̃s functions will yield the required 1sion orbital. In or-

der to allow for this relaxation, we introduce the |2̃sψ2s
ℓm〉

configuration in the active space. Including this configu-
ration ensures correct value of the 1sion → 2pion excita-

tion energy of 1.50 a.u. Besides, configurations |1sHF2̃s 〉,
|2̃s 2pion〉, and |2̃s 2〉 need also to be included in the active
space for completeness.
So far, the present active space allows for the most

probable 1sion → 2pion excitation in the ion. However,
the quantum motion of the higher npion states driven by
the strong pulse may also influence dynamics of the whole
process. This is especially important for the photon en-
ergies slightly above the resonant energy, where the next
closest 3pion state is already involved. In order to allow
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for such 1sion → npion excitations in the ion, all those
states need to be included in the basis set φα, which is
rather expensive. Here, we imply the technique [67–69]
and describe those transitions in an effective way by the

single correlation function 3̃p . To this end, we construct
and diagonalize the following matrix



E(1sion) + ω 〈1sion|ẑ|2pion〉 . . . 〈1sion|ẑ|npion〉 . . .

〈2pion|ẑ|1sion〉 E(2pion) 0 0 0

. . . 0 . . . 0 0

〈npion|ẑ|1sion〉 0 0 E(npion) 0
. . . 0 0 0 . . .




(18)
Here, 〈n′ℓ′ion|ẑ|nℓion〉 are the corresponding dipole tran-
sition matrix elements in the ion.
The correlation function 3̃p can now be computed with

the help of the eigenvector
{
v1sn

}
of matrix (18), which

genealogically corresponds to the 1sion basis state

|3̃p〉 = N2p

∑

n>2

v1sn |npion〉. (19)

Here, N2p stands for the normalization coefficient. This
function is orthogonal to the 2pion function by its con-
struction. The condition (5) is thus fulfilled. The radial

parts of the 2pion and 3̃p functions are compared in the
lower panel of Fig. 2. One can see that the latter is local-
ized around the former, and since 3pion function provides

the major contribution to the sum (19), the 3̃p function
has one knot. The correlation function (19) effectively
includes contributions from the whole npion spectrum,
apart from the explicitly included 2pion state. In order

to allow for the 1sion → 3̃p excitation to take place, we in-

clude the |3̃pψ3p
ℓm〉 configuration, as well as the |1sHF3̃p 〉,

|2̃s 3̃p 〉, |2pion3̃p 〉, and |3̃p 2〉 configurations in the present
active space.
The presently computed energy of the ground state

of neutral He, obtained by the imaginary time prop-
agation of the chosen active configurational space in
the restricted radial interval of r ≤ 50 a.u., is equal
to E(1s2) = −2.89384 a.u. Since our active space al-
lows for an exact numerical description of the He+(1s1)
and He+(2p1) states, the theoretical ionization potential
of He amounts to: IP = E(1s1) − E(1s2) = −2.0 +
2.89384 = 0.89384 a.u. = 24.323 eV. It is by +0.873 eV
larger than the Hertree-Fock value of 23.450 eV, and
only by −0.264 eV smaller than its experimental value
of 24.587 eV [44]. In order to eliminate this difference
between the theoretical and experimental ionization po-
tentials, the photoelectron energy in all computed spectra
was corrected by this value of −0.264 eV. As the conse-
quence, photoelectron peaks in the computed spectra in
Figs. 3 – 6 have correct energy positions, which facilitates
comparison with possible experiments in the future.
As was suggested in the supplemental material docu-

ment of our previous work Ref. [39], the present calcula-
tions were performed for a Gaussian-shaped pulse with

the time-envelope g(t) = e−t2/τ2

and the pulse duration
of τ = 30 fs. The two-electron wave packets were prop-
agated in the time-interval of [−75 fs,+75 fs] centered
around the pulse maximum. At the interval boundaries,
the field amplitude falls by almost three orders of mag-
nitude. For the photon energies used, the ATI electrons
indicated in Fig. 1 have momenta of k ∼ 2.0 a.u. During
the propagation time of 150 fs ≈ 6200 a.u. they may
move off the nucleus by about Rmax ∼ 12000 a.u. In
order to avoid hitting the outward grid boundary by the
fast electrons during the whole propagation, this value
of Rmax was chosen as the radial grid size. The interval
[0, Rmax] was covered by 4800 equidistant finite elements
of the 2.5 a.u. size, each represented by 10 Gauss-Lobatto
points. In order to be able to describe ATI electrons, the
wave packets ψβ with ℓ = 0, 1, and 2 were included in
the present active space. The convergence of the solution
with respect to the chosen computational parameters has
been ensured.
A typical calculation discussed at the very beginning of

the next section requires approximately 20 Gb memory
and, in average, about 300 days for a single contemporary
computer core. In order to be able to perform such time-
consuming numerical calculations in a reasonable time,
the propagation procedure was parallelized, and calcula-
tions were performed in the multiple-processor regime.

III. RESULTS AND DISCUSSION

A. Propagation of two-electron wave packet

An overview of the computational results obtained for
the Gaussian-shaped pulse with the resonant carrier fre-
quency of 1.50 a.u., peak intensity of 1014 W/cm2, and
duration of 30 fs is given in Fig. 3. The upper panel de-
picts the final radial wave packet density computed after
the laser pulse has expired. In this wave packet, a clear
hump with the maximum around r = 4000 a.u. repre-
sents the slow photoelectrons released by the photoion-
ization (see below). The shoulder around r = 8000 a.u.
describes faster electrons emitted via the ATI process.
The electron energy spectrum obtained via Eq. (16) is
depicted in the lower panel of Fig. 3. Assignments of
the observed structures, made on the base of the main
contribution to the spectrum, are also given in the figure
near each peak.
The two groups of peaks are clearly visible in this com-

puted energy distribution. The low-energy group cor-
responds to the photoionization process. In particular,
the double-peak structure in the energy range of 16.0–
16.5 eV corresponds to the Autler-Townes doublet of the
1s and 2p states of the He+ ion. It is produced by the
one-photon ionization of the ground state and by the two-
photon ionization and subsequent 1s → 2p excitation in
the ion. The low energy peaks at about ε = 9.6 and
5.2 eV correspond, respectively, to the population of the

2̃s
1
and 3̃p

1
states of He+ via the one- and two-photon
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FIG. 3: The final photoelectron radial density (upper panel)
and the final photoelectron spectrum (lower panel) after the
intense linearly-polarized Gaussian-shaped pulse has expired.
The pulse duration τ , carrier frequency ω, and peak intensity
I0, used in the calculations, as well as assignments of the
main structures in the spectrum are indicated in the figure.
Note the logarithmic scales on the vertical axes. Here and
below, the electron energy was corrected by −0.264 eV for the
difference between the theoretical and experimental ionization
potentials (see Sec. IIC for details).

absorption. These weak artificial structures are charac-
teristic for the present choice of CI ansatz (Sec. II C).
They comprise an integral contribution of all shake-up
photoionization processes populating higher in energy re-
alistic ns1 and np1 states of He+, except the explicitly
involved He+(1s1) and He+(2p1) thresholds. The high-
energy group of peaks in the spectrum is separated from
the low-energy group by the resonant photon energy of
40.817 eV. The former group corresponds one-by-one to
the latter one, and it represents thereby the ATI pro-
cesses involving absorption of an additional photon from
the pulse. Due to the limitations of the present CI ansatz,
these ATI structures were excluded from the analysis of
the dynamic interference effect.

The presently computed photoionization spectra are
collected in Figs. 4 and 5. In Fig. 4, the photon energy
increases from top to bottom across the resonant value of
ω = 1.50 a.u., whereas the pulse duration 30 fs and inten-
sity 2.5× 1014 W/cm2 are kept fixed. One can see, that
each photoionization spectrum in Fig. 4 consists of two
parts. The largest major part is related to the He+(1s1)
photoionization threshold, and the somewhat smaller mi-
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FIG. 4: Photoionization spectra of the helium atom com-
puted for Gaussian-shaped pulses of 30 fs duration and peak
intensity of 2.5× 1014 W/cm2 for different carrier frequencies
(indicated near each spectrum) around the 1s → 2p reso-
nant excitation in the He+ ion. The photoelectron energies
expected in the weak field regime are indicated by the verti-
cal down-arrows. For the carrier frequencies below 1.5 a.u.,
the shift of the 1s threshold is negative, which results in the
positive shift in the corresponding major part of the electron
spectrum. On the contrary, the shift of the 2p threshold is
positive, and for the associated minor part of the spectrum
it is thus negative. For the frequencies above 1.50 a.u., the
shift of the 1s threshold is positive and of the 2p threshold
is negative, which results in the negative shift in the corre-
sponding major part of the spectrum and in the positive shift
in its minor part. The complexity of the dynamic interference
patterns in the spectrum increases with the decrease of the
photon energy detuning. The resonant carrier frequency of
1.50 a.u. produces nearly symmetric Autler-Townes doublet
structured by distinct dynamic interference patterns.

nor one corresponds to the population of the He+(2p1)
final state. At the resonant carrier frequency (the mid-
dle spectrum), the two ionic states mix completely, and
a typical dynamical Autler-Townes doublet [43] with ap-
proximately equal intensities can be seen. One can see
that the computed spectra in Fig. 4 exhibit prominent
multiple-peak pattern, which are due to the dynamic in-
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FIG. 5: Photoionization spectra of the helium atom computed
for Gaussian-shaped pulses of 30 fs duration, two carrier fre-
quencies of 1.500 a.u. (left panel) and 1.528 a.u. (right panel),
and different peak intensities (indicated near each spectrum).
For further details, see caption of Fig. 4. The complexity of
the dynamic interference patterns in the spectrum increases
with the increase of the pulse intensity.

terference [39, 40, 42, 43]. The number of interference
peaks increases with the energy shift of the ionization
threshold, which is larger for smaller energy detunings.
The two uppermost spectra represent the photon en-

ergies below the resonant value of ω = 1.50 a.u. In this
case, the dressed He+(1s1) ionic state is just below the
He+(2p1) one: E(1sion) + ω < E(2pion). The former
experiences a negative energy shift and the latter a posi-
tive one. Therefore, photoelectrons corresponding to the
He+(1s1) threshold acquire a positive shift, and the ma-
jor part of the spectrum shifts to the high-energy side
from the central photoelectron energy ε0 = ω − IP (in-
dicted by the vertical down-arrow in the figure). On the
contrary, the minor part of the spectrum, which corre-
sponds to the He+(2p1) threshold, experiences the nega-
tive energy shift. The situation is altered for the photon
energies above the resonant value (two lowermost spec-
tra in Fig. 4). The dressed He+(1s1) state is now above
the He+(2p1) ionic state: E(1sion) + ω > E(2pion). As
a result, the former experiences a positive energy shift
and the latter a negative one. The corresponding major
part of the spectrum shifts now to the low-energy side
from the central photon energy ε0, and the minor part
accordingly to the high-energy side.
Figure 5 demonstrates changes of the dynamic interfer-

ence in the photoionization spectra computed for differ-
ent pulse intensities. For the resonant carrier frequency
(left panel), a typical Autler-Townes doublet structured
by interference patterns [42, 43] can be observed. As
usual, the number of interference peaks increases with the
growth of the pulse intensity (from top to bottom of the
figure). The same observation applies to the off-resonant

regime (right panel, carrier frequency is larger than its
resonant value). The energy shift in the spectrum from
the central electron energy ε0 (indicated by the vertical
down-arrow) grows as a function of the pulse intensity.
As a consequence, the number of peaks in the spectrum
grows as well. The interference structure computed for
the largest considered intensity of 4.5×1014 W/cm2 (the
lowermost right spectrum in Fig. 5 ), is somewhat trun-
cated on the low-energy side. This behavior indicates
that the photoionization process is nearly-saturated at
this relatively large peak intensity.

B. Explicit estimates of the electron spectrum

So far we discussed results of the numerical calculations
of the two-electron wave packet propagation dynamics in
He. Such an accurate theoretical description of the pro-
cess is very time-consuming. Therefore, it is very im-
portant to wield a simple theoretical model which can
provide quick and reliable estimates for the dynamic in-
terference effects in the photoelectron spectrum of He. It
has been introduced in the supplemental material docu-
ment of our previous work [39]. Below we briefly outline
this model and apply it to estimate selected numerical
spectra. For transparency, we explicitly assume that only
two subsequent ionization steps of an atom are possible
(as in He), and only one final ionic state is presented in
each of the photoionization steps. Generalization of the
theory to the case of several ionization thresholds in each
step is straightforward.
We now restrict the ansatz for the total wave func-

tion of the system Ψ(t) to the quantum motion of only
essential electronic states participating directly in the
photoionization dynamics in each step. It thus includes:
(i) the neutral ground electronic state |N〉 of energy of
EN = 0 (chosen as the origin of the energy scale); (ii)
the electron continuum states of the singly-ionized atom
|Fε〉 of energy IP + ε (where IP = EF − EN stays for
the ionization potential to produce state |F 〉 and ε is the
kinetic energy of the primary photoelectron); and (iii)
the final doubly-ionized electron continuum states |Gεε′〉
of energy DIP + ε + ε′ (where DIP = EG − EN is the
double-ionization potential to produce state |G〉 and ε′ is
the kinetic energy of the secondary electron emitted by
the ionization of the ion). Following Refs. [39–43], the
total wave function of the system reads

Ψ(t) = aN(t)|N〉 +
∫
dε aε(t)|Fε〉e−iωt

+

∫∫
dεdε′ bεε′(t)|Gεε′〉e−2iωt. (20)

In Eq. (20), aN (t), aε(t), and bεε′(t) are the time-
dependent amplitudes for the population of the initial
neutral state, the singly- and the doubly-ionized contin-
uum states, respectively. The continuum states are al-
ready dressed by the energy of photons absorbed in order



8

to access these states. Technically, the stationary states
have just been redefined by multiplying with the phase
factors eiωt and e2iωt [41]. Inserting Ψ(t) into the time-
dependent Schrödinger equation for the total Hamilto-
nian of the atom plus its interaction with the laser field,
and implying the rotating wave [70] and local [71, 72]
approximations, we obtain the following set of equations
for the amplitudes [39–43]

iȧN(t) =
(
∆N − i

2
ΓN

)
g2(t) aN (t), (21a)

iȧε(t) =
{

1
2
dεE0

}
g(t) aN (t)

+
(
IP +

[
∆I − i

2
ΓI

]
g2(t) + ε− ω

)
aε(t), (21b)

iḃεε′(t) =
{

1
2
d̃ε′E0

}
g(t) aε(t)

+ (DIP + ε+ ε′ − 2ω) bεε′(t). (21c)

Here, dε = 〈Fε|ẑ|N〉 and d̃ε′ = 〈Gε′|ẑ|F 〉 are the energy-
dependent dipole transition matrix elements for the ion-
izations of the neutral atom and of the ion, respectively.
One can see that the populations of the neutral ground

and the singly-ionized states are subjects to the time-
dependent leakages, − i

2
ΓNg

2(t) and − i
2
ΓIg

2(t), which is
due to photoionization of these states by strong high-
frequency pulse. In addition, the energy of the neu-
tral ground state is augmented by the time-dependent
ac Stark shift ∆N g2(t) [39, 40]. Similar shift ∆I g

2(t) is
introduced to the energy of the singly-ionized state. We
stress, that even if the photon energy ω is insufficiently
large to further ionize the ion (as in the present case), the
shift ∆I also exists, and it is caused by the coupling in the
discrete spectrum of the singly-ionized system. However,
leakage in the ion in this case is equal to zero, ΓI = 0.
Therefore, dynamics in the photoionization step can now
be decoupled from the dynamics of the electron remain-
ing bound to the ion. Neglecting also the ac Stark shift
in continuum for the neutral ground state ∆N ≈ 0, the
final equations describing photoionization process read

iȧN(t) = − i
2
ΓN g2(t) aN (t), (22a)

iȧε(t) =
{

1
2
dεE0

}
g(t) aN (t)

+
(
IP +∆I g

2(t) + ε− ω
)
aε(t). (22b)

The above derived equations of motion (22) can be
applied to compute the photoelectron spectrum, σ(ε) =
|aε(∞)|2. The two parameters ∆I and ΓN needed can
be estimated from first principles or taken to be fit pa-
rameters. We follow here the former path. For simplic-
ity, we restrict further consideration to the major part of
the photoionization spectrum, which corresponds to the
He+(1s1) ionization threshold. The direct ionization rate
ΓN can be computed with the help of the total photoion-
ization cross section of the neutral ground state of He
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FIG. 6: (Color online) Comparison of the dynamic interfer-
ence patterns in the major part of the photoionization spec-
trum, which corresponds to the He+(1s1) final state, com-
puted numerically via the electron wave packet propagation
and estimated as described in Sec. III B for two Gaussian-
shaped pulses. The computational parameters are indicated
in the panels. Each estimated spectrum is normalized to the
maximum of the corresponding numerical one.

via ΓN = 2π| 1
2
dεE0|2 = σεI0/ω [25, 41]. For the present

purpose, it was sufficient to estimate the corresponding
dipole transition amplitude dε and the total cross sec-
tion σε at the Hartree-Fock level. The shift ∆I in the
He+ ion was computed through the diagonalization of
the matrix (18), which describes the quantum motion of
the dressed 1sion state coupled by the field to the motion
of the whole npion electron spectrum. It neglects, how-
ever, the quantum motion of states with different angular
momenta nsion, ndion, etc. Since the photon energy ω is
nearly-resonant to the 1sion → 2pion transition, it pro-
vides the main contribution to the shift. Eq. (18) thus
yields a reliable estimate for ∆I .
Results of the present estimation of the two selected

numerical spectra are collected in Fig. 6. The pulse prop-
erties and parameters ∆I and ΓN used in the propaga-
tion and for the estimation of the spectra are indicated in
each panel. One can see that Eq. (22) provides an overall
good estimate for the major part of the numerical spec-
tra related with the He+(1s1) ionization threshold. Each
pair of the estimated and computed spectra possesses an
equal number of oscillations caused by the dynamic in-
terference. The energy positions and relative heights of
the multiple peak structures are however slightly differ-
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ent. The dynamic interference is very sensitive to the
time-dependence and to the absolute values of the en-
ergy shifts ∆I and ionization rates ΓN [39, 40, 42, 43]. In
Eq. (22), the energy shift ∆I explicitly follow the pulse in-
tensity envelope I0g

2(t), which is typical for the ac Stark
effect [7]. For the resonant carrier frequencies, the energy
splitting between the dynamical Autler-Townes doublet
follows the time-envelope of the field E0g(t) [42, 43]. The
present situation is intermediate to those two extremes,
which can be one of the reasons for a slight disagreement
between the estimated and computed spectra in Fig. 6.
Improvement can probably be achieved by either a bet-
ter calculation of or by fitting the parameters ∆I and
ΓN . Fig. 6 demonstrates that a simplified and explicit
description of the process is possible via Eq. (22) which
leads to a better understanding of the findings and can
be used for a quick but rather reliable estimate of the
dynamic interference in He.

IV. CONCLUSION

The time-dependent Schrödinger equation for the he-
lium atom exposed to coherent intense high-frequency
short linearly-polarized laser pulse is solved by numer-
ically propagating the two-active-electron wave packet.
The propagation over very large spatial grids and long
times, required to allow for the interference of electron
wave packets emitted at different times to take place,
is managed by the efficient time-dependent restricted-
active-space configuration-interaction method. Working
equations for the application of the TD-RASCI method
to the photoionization of He are collected and discussed.
The carrier frequencies of the pulse were chosen to be

nearly-resonant for the He+(1s → 2p) transition, which
is sufficient to ionize neutral He by one-photon absorp-
tion, but not enough to further ionize the ion by absorp-
tion of a subsequent photon from the pulse. We allowed
only one of the electrons in He to be ionized during the
propagation, whereas the other electron feels the field
and is active but was kept bound to the nucleus. The
present active space was restricted to the electron config-
urations which describe: (i) one-electron photoionization
and above threshold ionization of He; (ii) relaxation of
the remaining 1s electron in response to the photoioniza-
tion; and (iii) excitation of this bound electron explicitly
in the 2p state and in an effective way in the whole np
electron spectrum. As a result, the present calculations
account for sequential two-photon absorption, as well as

for main but all three-photon absorption processes in a
numerically precise way.
The presently computed electron energy spectra ex-

hibit two photoionization structures, which are due to
the population of the He+(1s1) and He+(2p1) final ionic
states by one- and, respectively, two-photon absorption.
The above-threshold ionization peaks, related to those
thresholds and produced respectively by two and three-
photon absorption processes, are also visible. The pho-
toionization peaks exhibit distinct patterns which are due
to dynamic interference. The effect is exclusively pro-
duced by the dynamics of the electron remaining in He+,
which is governed by the nearly-resonant intense coher-
ent laser pulse and is coupled to the dynamics of the
photoelectron. One can view this processes as if the 1s
and 2p ionization thresholds, seen by the photoelectrons,
experience the opposite time dependent energy shifts pro-
vided by the pulse. This results in the emission of photo-
electrons with different kinetic energies along the pulse,
which is at the heart of the dynamic interference phe-
nomenon.
The dynamic interference pattern can be controlled by

choosing carrier frequencies across the He+(1s→ 2p) res-
onant transition and different pulse intensities. The rela-
tive intensities of the two photoionization peaks, associ-
ated with the He+(1s1) and He+(2p1) ionization thresh-
olds, depend on the photon energy detuning. For the res-
onant carrier frequency of 1.50 a.u., a nearly-symmetric
interference-structured Autler-Townes doublet can be ob-
served. Finally, we notice that the carrier frequencies,
pulse durations, field intensities, and temporal coherence
required to produce observable effects, are available at
present at the FEL facility FERMI@Elettra [14]. Our
results provide a theoretical background for future ex-
perimental verification of the dynamic interference effect
in the high-frequency regime.
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[2] K. Rza̧żewski, J. Zakrzewski, M. Lewenstein, and J. W.

Haus, Phys. Rev. A 31, 2995 (1985).
[3] M. Lewenstein, J. Zakrzewski, and K. Rza̧żewski, J. Opt.
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