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Abstract

We have explored the dipole-dipole mediated, resonant energy transfer (RET) reaction, 32p3/2+

32p3/2 → 32s + 33s, in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to

measure the population transfer probability as a function of the total electronic energy difference

between the initial and final atom-pair states over a range of Rydberg densities, 2× 108 cm−3 ≤

ρ ≤ 3 × 109 cm−3. The observed lineshapes provide information on the role of beyond nearest-

neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity

in the sample. The widths of the resonance lineshapes increase approximately linearly with the

Rydberg density and are only a factor of two larger than expected for two-body, nearest-neighbor

interactions alone. These results are in agreement with the prediction [1] that beyond nearest-

neighbor exchange interactions should not influence the population transfer process to the degree

once thought. At low densities, Gaussian rather than Lorentzian lineshapes are observed due to

electric field inhomogeneities, allowing us to set an upper limit for the field variation across the

Rydberg sample. At higher densities, non-Lorentzian, cusp-like lineshapes characterized by sharp

central peaks and broad wings reflect the random distribution of interatomic distances within the

MOT. These lineshapes are well-reproduced by an analytic expression derived from a nearest-

neighbor interaction model and may serve as a useful fingerprint for characterizing the position

correlation function for atoms within the MOT.
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I. INTRODUCTION

Because of their large transition dipole moments, Rydberg atoms are greatly affected by

weak electric fields, including the multi-pole fields of neighboring atoms [2]. Accordingly,

interactions between Rydberg atoms can be quite strong, coupling electronic and center-of-

mass degrees of freedom at large internuclear separations. Rydberg-Rydberg interactions

were originally studied in the context of collisions in thermal samples [2]. More recently,

however, attention has turned to the exploration and control of the coherent couplings that

exist between Rydberg atoms in (nearly) frozen gases, where the thermal kinetic energy of

the atoms is less than their mutual interaction energies [1, 3–32]. Such interactions enable

a variety of few- and many-body quantum phenomena as well as potential applications in

quantum information [5, 33–36]. Typically, dipole-dipole (DD) effects dominate the atom-

atom interaction when the spacing between the Rydberg atoms is much larger than the

radial extent of the electronic wavefunction on individual atoms.

The degree to which the dipole-dipole (DD) coupling between Rydberg atoms influences

their behavior depends sensitively on the energy level structure of the individual atoms.

Given their large polarizabilities, it is straightforward to manipulate the interactions between

Rydberg atoms by applying static or pulsed electric fields. Stark-tuned, (Förster) resonant

energy transfer (RET) reactions have been studied in both thermal [2, 37, 38] and cold

Rydberg gases [3, 4, 6, 8, 9, 12–14, 16, 17, 22, 29, 31], and are perhaps the simplest example

of electric-field controlled DD interactions involving Rydberg atoms. As an example of a

RET process, consider two identical atoms A and B, separated by a distance R and initially

in the same Rydberg state |P 〉. Direct electronic energy transfer from A to B can efficiently

occur, with little or no center of mass translational energy exchange, if there exist two states,

|S〉 and |S ′〉, with energies ES,P ≃ −ES′,P relative to |P 〉. Assuming |S〉, |P 〉 and |S ′〉 are
adjacent Rydberg levels with approximately the same principal quantum number n, the

transition matrix elements µA = 〈S| rA |P 〉 and µB = 〈S ′| rB |P 〉 are large (scaling as n2)

and energy transfer from A to B is facilitated by a DD-interaction, Vdd ∼ µAµB/R
3 (atomic

units are used unless otherwise noted) [2]. The energy transfer results in the excitation of

atom B from |P 〉 to |S ′〉 and simultaneous de-excitation of atom A from |P 〉 to |S〉. The

process is resonant, and most efficient, when the applied field is tuned to a value F = F0

where the detuning δ = ES,P + ES′,P = 0.
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In the context of collisions it makes sense to discuss the DD-interaction between a pair

of atoms in terms of RET between the individual atoms. However, in a frozen gas, the DD-

interaction between two atoms is more conveniently discussed as a coherent coupling between

molecular, or atom-pair states. For the example in the preceding paragraph, the relevant

(uncoupled) pair states at large R are |P 〉 |P 〉 and |S〉 |S ′〉. At smaller R, the coupled atoms

are described by eigenstates which are linear combinations of the two uncoupled pair states.

Through the DD-interaction, probability amplitude initially in |P 〉 |P 〉 can be coherently

transferred to |S〉 |S ′〉 (and back) at a rate, and with a maximum probability, that depends

on µA, µB, R, and δ. For samples involving more than two atoms, the coupling between non-

nearest neighbor atoms complicates the eigenstate composition and the coherent population

transfer processes. Indeed, measurements of Rydberg population transfer probability, as

a function of the detuning δ from DD resonance, have provided evidence that many-body

interactions play an important role in the coupled-atom dynamics in large ensembles [3,

4]. Also, clear changes in resonance “lineshapes” have been observed as the number of

interacting atoms increases from two to several [22].

Using lineshape measurements for the 32p3/232p3/2 ↔ 32s33s DD-resonance in Rb, we

clarify the respective roles of nearest- and beyond nearest-neighbor interactions in reso-

nantly coupled systems, and show that the lineshapes contain information on the position

correlation function of Rydberg atoms in a cold random ensemble.

II. EXPERIMENTAL PROCEDURE

In the experiments, 85Rb atoms at ∼70 µK in a magneto-optical trap (MOT) are photo-

excited from the 5p3/2 upper trap state directly to the 32p3/2 Rydberg state in the presence of

a weak electric field, F ≃ 15 V/cm. The field mixes a small amount of ns-character into the

p-state to enable the excitation, but detunes the atoms sufficiently far from DD-resonance

so that, initially, there is negligible interaction between them. The atoms are then exposed

to a fast-rising “tuning” electric field pulse. The tuning pulse alters the energy difference,

δ, between the 32p3/232p3/2 and 32s33s pair states, and projects the initial 32p population

onto the coupled pair states. The system is allowed to evolve throughout the duration τ

of the tuning pulse. State-selective field ionization (SSFI) is then employed to measure the

population transferred to 32s33s pairs as a function of the tuning field strength and Rydberg
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density [2].

A 482 nm laser pulse directly excites atoms from the 5p3/2 trap state to the 32p3/2

Rydberg state. The experiments are performed using either a “long,” narrow-band (∼ 1

MHz) or “short,” broader-band (∼ 100 MHz) Rydberg excitation pulse. For the long pulse,

an acousto-optic modulator (AOM) chops a 3 µs excitation pulse, with ∼ 1µs rise and fall

times, from a narrow band (∼ 1 MHz) continuous wave diode laser. Alternatively, a Pockels

cell is employed to slice a short 10 ns pulse from the diode laser, and that pulse is amplified

in dye using the 10 ns, 355 nm third harmonic of a pulsed Nd:YAG laser. In both cases, the

482 nm beam is focused into the 0.4 mm diameter MOT using a 350 mm focal length lens,

exciting a cylindrical atomic volume with a diameter of ∼0.1 mm and a length of 0.4 mm.

The laser excitation, energy tuning, and field ionization of the Rydberg atoms are facili-

tated by the application of pulsed and static voltages to two pairs of thin, parallel, stainless

steel rods that are arranged around the cold atom cloud in a rectangular array. The field

produced by the rods at the position of the MOT is proportional to the voltage difference

between rod pairs and is quite uniform, with a variation of 0.07% over the atom cloud.

The voltage pulse which produces the tuning field has fast (2 ns) rise and fall times and is

produced using an arbitrary waveform generator (AWG) followed by a DC-coupled, pulse

amplifier.

At the end of the interaction period defined by the tuning pulse, a high-voltage ramp

applied to the field rods ionizes Rydberg atoms in the interaction region, propelling them

toward a micro-channel plate (MCP) detector. Different Rydberg states ionize at different

times during the ramp [2]. Therefore, in principle, population in different states can be

distinguished in the time-dependent signal from the MCP detector. In practice, to obtain

better temporal separation between the signals corresponding to population in the initial

(32p3/232p3/2) and final (32s33s) pair states, the maximum ionization field is set just above

the threshold for ionizing 32p3/2. As a result, we do not ionize atoms in 32s, and detect only

half of the atoms (those in 33s) in each 32s33s pair.

By recording the population transfer to 33s as a function of the tuning field, we obtain

the resonance lineshape (see Fig. 1). Lineshapes are measured over a range of Rydberg

densities, 2×108 cm−3 < ρ < 3 × 109 cm−3. The density is varied by adjusting the current

applied to the getters that supply Rb to the MOT. The density of atoms in the MOT is

determined, to within 30%, by combining measurements of the spatial dimensions of the
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atom cloud size via direct imaging with a CCD camera with measurements of the radiated

fluorescence using an optical power meter [39]. By saturating the Rydberg excitation using

a sufficiently high laser fluence, we ensure that approximately one-third of the atoms in the

excitation volume are excited to Rydberg states. Data collected as a function of tuning

pulse duration, τ , at fixed tuning field showed little or no change in the population transfer

for τ > 1µs. Full lineshapes were measured over a range of densities for τ = 5µs and 15µs,

with no apparent differences in the observed resonance profiles.

In addition to the field produced by the rods, an additional parallel “offset” field of 2.6

V/cm contributes to the net electric field in the interaction region. The offset field is the

result of imperfect shielding of the MCP detector and is less homogeneous than the rod field.

As discussed in more detail below, the measured lineshapes can be used to characterize the

variation in this offset field over the atomic ensemble.

III. EXPERIMENTAL RESULTS

Figure 1 shows the population transferred to 33s as a function of the strength of the

applied tuning field at three different densities. These lineshape data exhibit several notable

features. First, the functional form of the resonance lines change from something resembling

a Gaussian at low density to a cusp, characterized by a narrow central peak with broad

wings, at higher density. As described in detail in the next section, the cusp lineshape

reflects the random variation in the interatomic spacing, R, within the random ensemble.

Second, the maxima of the three lineshapes appear at (slightly) different applied tuning

fields, at values closer to 10.1 V/cm than to the expected value, F0=12.7 V/cm, at which the

resonance condition, δ = 0, is fulfilled for atoms initially in the 32p3/2 |mj| =3/2 state. As

noted previously, the nominal 2.6 V/cm MCP offset field adds to the applied field from the

rods, shifting the apparent resonance field. The variation in the peak position for different

data sets is not caused by the different densities at which the data were taken, but rather

to the inhomogeneity in the offset field and slight differences in the position of the Rydberg

excitation laser within the MOT for different data runs. The spatial variation in the offset

field within the Rydberg excitation beam is responsible for the Gaussian, inhomogeneously

broadened lineshapes observed at low density.

Third, the widths of the lineshapes grow linearly with increasing density. Figure 2 shows
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FIG. 1. (Color Online) 32p3/232p3/2 → 32s33s DD-resonance lineshapes, showing population

transfer to 33s as a function of applied tuning field at various Rydberg densities: ρ = 2 × 108

cm−3 (filled triangles); ρ = 1 × 109 cm−3 (filled squares); and ρ = 3 × 109 cm−3 (crosses). The

measured signals are not individually normalized, so the relative heights of the profiles reflects

the difference in resonant transition probability. The baseline, corresponding to zero population

transfer, is the same for the three data sets. The horizontal axis shows the applied tuning field due

to the rods. The resonance line centers are shifted from the expected resonance condition, F =

12.7 V/cm, due to the presence of the MCP offset field described in the text. The three data sets

are acquired with the excitation beam focused at (slightly) different locations within the MOT.

The relative shifts of the line centers are due to the variation in the offset field within the FWHM

of the atom cloud. As described in the text, the inhomogeneity in the offset field is also responsible

for the Gaussian lineshapes observed at low Rydberg density. The solid (red) line through the

lowest density data is the best Gaussian fit of the inhomogeneously broadened lineshape. The solid

(blue and green) lines through the higher density data are fits to the cusp lineshape expected for

a random ensemble, as described in the text. The small peaks indicated by arrows on either side

of the resonance data appear independent of density. The two features on the high-field side of

the resonance can be attributed to the transfer of population to 31d (not resolved from 33s in the

ionization signal) due to 32p3/2+32p3/2 → 31d+29k resonances, where the 29k states are members

of the manifold of n = 29 Stark states that adiabatically connect to high-ℓ states in zero field. The

specific resonance(s) responsible for the feature(s) on the low field side of the primary resonance

have not been identified. 6
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FIG. 2. Resonance width as a function of Rydberg density. Measured widths are shown as points

(lower density axis) while the solid line shows the calculated widths (upper density axis) assuming

only nearest neighbor interactions and 15 MHz of inhomogeneous broadening due to the offset field.

The filled circles show data taken with a long 3 µs excitation laser pulse and the filled triangles

show data taken with a short 10 ns excitation pulse. No significant difference in the profile widths

for the long and short pulse excitation is expected or observed.

the full width at half maximum (FWHM), ∆, of the measured resonance profiles as a function

of Rydberg density. To convert the resonance widths (which are measured in units of field)

to units of energy, we first measure the Stark shifts of the 32p3/2, 32s and 33s states as a

function of applied field in the vicinity of the resonance. We then use those spectroscopic

data to compute the detuning, δ as a function of applied field (see Fig. 3). We find that

near F0, δ varies approximately linearly with F with a slope of 170 MHz/(V/cm). Note that

since the tuning field, not the excitation laser, determines the detuning of the atoms from

resonance, the laser bandwidth does not factor into the measured resonance widths.
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FIG. 3. Pair-energy detuning from resonance as a function of applied electric field. The filled

circles are experimentally determined values of δ obtained from Stark shift measurements for the

32p3/2 |mj | =3/2, 32s and 33s levels as a function of applied field. At these low fields, the energies

of all three levels shift quadratically with the field. The solid line is a quadratic fit to the data.

Near resonance, the variation in δ is approximately linear with a slope of 170 MHz/(V/cm) (dashed

line).

IV. ANALYSIS AND DISCUSSION

The resonance lineshapes carry information on the relative strength of nearest- and be-

yond nearest-neighbor interactions, the distribution of atom separations, and field inhomo-

geneities in the Rydberg ensemble. In order to extract that information we must identify

how each of these influences the different features in the observed profiles. To that end, we

first consider the form of the lineshape associated with a pair of stationary atoms with a

well-defined separation, coupled via a (near) resonant 32p32p ↔ 32s33s DD interaction. We

diagonalize the Hamiltonian in the presence of the DD interaction, restricting the pair-state

basis to those levels which are degenerate at resonance. This basis includes numerous states

with different azimuthal quantum numbers, m, for the individual atoms and different values
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of total electronic angular momentum and its projection on the internuclear axis [38, 39].

However, ignoring spin, there are only two interacting states and the problem reduces to an

equivalent two-level system, involving two pair basis states, |1〉 and |2〉, with a DD coupling

Vdd =
2µAµB√

3R3
between them. Here |1〉 is a linear combination of 32p32p states, |2〉 is an equal

admixture of 32s33s and 33s32s, and µA and µB are defined as in the introduction.

Diagonalizing the effective two-level Hamiltonian, obtains the eigenstates

|+〉 = cos θ |1〉+ sin θ |2〉
|−〉 = − sin θ |1〉+ cos θ |2〉

(1)

where tan 2θ = 2Vdd/δ. These eigenstates have energies E± = (δ ± Γ)/2, where Γ =
√

δ2 + 4V 2
dd, and exhibit a standard avoided level crossing as a function of δ, with an energy

separation ∆E = E+ − E− = 2Vdd at δ = 0. At large detunings from resonance, |+〉 and

|−〉 have only p- and s-character, respectively. Thus, the initial laser excitation, which is

performed in an electric field for which atom pairs are far-detuned from the 32p32p ↔ 32s33s

resonance, creates only 32p atoms, thereby populating only |+〉. At t =0, the fast rising

tuning-field pulse then projects the 32p32p atom pairs into a coherent superposition of |+〉
and |−〉.

Initially, the time-dependent electronic wavefunction of each atom pair has only 32p32p

character. However, assuming coherence is maintained, the pair-state evolves as a wavepacket

in the uncoupled basis, according to the two-level Rabi formula:

Ψ(t) = [cos (Γt/2)− iη sin (Γt/2)] |1〉+ iχ sin (Γt/2) |2〉 (2)

where Γ is the effective Rabi frequency, χ = 2Vdd/Γ, and η = δ/Γ is a scaled detuning.

The principal signature of the evolution of this wavepacket is the coherent transfer of

population from |1〉 to |2〉, i.e. from p- to s-character. According to Eq. 2, the probability

of finding an atom in the 33s-state at a time t following the start of the tuning pulse is,

P0 = χ2 sin2 (Γt/2). The temporal modulations in P0, predicted for a single atom pair,

can be viewed as Rabi oscillations due to the coupling between the pair states |1〉 and |2〉
or, alternatively, as a quantum beat induced by the coherent excitation of the DD-dressed

states |+〉 and |−〉. The amplitude of the Rabi oscillations, χ2, is a Lorentzian function of

the detuning, δ, centered at δ = 0 with a FWHM, ∆ = 4Vdd.

Experimentally, we measure the number of 33s atoms, produced via DD-resonance, from

a random ensemble of 32p atoms. Within the ensemble, there is a broad distribution of
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FIG. 4. Comparison of the cusp (solid line) and Lorentzian (dashed line) lineshapes expected for

ensembles with random (see Eq. 5) and uniform (see Eq. 3) atom separation, respectively. The

Lorentzian profile assumes the most probable value of R at the Rydberg density used to compute

the cusp. Note the cusp’s broad, large amplitude wings and relatively narrow central peak.

atom separations and, therefore, a wide range of values for Vdd and Γ for different atom

pairs. As a result, a monotonic increase and eventual saturation, but no Rabi oscillations,

are actually observed in the 33s population measured as a function of the interaction time,

τ . Accordingly, for sufficiently long τ , one might expect the ensemble to exhibit a Lorentzian

population transfer lineshape (see Figure 4) that is approximately equal to the time-averaged

value of P0 for a single atom pair

P =
1

2
χ2 =

2V 2
dd

δ2 + 4V 2
dd

, (3)

with the values of χ and Vdd computed using R ≃ (2πρ)−1/3, the most probable nearest

neighbor separation in the ensemble. Assuming only nearest neighbor interactions, this

approximation correctly predicts the FWHM of the resonance, ∆, but it is a poor represen-

tation of the lineshape overall.

To properly account for the variation in atom separations throughout the excitation
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volume, we integrate Eq. 3 over all R, weighting the contribution from each R by the

nearest neighbor distribution for a random ensemble [40]

P (R) = 4πρR2e−
4

3
πρR3

. (4)

The lineshape resulting from the integration can be expressed in terms of standard func-

tions as

P =
1

2
a{Ci(a) sin a + [

π

2
− Si(a)] cos a} (5)

where a = 16πρµAµB/(3
√
3δ), Si(x) =

∫ x
0

sinu
u

du is the Sine integral, Ci(x) = γ + lnx +
∫ x
0

cosu−1

u
du is the Cosine integral, and γ is Euler’s constant [41]. As shown in Figure 4,

the lineshape takes the form of a cusp which has a narrower central peak and significantly

broader wings as compared to the Lorentzian profile computed at the same Rydberg density,

but using a uniform atom separation equal to the most probable value of R. It is worth

noting, however, that the FWHM of the two lineshapes

∆ ≃ 16πρµAµB/
√
3 (6)

are identical, and as expected, are directly proportional to the Rydberg density. For the

32p32p ↔ 32s33s resonance, we compute µA = 〈32s| r |32p〉 = 964 and µB = 〈33s| r |32p〉 =
941, giving ∆=26 MHz for ρ = 1× 109cm−3.

In Figure 1, the solid curves drawn through the data collected at ρ = 1× 109 cm−3 and

ρ = 3×109 cm−3 are fits of Eq. 5 to those lineshapes. The fits capture the primary features of

the observed profiles when the weaker satellite resonances in the data are ignored. At these

densities, the “natural” width due to the DD-interaction is the dominant contributor to the

lineshape, and inhomogeneous broadening due to the spatial variation in the offset field has

a negligible effect. The broad wings of the lineshapes distinguish them from the Lorentzians

expected for ensembles with well-defined atom separation. Conversely, for ρ = 2×108 cm−3,

the natural width is less than the inhomogeneous width. As a result, in convolution, the

measured profile is well-represented by a Gaussian with negligible wings far from resonance.

The solid curve in Figure 2 is the FWHM of a simulated profile that is constructed by

convoluting the cusp of Eq. 5, whose natural width increases proportionally to the Rydberg

density, with a fixed-width (15 MHz) Gaussian. The Gaussian is included to model the

effects of inhomogeneous broadening associated with the spatial variation in the applied
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electric field, and its FWHM is chosen to be in accord with the resonance widths measured

at the lowest densities. In the following, we argue that the principal source of the observed

inhomogeneous broadening is the gradient in the offset field produced by the MCP. As noted

previously, the variation in the rod field over the interaction region is only 0.07%, leading

to a variation in δ of approximately 1 MHz for tuning fields near the resonance condition.

While there is a magnetic field gradient in the interaction region due to the MOT coils, the

variation in δ due to Zeeman shifts is also ∼ 1 MHz. Both of these inhomogeneities are

essentially negligible when taken in quadrature with the other sources of broadening that

lead to the combined 15 MHz inhomogeneous width observed at very low density. Given the

detuning slope of 170 MHz/(V/cm) near resonance, an offset field variation of 0.085 V/cm

accounts for the 15 MHz minimum width. Interestingly, a very similar offset field variation,

0.081 V/cm, when taken in quadrature with magnetic field inhomogeneity, also explains the

4.2 MHz minimum width observed in independent measurements of the 25s33s ↔ 24p34p

resonance, using the same apparatus and experimental geometry [29]. The latter resonance

has considerably different tuning properties, including a detuning slope of 51 MHz/(V/cm)

and resonant field of 3.4 V/cm, making it highly unlikely that the agreement between the

two field variation determinations is coincidental.

The overlap of the simulated and measured line widths in Figure 2 is accomplished by

doubling the natural width predicted by Eq. 6 for the cusps used in the simulations. In

the figure, we represent that doubling by displaying the calculated and measured widths

on density scales that differ by approximately a factor of two. This illustrates that the

discrepancy could be the result of an underestimate of the measured Rydberg density. That

said, given the 30% estimated density uncertainty, it is unlikely that the factor of two is due

to the density calibration alone.

Another potential source of broadening is relative atom motion which is neglected in our

model. For ρ = 2 × 109cm−3, the most probable atom separation is R ∼ 4µm and the rms

relative velocity between two 70 µK atoms is vrms = 0.2 µm/µs. Depending on the direction

of relative motion, in a τ = 10µs interval, the separation between typical nearest neighbors

changes by 10 to 50 % due to their thermal motion. Despite this motion, within the data

spread shown in Fig. 2, we find the same resonance widths for tuning pulse durations of

τ ∼5 and 15µs. In addition, the few sample measurements performed with τ=1µs pulses,

for which atom motion should be negligible, also fall within the data range illustrated by
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Fig. 2. Those data do, however, fall uniformly below the calculated curve. Thus, while

atom motion may contribute slightly to the resonance widths, it does not play a substantial

role in determining the width, or shape, of the resonance profiles.

A likely contributor to the resonance width discrepancy is the neglect of beyond nearest-

neighbor interactions in our model. That said, the magnitude of the discrepancy indi-

cates that these effects are probably not as large as previously indicated. The first studies

of RET in a cold Rydberg gas [3, 4] reported measured widths that were much (up to

two orders of magnitude) broader than expected for isolated pairs of atoms. It was sug-

gested that rapid diffusion of population, away from an interacting nearest neighbor pair to

other nearby atoms, rapidly occurred via exchange or “hopping” interactions of the form

|P 〉 |S〉 → |S〉 |P 〉. Subsequent experiments verified the excitation diffusion process [6, 8]

in the absence of other strong interactions. However, more detailed simulations [1, 17] of

tunable, resonant population transfer in a many-atom system showed that the primary DD

coupling between nearest neighbors could suppress the diffusion process. As a result, the

inclusion of exchange interactions resulted in only a modest (∼ 50% [1]) increase in the res-

onance width. The amount of broadening that we observe, relative to our nearest neighbor

model, agrees with that prediction [1]. Interestingly, a similar level of resonance broadening

(roughly a factor of two relative to the nearest neighbor prediction) was recently observed

under similar conditions, but for a much weaker DD resonance [29]. Thus, the suppression

of excitation diffusion appears to be a general feature of resonantly coupled gases.

V. CONCLUSION

We have measured, as a function of atom density, the lineshapes associated with

32p3/232p3/2 → 32s33s resonant population transfer in a cold Rb Rydberg gas. The line-

shapes are cusp-like at high density, reflecting the random nearest neighbor separation in

the MOT, and are well-reproduced by closed form expressions based on a two-body inter-

action model. The resonance widths agree with the model up to a factor of two, confirming

that beyond nearest neighbor processes such as excitation diffusion do not influence the

population transfer rate to the degree previously indicated. At low density the change in

the lineshape from a cusp to Gaussian form allows us to characterize the electric field inho-

mogeneity in the interaction region. In the future, similar resonance lineshape analyses may
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make it possible to distinguish random from uniform atom distributions, perhaps providing

a method to visualize changes in the position correlation function with the application of

controlled DD forces between atoms [15].

ACKNOWLEDGMENTS

This work has been supported by the NSF.

[1] B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008).

[2] T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, England, 1994)

and references therein.

[3] W. R. Anderson, J. R. Veale, and T. F. Gallagher, Phys. Rev. Lett. 80, 249 (1998).

[4] I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and

P. Pillet, Phys. Rev. Lett. 80, 253 (1998).

[5] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller,

Phys. Rev. Lett. 87, 037901 (2001).

[6] W. R. Anderson, M. P. Robinson, J. D. D. Martin, and T. F. Gallagher, Phys. Rev. A 65,

063404 (2002).

[7] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and

P. L. Gould, Phys. Rev. Lett. 93, 063001 (2004).

[8] I. Mourachko, W. Li, and T. F. Gallagher, Phys. Rev. A 70, 031401(R) (2004).

[9] T. J. Carroll, K. Claringbould, A. Goodsell, M. J. Lim, and M. W. Noel, Phys. Rev. Lett 93,

153001 (2004).

[10] K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemuller, Phys. Rev.

Lett. 93, 163001 (2004).

[11] F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005).

[12] T. Cubel Liebisch, A. Reinhard, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 95, 253002

(2005).

[13] S. Westermann, T. Amthor, A. L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, and M. Wei-

demüller, Eur. Phys. J. D 40, 37 (2006).

14



[14] T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, Phys. Rev. Lett. 97,

083003 (2006).

[15] M. L. Wall, F. Robicheaux, and R. R. Jones, J. Phys. B 40 (2007).

[16] C. S. E. van Ditzhuijzen, A. F. Koenderink, J. V. Hernandez, F. Robicheaux, L. D. Noordam,

and H. B. van Linden van den Heuvell, Phys. Rev. Lett. 100, 243201 (2008).

[17] K. C. Younge, A. Reinhard, T. Pohl, P. R. Berman, and G. Raithel, Phys. Rev. A 79, 043420

(2009).

[18] A. Gatan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet,

A. Browaeys, and P. Grangier, Nature Physics 5, 115 (2009).

[19] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and

M. Saffman, Nature Physics 5, 110 (2009).
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