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Inspired by the experimental measurement of the Rényi entanglement entropy in a lattice of
ultracold atoms by Islam et al. [Nature 528, 77 (2015)], we propose a method to entangle two
spatially-separated qubits using the quantum many-body state as a resource. Through local oper-
ations accessible in an experiment, entanglement is transferred to a qubit register from atoms at
the ends of a one-dimensional chain. We compute the operational entanglement, which bounds the
entanglement physically transferable from the many-body resource to the register, and discuss a
protocol for its experimental measurement. Finally, we explore measures for the amount of entan-
glement available in the register after transfer, suitable for use in quantum information applications.

I. INTRODUCTION

Islam et al.1 have performed a measurement of the
Rényi entanglement entropy in a one-dimensional op-
tical lattice of 87Rb atoms by exploiting a many-body
analogue of the Hong-Ou-Mandel2 photon interference
effect. After interfering two proximate copies of an L-
site lattice using the atomic control of a quantum gas
microscope3, a measurement of the parity of the site re-
solved particle occupation number provides access to the
state overlap of the two copies. If the initial copies are
identical, this gives the purity of the state4. Hence, if a
globally pure state is partitioned into spatial subregions,
the many-body interference/parity measurement proto-
col localized to a subregion yields the Rényi entropy, a
measure of entanglement between subregions5. This pro-
vides an experimental probe of a remarkable feature of
quantum mechanics with no classical analogue: informa-
tion may be encoded in a composite system in such a way
that it is inaccessible from independent measurements of
its component parts.

The advantage of measuring the Rényi entropy as in
Ref. [1] is that it encodes the entanglement between
subsystems in a scalar quantity that can be accessed
through the expectation values of local operators4. This
is in contrast to other entanglement measures calculated
directly from the full density matrix, which is gener-
ally inaccessible in experiments without using full state
tomography6. In particular, there is currently no scalable
scheme for its reconstruction for N interacting itinerant
particles. This fact makes the two-copy Rényi entropy,
S2(A) = − log(Tr ρ2

A), particularly well-suited for ex-
ploration in a quantum many-body system bipartitioned
into a spatial region A and its complement Ā.

S2 has proved fruitful for the general characterization
of many-body phases and quantum phase transitions,
e.g. through the exploration of its scaling with subsys-
tem size7. Additionally, given that entanglement is a
physical resource that can be used for quantum informa-
tion processing8,9, it is natural to ask whether this many-

Figure 1. (Color online) A schematic setup whereby entan-
glement can be transferred from a quantum many-body state
|Ψ〉 to a quantum register composed of two spatially separated
qubits (Bloch spheres).

body entanglement can be harnessed for these tasks10–13.
One route to exploit entanglement between spatial re-
gions of a many-body state for quantum information pro-
cessing is to transfer entanglement of the many-body
system to an external register of localized qubits us-
ing local operations; in this way the many-body state
acts as an entanglement reservoir for the quantum reg-
ister. To quantify the entanglement that is usable, one
must take into account physical restrictions that limit
the amount of entanglement that may be transferred to
the register. For itinerant particles, a super selection rule
(SSR) due to particle number conservation provides one
key limitation14. Further restrictions are imposed if one
wants to entangle spatially separated qubits with only
local operations on the many-body system15.

In this paper we propose the general scheme shown in
Fig. 1 and present an experimental protocol, using the
basic capabilities of Islam et al.1, to transfer some of the
entanglement in a many-body state of ultracold atoms
to two spatially-separated qubits composing an external
quantum register. We present this protocol within the
context of the Islam experiment, but the general concept
of entangling qubits using many-body states is relevant
to many other systems10–13. We emphasize the impor-
tance of the operational entanglement as a bound on the
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transferable entanglement, and discuss its measurement
in the many-body state. The demonstration of this trans-
fer would be proof of principle confirmation that a quan-
tum register can be entangled in current experimental
apparatuses for ultracold atoms.

II. ENTANGLEMENT IN THE
BOSE-HUBBARD MODEL

The 87Rb atoms of the Islam experiment are confined
to move in a deep one-dimensional optical lattice. In
their weakly interacting regime, the low energy dynamics
of the atoms are accurately governed by the lattice Bose-
Hubbard Hamiltonian with N particles on L sites:

H = −J
L−1∑
i=1

(
b†i bi+1 + h.c.

)
+
U

2

L∑
i=1

ni (ni − 1) , (1)

where b†i (bi ) creates (annihilates) a boson, and ni = b†i bi
counts the number of atoms on site i. J sets the rate
of tunneling between sites while U parametrizes the
strength of the on-site repulsion between atoms. In an ex-
periment, the interaction strength between 87Rb atoms
is fixed by their s-wave scattering length, while J can
be tuned by manipulating the height of the optical lat-
tice. In the thermodynamic limit at unit filling (N = L),
Eq. (1) exhibits two distinct phases: a Mott insulator for
U/J � 1 and a superfluid for U/J � 1, both of which
are observed experimentally. A quantum phase transi-
tion separates these two phases at (U/J)c ≈ 3.316–19.

The spatially delocalized nature of particles in the su-
perfluid phase suggests that it should be significantly
more entangled under a spatial bipartition than a Mott
insulator with localized particles. This is manifest as an
increase in S2 accompanying the onset of delocalization
at U/J ∼ O(1) observed in the experiment for N = 4
atoms1. The same experimental capabilities that allow
for the measurement of the entanglement in an optical
lattice can also be used to transfer entanglement to spa-
tially separated qubits, that can be employed as a quan-
tum register for information processing tasks via logic
gates. This entanglement transfer procedure is limited
by the SSR that forbids the creation of a coherent super-
position of states with different local particle number14.
Thus entanglement that arises solely due to particle fluc-
tuations between subregions is not physically transferable
to a register without a global phase reference20.

A. Operational entanglement

To address this issue, Wiseman and Vaccaro14 intro-
duced the concept of operational entanglement – the
amount of entanglement that can be extracted from a
resource (many-body state) and transferred to a quan-
tum register in the presence of a SSR. Conceptually it is

the weighted sum of the spatial entanglement when pro-
jecting onto states of fixed local particle number. For the
two copy Rényi entropy it is defined as:

Sop
2 (A) =

∑
n

PnS2 (An) , (2)

where S2(An) is the Rényi entropy evaluated for the re-
duced density matrix

ρAn =
1

Pn
P̂nρAP̂n (3)

projected by P̂n onto states of fixed local particle num-
ber n in subsystem A. The summation is over all pos-
sible local particle number states in the subregion with
n = 0, . . . , N , each having probability Pn = 〈Ψ|P̂n|Ψ〉.
This projection is a local operation that can only de-
crease entanglement15 so Sop

2 ≤ S2.
Thus it is Sop

2 , not S2 which bounds the amount of
entanglement that can be generated in the register using
local operations and classical communication (LOCC).
A measurement of Sop

2 is possible with a simple modifi-
cation of the experimental interference/parity measure-
ment procedure1,4. This requires that a projection onto
states of definite subsystem particle number n be made
after interference, which can be achieved in the exper-
imental system by measuring the total particle number
in each of the B subsystems, nB after the beam splitter
operation is performed. Given that each copy is initial-
ized to a state with N particles, Pn is the probability of
having nB = N −n in a single copy; S2(An) is computed
from the parity measurements of instances nB = N − n
in both copies, with which must be binned accordingly to
compute Sop

2 . Therefore, by collecting these n-resolved
statistics of the Rényi entropy, Eq. (2) can be used to
experimentally measure the operational entanglement.

In order to explore which parameter regime maximizes
operational entanglement, we calculate Sop

2 in the Bose-
Hubbard model. Experiments on 87Rb in the near future
should be possible with 4 < N . 10, and we study the
ground states of systems with sizes of this order via exact
numerical diagonalization of Eq. (1). In Fig. 2, we com-
pare the two-copy Rényi entropy for a symmetric spatial
bipartition to the operational entanglement for a range of
U/J and N relevant for experiments. Unlike the entropy
under a spatial bipartition, which is maximum deep in
the superfluid phase (or the particle entanglement, which
is maximum deep in the Mott phase21), Sop

2 displays a
peak at an intermediate value of the interaction. While
for these system sizes, the peak is not positioned directly
at the thermodynamic-limit critical point (U/J)c ≈ 3.3,
it appears to approach this value as L is increased.22 This
suggests that the appropriate experimental parameters
for maximizing the transfer of many-body entanglement
to a system of quantum registers will be those that tune
the system to near the superfluid-Mott transition.

As seen in Fig. 2, Sop
2 is necessarily smaller than S2,

as it does not include entanglement generated by par-
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Figure 2. (Color online) The spatial second Rényi entropy
S2 and operational entanglement Sop

2 for symmetric biparti-
tions ` = L/2 of the Bose-Hubbard model. Curves increase in
saturation for L = N = 6, 8, 10, 12. The dashed vertical line
indicates the location of the thermodynamic phase transition.

ticle fluctuations between subsystems that is not physi-
cally accessible due to the SSR. Additionally, Sop

2 is re-
duced as interactions in Eq. (1) are strictly onsite and
occur at fixed subsystem occupation through 2nd order
processes. Thus, the behavior of the physically accessi-
ble entanglement differs from S2 both qualitatively and
quantitatively.

III. EXTRACTING MANY-BODY
ENTANGLEMENT

Given that the operational entanglement indicates that
some of the entanglement between spatial subregions of
the many-body ground state may be transferred to an
external quantum register using LOCC, we now describe
an experimental procedure to do so. This allows the
many-body state to act as an entanglement resource for
quantum information protocols. We concentrate on the
minimal L = N = 6 Bose-Hubbard system where en-
tanglement my be transferred to two spatially separated
qubits. Each qubit is comprised of one atom occupying
one of two neighboring lattice sites adjacent to the Bose-
Hubbard chain; the two locations of the atom provide
the logical states. Thus, the physical system we describe
consists of 10 total lattice sites, which must be doubled
as shown in Fig. 3 if a two-copy Rényi measurement is to
be made on the final entanglement between the qubits.

The starting point is the isolation of a 6 × 4 array of
atoms that can be prepared deep in the Mott phase. This
array includes the many-body entanglement resource,
which will be partitioned into three spatial subregions
with two sites each (labeled A,B,C), two qubit regis-
ters, QA and QB , and a copy that will be employed to
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Figure 3. (Color online) Upper left: an array of 20 optical
lattice sites forming the two copies necessary to measure the
second Rényi entropy. Remaining panels: the protocol (de-
scribed in the text) to transfer entanglement from a many-
body state in A∪B∪C to spatially separated qubits QA and
QB . Solid lines correspond to a large tunnel barrier, double
arrows represent the application of a SWAP operation and
single arrows indicate performing many-body interference.

read out the amount of entanglement generated between
QA and QB . To manipulate and measure entanglement
in the system, we define a pairwise hopping unitary op-
erator:

Uij (φ) ≡ exp
[
iφ
(
b†i bj + h.c.

)]
. (4)

This is a trivial generalization of the beam-splitter oper-
ation reported in Ref. [1] (where φ = π/4) and φ = π/2
corresponds to a SWAP gate between i and j within the
ni,j = 0, 1 subspace. Additionally this physical opera-
tion can be used to perform single qubit rotations when
applied within a single qubit. As Uij will not gener-
ally preserve particle number within the resource and
qubits (and thus not remain in the logical subspace of
the qubits), subsystem resolved particle occupation num-
ber measurements must be used to post-select states that
have exactly one particle in each of A and B.

Transfer of many-body entanglement to the register
and its subsequent measurement can be accomplished via
the three-step procedure depicted in Fig. 3.

1 The optical lattice within the array is manipulated
such that large barriers (as indicated by solid lines)
isolate the many-body resource. Each qubit must
be constructed with exactly one particle between its
two sites, with the barrier between them remaining
high throughout the experiment. The many-body
resource can be prepared identically to Ref. [1] with
the lattice strength tuned near the critical value
(U/J)c to maximize the operational entanglement
as discussed above.

2 A SWAP operation (double arrow) is performed be-
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tween A ⇔ QA by applying the unitary hopping
operator

U1,1′(π/2)U2,2′(π/2), (5)

where sites 1, 2 are in region A, while 1′, 2′ la-
bel adjacent sites in QA. This is repeated for
B ⇔ QB and the identical procedure is performed
in the copy. Thus entanglement is transferred from
the many-body resource to the spatially separated
qubits.

3 To read out this entanglement, a beam-splitter op-
eration (single arrow) is performed between the
two copies of QA and QB , followed by a subsys-
tem resolved particle number measurement where
instances with one atom in each qubit are post-
selected, which is discussed below.

The above procedure will transfer many-body entan-
glement to a quantum register. As only A and B are
swapped with the register, its density matrix ρQA,QB

will
generically be in a mixed state, even if the initial many-
body state (ρABC) was pure. Consequently, the mutual
information

I2(AB) = S2(A) + S2(B)− S2(AB) (6)

will have contributions from both classical correlations
and quantum entanglement. I2(AB) is measurable in
current experiments combined with post-selection to con-
serve particle number in QA/B .

A. Post-selection in the qubit subspace

Because the protocol discussed above requires a tri-
partite partitioning of each copy of the many-body state,
post-selection of experimental instances that are in the
qubit subspace of QA/B after the SWAP operation is
non-trivial. In measuring S2(AB), post selecting to
nB = N − 2 is insufficient to solely select instances in
the qubit subpsace. We define the number of particles
in each qubit to be nQA/B

and nQ̄A/B
. Since the beam

splitter operation conserves the sum of the number of
particles in each qubit and its copy, instances within
the qubit subspace always result in nQA

+ nQ̄A
= 2 and

nQB
+ nQ̄B

= 2. If the data is additionally post-selected
such that nC = nC̄ = N−2, the only non-qubit instances
arise from those of the form:∣∣02

〉
QA

∣∣00
〉
QB

∣∣00
〉
Q̄A

∣∣02
〉
Q̄B

(7)

and 8 related permutations, before the beam splitter op-
eration. As such states have a zero expectation value
of parity after the beam splitter (or equivalently the ex-
pectation value of the SWAP operator is zero for such
states), it is only necessary to determine the normaliza-
tion of parity measurement, i.e. the probability of in-
stances in the qubit subspace. For a given initial state,

the qubit probability PQB can be independently mea-
sured from separate experiments where no beam-splitter
operation is performed and only the site-resolved number
of particles is measured. Then the beam-splitter par-
ity measurements are performed and post-selected for
states with nQA

+ nQ̄A
= 2 and nQB

+ nQ̄B
= 2 and

nC = nC̄ = N − 2; we define the result of this measure-
ment to be ΣAB , and the probability of such instances to
be P̃AB . The desired value can be then computed as

S2(QAQB) = − log

(
P̃AB

PQB
ΣAB

)
. (8)

B. Quantifying entanglement between qubits

To quantify only the desired generation of quantum
entanglement between the qubits, we compute various
measures of mixed state entanglement for the reduced
density matrix ρAB of the many-body ground state. Un-
like for pure states, where the von Neumann entropy is
the unique and appropriate entanglement measure, for
mixed states, there are a variety of entanglement mea-
sures with different physical meanings. For example,
the entanglement of formation EF , roughly defined as
the amount of entanglement required to form the mixed
state, can be directly computed for any two qubit density
matrix23. The logarithmic negativity EN depends on the
sum of the negative eigenvalues of the density matrix af-
ter a partial transpose, and thus is readily computable
for any density matrix24. It provides an upper bound to
the amount of entanglement that can be extracted from
the mixed state using LOCC.

In Fig. 4 we have plotted I2(AB), EF , and EN of ρAB

for the ground state of Eq. (1) in the 6-site geometry
of Fig. 3, projected onto states with a single particle
occupying A and B. We find that all these measures
peak near the quantum phase transition25–27. The peaks
coincide with the parameter region of maximal opera-
tional entanglement desired for optimal transfer between
resource and register. EN > 0 is a necessary and suffi-
cient condition for a two qubit state to be inseparable28

such that it can be distilled to form a maximally entan-
gled state29. This implies that near the critical point
the many-body resource has entanglement that can be
extracted and distilled. Although there is no general re-
lationship between I2 and the entanglement measures EF

and EN , in this case we can compute the relationship ex-
actly for the Bose-Hubbard model. Thus, measurement
of I2 in an experimental regime where the Bose-Hubbard
parameters are known will provide an estimate of the
entanglement that can be generated between the qubits
through the relationship calculated in Fig. 4.
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Figure 4. (Color online) The logarithmic negativity EN , en-
tanglement of formation EF , and two copy Rényi mutual in-
formation I2(AB) of the spatially separated qubits obtained
from the L = N = 6 Bose-Hubbard ground state. The inset
shows the probability of projecting onto a state with a single
particle in each of A and B. The dashed vertical line indicates
the location of the thermodynamic phase transition.

IV. DISCUSSION

In conclusion, we have introduced an experimental pro-
cedure for the transfer of entanglement from a many-
body resource to spatially separated qubits forming a reg-
ister suitable for quantum information processing. Con-
servation of particle number limits the amount of entan-
glement transferable from the resource, as quantified by
the operational entanglement. The precise control of the
current generation of quantum emulator experiments en-
ables the faithful creation of lattice Bose-Hubbard mod-
els using ultracold atoms. This allows us to quantify the
operational entanglement using exact calculations, and
we find that the transferable entanglement is maximized

near the quantum phase transition between the Mott in-
sulator and superfluid phases. This is in contrast to the
naive expectation that transfer should occur in the su-
perfluid phase, where experiments have confirmed that
the two-copy Rényi entanglement is largest1.

We have introduced a measurement protocol to experi-
mentally probe the entanglement transferred by this pro-
cedure that employs a variation of a many-body interfer-
ence technique1,4. It is explicitly described for the trans-
fer of entanglement from a 6-site resource to a register
composed of two 2-site qubits – 20 lattice sites in total.
It can be easily scaled to arbitrary size as experimental
technology progresses. Our Bose-Hubbard calculations
quantify the relationship between a mutual information
accessible by this protocol and well-known measures for
entanglement in mixed states.

The ability to engineer a wealth of variations of the
Bose-Hubbard model will open up exciting prospects for
extensions and optimizations of our results, through in-
homogeneous parameters, topologies, and dimensional-
ity. The experimental implementation of our protocol
will demonstrate the potential of using many-body states
of ultracold atoms as an entanglement resource for quan-
tum information processing.

V. ACKNOWLEDGEMENTS

This work would not have been possible without dis-
cussions with R. Islam and A. Kaufmann. We thank J.
Carrasquilla for his insights into the 1D Bose-Hubbard
model and A. Brodutch for discussions about entangle-
ment in mixed states. This research was supported by
NSERC of Canada, the Canada Research Chair Pro-
gram, the Perimeter Institute for Theoretical Physics
(PI) and the National Science Foundation under Grant
No. NSF PHY11-25915. Research at PI is supported by
the Government of Canada through Industry Canada and
by the Province of Ontario through the Ministry of Eco-
nomic Development & Innovation.

∗ Adrian.DelMaestro@uvm.edu
1 Rajibul Islam, Ruichao Ma, Philipp M Preiss, M Eric Tai,

Alexander Lukin, Matthew Rispoli, and Markus Greiner,
“Measuring entanglement entropy in a quantum many-
body system,” Nature 528, 77–83 (2015).

2 C K Hong, Z Y Ou, and L Mandel, “Measurement of
subpicosecond time intervals between two photons by in-
terference,” Phys. Rev. Lett. 59, 2044–2046 (1987).

3 W S Bakr, A Peng, M E Tai, R Ma, J Simon, J I Gillen,
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