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Devising local protocols for multipartite quantum measurements
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We provide a method of designing protocols for implementing multipartite quantum measure-
ments when the parties are restricted to local operations and classical communication (LOCC). For
each finite integer number of rounds, r, the method succeeds in every case for which an r-round pro-
tocol exists for the measurement under consideration, and failure of the method has the immediate
implication that the measurement under consideration cannot be implemented by LOCC no matter
how many rounds of communication are allowed, including when the number of rounds is allowed
to be infinite. It turns out that this method shows—often with relative ease—the impossibility
by LOCC for a number of examples, including cases where this was not previously known, as well
as the example that first demonstrated what has famously become known as nonlocality without
entanglement.

PACS numbers: 03.65.Ta, 03.67.Ac

I. INTRODUCTION

In recent years, a great deal of effort has been put forth toward understanding what is commonly referred
to as local quantum operations and classical communication, or LOCC. In this scenario, a global quantum
system is shared amongst multiple spatially separated parties, each of those parties holding a subsystem in
their respective laboratory. The parties aim to accomplish a given task, and the question is whether or not
they can succeed without having to bring their subsystems together in a single laboratory. This is often an
important question in practice, since bringing the subsystems together could be very costly in terms of time
and other resources. It is also critical to our fundamental understanding of quantum information theory
in general, and entanglement theory in particular, as LOCC is the class of operations that cannot increase
entanglement (on average).
A ground-breaking study of LOCC was that given in [1] of a specific state-discrimination problem, wherein

the global system is prepared in one of a given set of mutually orthogonal quantum states, and the parties,
initially ignorant of that choice, are to cooperate in an effort to determine which of those states was chosen,
a task at which they are required to succeed every time. This is possible when the parties use a separable
measurement [2], defined to be those for which each of the Kraus operators [3] representing the individual
outcomes of the measurement is a tensor product, of the form A⊗B ⊗C ⊗ · · · . However, if the parties are
restricted to LOCC, they cannot perfectly discriminate the states [1]. Since LOCC protocols always lead to
product Kraus operators, every LOCC measurement is separable. As demonstrated (for the first time) by
the study in [1], however, there exist separable measurements that cannot be implemented by LOCC.
Many other studies subsequently appeared in the literature, helping to illuminate the difference between

separable measurements and LOCC, including several results showing a gap between what can be accom-
plished by these two classes of measurements for specific tasks such as quantum state discrimination [1, 4–13]
and the transformation of entangled states [14–18]. In the latter case, it has been shown that this gap can
be sizable [16, 17].
In this paper, we consider quantum measurements, to be contrasted with quantum operations (the latter

are also referred to as quantum channels). Both can be defined in terms of a set of Kraus operators,
SK := {Kj}, but for a given measurement, SK is uniquely determined, whereas for a quantum channel, the
choice of SK is far from unique. For a quantum measurement on input state ρ, outcome j leaves the state as

ρj = KjρK
†
j /pj with the probability of that outcome given as pj = Tr(K†

jKjρ). The output of a quantum

channel, on the other hand, is determined by the entire collection of Kraus operators as ρ′ =
∑

jKjρK
†
j .

It is to be noted that LOCC measurements (and channels) are the only ones that can actually be imple-
mented by spatially separated parties who lack the means to bring their systems together in one laboratory.
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Therefore it is significant that, while it is straightforward to recognize when a measurement is separable—one
simply has to check if the Kraus operators are tensor products1—it has been a challenge to identify methods
of checking whether or not a measurement is LOCC. Studies of LOCC in the context of specific individual
tasks, such as the one mentioned above by [1], have proved to be extremely enlightening. Nonetheless, it
is of interest to find general ways of differentiating between separable measurements and LOCC, hopefully
ones that provide insight into why a given measurement can or cannot be implemented by LOCC. One such
method is to check if there exists a local measurement that preserves orthogonality when the required task is
to perfectly discriminate amongst a set of quantum states [6, 19–22], since if there is no such measurement,
then any measurement made by one of the parties will leave the set of states non-orthogonal, destroying
any possibility for perfect discrimination. In this paper, we give an alternative general method that can
be used to determine if any given measurement can be implemented by LOCC, regardless of the task that
measurement is meant to accomplish.
Our method allows one to design an LOCC protocol to implement the desired measurement, whenever

such a protocol exists. We have previously presented an alternative method of designing LOCC protocols
[23, 24], but the one we give here is a very different approach. The previous method constructed a protocol
starting from the end of that protocol and worked back toward its beginning, whereas the newer one we
present below proceeds in the opposite direction, from beginning toward the end. The method presented
below has the decided advantage that it can prove impossibility of a measurement by LOCC even when
an infinite number of rounds of communication are allowed, whereas the previous method can only prove
LOCC-impossibility when the number of rounds is finite.
Before proceeding to a discussion of this alternative method, let us define the terminology and notation that

will be used in the remainder of the paper. An LOCC protocol involves one party making a measurement,
informing the other parties of her outcome, after which according to a pre-approved plan, the other parties
know who is to measure next and what that measurement should be. This process—local measurement
followed by communication—can generally proceed for as long as is necessary to achieve the parties’ desired
results. Since each measurement involves a number of possible outcomes, the entire process is commonly
represented as a tree, the children of any given node representing the set of outcomes of the measurement
made at that stage in the protocol. For any finite branch of the protocol, the leaf node at the end of that
branch will represent a terminal outcome (leaf nodes being those that do not themselves have children),
so must correspond to a desired outcome of the overall measurement to be implemented by the protocol.
Consider the cumulative action of all parties up to a given node n in the tree, represented by Kraus operator
K = A ⊗ B ⊗ · · · . We will label each such node by the positive operator K†K, commonly referred to as a
POVM element, and we will say that node n is ‘equal’ to its label K†K. For any such tree, the root node
represents the situation present before any party has yet measured and will therefore always be equal to the
identity operator I = IA ⊗ IB ⊗ · · · acting on the full multipartite Hilbert space H, where Iα is the identity
operator on the local Hilbert space Hα for each party α. We will refer to any tree labeled in this manner as
an LOCC tree.
Our aim is to consider a given overall multipartite measurement and to design an LOCC protocol that

implements that measurement, whenever such a protocol exists. The given measurement, which must be
separable for the existence of an LOCC protocol to be possible, will be defined by a collection of Kraus
operators, K̂j = Âj ⊗ B̂j ⊗ · · · , which is a more general definition than one given in terms of POVM

elements. Nonetheless, it is only the associated POVM elements, K̂j = Âj ⊗ B̂j ⊗ · · · , where Âj = Â†
jÂj ,

B̂j = B̂†
j B̂j , etc., that determine whether or not the measurement can be implemented by LOCC.2 We will

always denote the operators defining the desired overall measurement with a carat over them, as we have
done here. These operators will be referred to as the final outcomes of the desired measurement.
An LOCC protocol can continue for any finite number of rounds, or it can have an infinite number of

rounds, continuing indefinitely. We follow [18] in our classification of these protocols. When a measurement
M can be implemented by LOCC in a finite number of rounds, we say thatM ∈LOCCN. As discussed in [18],
the class of infinite-round protocols can be divided into two distinct sub-classes. One imagines a sequence of
protocols whose limit is the infinite-round protocol under consideration. The first subclass, which is referred
to as ‘LOCC’ in [18], involves sequences of protocols that more closely approach the desired measurement
simply by adding more and more rounds of communication, but without changing what has been done in

1 We note that this is in stark contrast to the generally quite difficult problem of determining when a quantum channel is
separable, since unlike the case of a quantum measurement, there is not just a single set of Kraus operators that represent a
quantum channel. Indeed, there is an entire continuous class of such sets for any given channel.

2 This is shown in Theorem 2 of [24].
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earlier rounds. In contrast, the second subclass, referred to as LOCC in [18], includes sequences in which
measurements made at the earlier rounds are changed from one protocol in the sequence to the next. As
indicated by the notation, LOCC is the topological closure of LOCC, and it is known that the set of LOCC
channels is not closed, the existence of a quantum channel in LOCC\LOCC having been demonstrated in
[16], and then later in [18] for a two-qubit system (as far as we are aware, it is not presently known if the
set of LOCC measurements is closed). Following this classification, one may say that M ∈LOCC or that
M ∈ LOCC, with the appropriate choice for the designated measurement. We note that the results of the
present paper apply to the entire class LOCC, including those that involve an infinite number of rounds, but
not to LOCC. This is also true of arguments aimed at proving impossibility of perfect state discrimination
by LOCC that are based on the fact that each measurement must preserve orthogonality of the states. Our
approach is in some sense more general than those based on preserving orthogonality, because ours applies
to all LOCC protocols, not just those aimed at the task of perfect state discrimination. However in order
to apply our method, it is also the case that one needs to know exactly what the desired measurement is, a
constraint that need not hold in applying the approach based on preserving orthogonality.
The remainder of the paper is organized as follows: In Sec. II, we make some observations about the

structure of finite LOCC trees, and then extend these observations to infinite trees. In Sec. III, we show
how to determine what ‘first’ local measurements are allowed in initiating a protocol that must implement a
given measurement, and then in Sec. IV, we extend these ideas to any point in an LOCC protocol, showing
how to determine which local measurements can possibly follow those local measurements that have gone
before. In the Appendix, we provide a detailed example illustrating how to design an entire LOCC protocol
for the chosen measurement. We will see that there exist cases where no local measurement is possible, either
to initiate an LOCC protocol or to extend a protocol that has already proceeded through some number of
rounds. Using this fact in Sec. V, we show how these ideas can be used to prove, often with relative ease,
that certain measurements are impossible by LOCC. Finally, in Sec. VI, we offer our conclusions.

II. OBSERVATIONS ON THE STRUCTURE OF LOCC TREES

In earlier work [23], we labeled the nodes in an LOCC tree by the positive operator representing the
cumulative action, to that point in the protocol, of the party who just measured to bring the protocol
to that node in the tree. Here, we will find it useful to instead label each node by the positive operator
representing the cumulative action of all parties up to that point in the protocol. Thus, rather than a node
being labeled by a local operator, such as A, it will instead be labeled by the full multipartite operator,
A ⊗ B ⊗ · · · . In this case, following the very same type of argument used to obtain Eq. (5) in [23] and
Eq. (3) in [24], it is easy to see that each node is now equal to the sum of all its child nodes. For example, if
K = A⊗B ⊗C ⊗ · · · is the multipartite Kraus operator that has been implemented up to a given node, n,
and party B, say, measures next with outcomes represented by Kraus operators Bl, then the overall Kraus
operator implemented up to each of the children of node n will be Kl = A ⊗ BlB ⊗ C ⊗ · · · , respectively.
With the completeness of the measurement represented by outcomes Bl,

∑

lB
†
lBl = IB , we see immediately

that

∑

l

K†
lKl = K†K, (1)

in accordance with our claim that each node is equal to the sum of all its children. Of course, this also means
that each of those children is equal to the sum of its own children, implying that the original node is also
equal to the sum of all of its grandchildren. Or more accurately, since some nodes—those that are terminal,
or leaf, nodes—do not themselves have children, we see that each node in a finite-round LOCC tree is a sum
of all of its descendant leaf nodes, a result that we state as the following lemma.

Lemma 1. Each node n in a finite-round LOCC tree is equal to the sum of the collection of all leaf nodes
that are descendant from that node n.

Note that since leaf nodes are terminal, they must correspond to one of the final outcomes of the desired
measurement. Therefore, each leaf node must be proportional (with positive constant of proportionality) to

one of the set {Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · } representing the overall measurement implemented by the full LOCC
protocol, and we therefore have the following result.
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Lemma 2. Suppose finite tree L represents the finite-round LOCC protocol P, which implements overall
measurement M. Then each node in L is equal to a positive linear combination of the operators, {Âj ⊗B̂j ⊗
Ĉj ⊗ · · · }, representing M. That is, if A ⊗ B ⊗ C ⊗ · · · is the positive operator associated with any node in
L, then

A⊗ B ⊗ C ⊗ · · · =
∑

j

cjÂj ⊗ B̂j ⊗ Ĉj ⊗ · · · , (2)

with cj ≥ 0.

Now let us consider the infinite-round case. Suppose we have a sequence of finite-round protocols, {Pm},
where (1) Pm+1 differs from Pm only by the presence of one (or more) additional rounds added on at the
end of the latter, (2) Pm for any finite m fails to exactly implement the desired overall measurement M,
but (3) P := limm→∞ Pm does implement M exactly, so that M ∈LOCC\LOCCN. Let M be associated

with the set of positive product operators, {Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · }. For each Pm, Lemma 1 holds, but leads
to an error in implementation of M. Therefore, as m increases and the number of rounds, r, becomes large
enough, each node in the tree associated with that protocol in the sequence will be equal to a sum of the
{Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · }, apart from a small error. In the limit m → ∞, each leaf must approach one of the

operators {Âj⊗B̂j⊗Ĉj⊗· · · }, in order that this error approaches zero, which is necessary for P to implement
M. Hence, Lemma 2 may be generalized to the following important result, which will play a crucial role in
the remainder of this paper.

Lemma 3. Suppose tree L represents the LOCC protocol P (finite or infinite), which implements overall

measurement M. Then each node in L is equal to a positive linear combination of the operators, {Âj ⊗B̂j ⊗
Ĉj ⊗ · · · }, representing M.

Let us now see what Lemma 3 tells us about the first measurement that can be made to initiate any LOCC
protocol aimed at implementing a measurement M, whose associated POVM elements will be denoted as
Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · throughout the remainder of this paper.

III. THE FIRST MEASUREMENT

Every LOCC protocol starts with one party making a first measurement. An obvious but, as we will
soon see, very useful observation is that immediately after that first measurement has been made, all other
parties have as yet done nothing. Therefore, the positive operator associated with a child of the root node
of any LOCC tree must have a very special form. If, for example, party A goes first obtaining measurement
outcome A, then these positive operators are of the form, A⊗ IB ⊗ IC ⊗ · · · , and as a direct consequence of
Lemma 3, we have that for each such outcome,

A⊗ IB ⊗ IC ⊗ · · · =
∑

j

cjÂj ⊗ B̂j ⊗ Ĉj ⊗ · · · , (3)

for some set of positive coefficients, cj ≥ 0.

Let SA and SĀ be the subspaces spanned by operators {Âj} and {B̂j ⊗ Ĉj ⊗ · · · }, respectively. Consider
bases of SA and SĀ, where the latter includes IĀ := IB ⊗ IC ⊗ · · · as one member, and take the (tensor)
product of these bases, denoting the resulting set of operators as {Qk}. Then, we can write

Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · =
∑

k

qkjQk. (4)

Find the respective dual bases to those bases just chosen for SA and SĀ,
3 omit the single operator in the

latter dual basis that is not orthogonal to IĀ, and take the (tensor) product of the first set of dual basis

3 If {Xj} are the basis elements, then the dual basis is the unique set of elements, {Yk}, which spans the same subspace as

{Xj} and such that Tr(Y †
k
Xj) = δjk .
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elements with the remaining operators in the second one, denoting the resulting set of operators as {Q̃l}.
We have that

Tr(Q̃†
lQk) = δkl, (5)

and by design, each of the Q̃l is orthogonal to A⊗ IĀ for any A. Multiply both sides of Eq. (3) by any one

of the Q̃†
l and trace out all parties, which using Eq. (4) yields

0 =
∑

j

cj
∑

k

qkjTr(Q̃†
lQk) =

∑

j

qljcj =: Q~c, (6)

where by Eqs. (4) and (5), matrix Q is seen to be formed from elements

qlj = Tr
[

Q̃†
l (Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · )

]

, (7)

and the elements of vector ~c are given by the cj .
We note that once the basis, {Qk}, is chosen, matrix Q is completely determined through Eq. (7). Then,

the set of solutions of Eq. (6) for coefficients cj determine, through Eq. (3), the set of possible measurement
outcomes in Alice’s first measurement initiating the LOCC protocol. Thus, we have the following theorem.

Theorem 4. If Alice measures first to initiate an LOCC protocol whose final outcomes are given by the set
{Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · }, the allowed outcomes of her initial measurement are determined by Eq. (3), where
coefficients {cj} must be the elements of a vector that lies in the nullspace of matrix Q, whose matrix elements

are given by Eq. (7). [Recall that as noted below Eq. (4), basis elements Q̃l that are not orthogonal to IĀ are
not included in the construction of Q.] Analogous conditions apply to any other party that wishes to measure
first.

Note that while the choice of basis, {Qk}, is arbitrary, it is not difficult to see that the relevant nullspace is
independent of this choice, as it must be.4

As a very simple example, consider a separable measurement on two qubits consisting of POVM elements,
{

Âj ⊗ B̂j

}

= {[0]⊗ [0] , [0]⊗ [1] , [1]⊗ [+] , [1]⊗ [−]} , (8)

where [ψ] = |ψ〉〈ψ| and |±〉 = (|0〉 ± |1〉) /
√
2. It is clear that the first party (Alice) can measure in the

|0〉, |1〉 basis followed by a measurement by the second party (Bob) in either the |0〉, |1〉 or the |+〉, |−〉 basis,
depending on Alice’s outcome. Nonetheless, let us analyze this example as an illustration of how Theorem 4
can be used. If Bob measures first, choose the bases of SA and SB to be {IA, σz} and {IB, σz , σx}, respectively
(σz , σx are the usual Pauli operators). Since each of these bases is mutually orthogonal, we have that up to

unimportant normalization factors, the {Q̃l} are identical to the {Qk} (except that some of the latter are

omitted in the former, see the discussion above). Then omitting IA from the first basis, the relevant Q̃l are
σz ⊗ IB , σz ⊗ σz , σz ⊗ σx, and a simple calculation gives

Q =





1 1 −1 −1
1 −1 0 0
0 0 −1 1



 . (9)

The nullspace of this matrix is the single ray, ~c = (c1, c1, c1, c1)
T
, and since

∑

j c1Aj ⊗ Bj = c1IA ⊗ IB ,
Bob’s only allowed ‘outcome’ is the identity operator, which means that there is no measurement that Bob
can make at all. Thus, we see how our approach can immediately determine when a given party cannot
initiate an LOCC protocol. While this is perhaps not entirely surprising for the present example (actually,
it was proven previously in [25]), it turns out to be a very powerful, general observation, and in Sec. V,
we discuss how these ideas can show that many measurements, including some that have been extensively
studied, cannot be implemented by LOCC.

4 To see this, note that any other basis has dual basis related to {Q̃k} as Q̃′
l
=

∑

k m∗
lk
Q̃k, where matrixM = (mlk) is invertible.

Then, from Eq. (7) we have q′
lj

= Tr
[

Q̃′†
l
(Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · )

]

=
∑

k mlkTr
[

Q̃†
k
(Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · )

]

=
∑

k mlkqkj ,

showing that Q′ = MQ and by the invertibility of M, Q′ and Q have identical nullspaces.
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Can Alice measure first? In this case, we omit IB from the basis for SB, so that the Q̃l are now IA ⊗
σz , IA ⊗ σx, σz ⊗ σz , σz ⊗ σx, and we find

Q =







1 −1 0 0
0 0 1 −1
1 −1 0 0
0 0 1 −1






. (10)

The nullspace of this matrix can be represented by all vectors of the form ~c = (c1, c1, c3, c3)
T
, and we see

that
∑

j

cjÂj ⊗ B̂j = c1 ([0]⊗ [0] + [0]⊗ [1]) + c3 ([1]⊗ [+] + [1]⊗ [−]) = (c1[0] + c3[1])⊗ IB. (11)

Hence, Alice’s only allowed measurement outcomes are those that are diagonal in the |0〉, |1〉 basis. In the
following section, where we consider what subsequent measurements can be made following one or more
previous measurements, we will see that in fact her only allowed outcomes are [0] and [1]. This result will
arise out of an application of Lemma 3, from which we will find a very useful constraint on what a given
party can do in a next measurement, one that follows a given set of prior measurement outcomes.

IV. ADDITIONAL MEASUREMENTS

Now that we have seen how to determine the possible first measurements, it is straightforward to generalize
that approach to determine what measurements are allowed at any later stage of an LOCC protocol. That
is, knowing what measurement outcomes have been obtained in preceding steps of a protocol, we can directly
determine what measurements can be implemented next. Suppose that the parties have made some number
of measurements, with their overall action to this point being represented by the operator A⊗B ⊗ C ⊗ · · · ,
and that Alice is to measure next. Her outcome will change A to A′, say, and Lemma 3 tells us that

A′ ⊗ B ⊗ C ⊗ · · · =
∑

j

c′jÂj ⊗ B̂j ⊗ Ĉj ⊗ · · · . (12)

We again choose a basis of SA and SĀ, but for the latter, we want as many of the dual basis elements as
possible to be orthogonal to Ā := B ⊗ C ⊗ · · · (rather than to IĀ, as was done before). So, choose Ā as one
element of the SĀ basis and then all but one of the elements in its dual basis will be orthogonal to Ā, as
desired. Then, omit that one element that is not orthogonal to Ā, take the tensor product of the remaining
elements with all elements in the basis dual to the basis chosen for SA, and denote the resulting set as {Q̃′

l}.
Multiply Eq. (12) by any one of the Q̃′†

l and take the trace to obtain

0 =
∑

j

c′j
∑

k

q′kjTr(Q̃′†
l Q′

k) =
∑

j

q′ljc
′
j =: Q′~c ′, (13)

where the elements of vector ~c ′ are given by the c′j , and similarly to Eq. (7), matrix Q′ is formed from
elements

q′lj = Tr
[

Q̃′†
l (Âj ⊗ B̂j ⊗ Ĉj ⊗ · · · )

]

. (14)

Thus, once again, we see that the allowed measurements are determined by the nullspace of a certain matrix,
in this case Q′. As in the case of the first measurement, this is a linear condition on the c′j . However, it

must be noted that since we needed to include Ā as a member of the basis chosen for SĀ, then Q′ depends
on all previous measurement outcomes. Therefore, if one wishes to devise an entire LOCC protocol from the
beginning, one no longer has the luxury of simply solving a set of linear equations. Rather, the constraints
for the entire protocol are nonlinear, with the degree of nonlinearity increasing as the number of rounds
increases. It is the case, however, that these constraints will be polynomial in the coefficients cj , c

′
k, and so

on.
In the preceding section, we saw that for the measurement operators given in Eq. (8), Alice can measure

first with a measurement of A = c1[0] + c3[1]. We now consider Bob’s next measurement and will see that
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this analysis further constrains the initial measurement by Alice. We choose a basis of SA as {A,A⊥}, with
A⊥ = c3[0] − c1[1], and use the same basis for SB as before, {IB, σz, σx}. Since these are each orthogonal
bases, the dual bases will be identical to the original ones (again, up to unimportant normalization factors).

Omitting A from the SA basis and taking tensor products, we obtain {Q̃′
l} = {A⊥⊗ IB ,A⊥ ⊗σz ,A⊥ ⊗ σx},

which from Eqs. (8) and (14) then yields

Q′ =





c3 c3 −c1 −c1
c3 −c3 0 0
0 0 −c1 c1



 . (15)

If c1, c3 are both non-zero, the nullspace of Q′ is all vectors of the form ~c ′ = (c1, c1, c3, c3)
T
, which leads to

A⊗ B′ =
∑

j

c′jÂj ⊗ B̂j = (c1[0] + c3[1])⊗ IB . (16)

Notice that Bob’s local operator is identical to what it was before he “measured” (in this case, IB), implying
that Bob cannot measure at all. On the other hand, if c3 = 0 (that is, if Alice’s initial outcome was [0]),

then the nullspace of Q′ consists of vectors of the form ~c ′ = (c′1, c
′
2, 0, 0)

T
, and then

A⊗ B′ =
∑

j

c′jÂj ⊗ B̂j = [0]⊗ (c′1[0] + c′2[1]) , (17)

and Bob can measure with any outcome diagonal in the |0〉, |1〉 basis. Similarly, if c1 = 0 (if Alice’s initial

outcome was [1]), then the nullspace of Q′ consists of vectors of the form ~c ′ = (0, 0, c′3, c
′
4)

T
, and then

A⊗ B′ =
∑

j

c′jÂj ⊗ B̂j = [1]⊗ (c′3[+] + c′4[−]) , (18)

and Bob can measure with any outcome diagonal in the |+〉, |−〉 basis. Of course, in each of these cases,
c1 = 0 or c3 = 0, the outcome of Alice’s initial measurement is a rank-1 operator, which means that nothing
she does subsequently can change this result. Therefore, the only logical thing for Bob to do in this second
measurement is to measure {[0], [1]} when Alice’s outcome was [0], or {[+], [−]} when her outcome was [1].
Thus, we see that our approach has successfully determined a protocol that succeeds in implementing the
desired measurement, and it has also demonstrated that this is effectively the only protocol that does so.
The utility of analyzing the nullspace of Q as a general approach to designing LOCC protocols should

now be clear. In the Appendix, we use this ‘nullspace’ approach to finding an LOCC protocol for an
example that requires a good deal more effort than the one discussed above, demonstrating simplifications
that may be useful for automating these analyses. It can, however, sometimes be instructive to take a more
direct approach to this problem, even while continuing to use Lemma 3 and basing one’s approach on the
observation that when one party measures, the others do nothing. In the next section, we use both the
nullspace analysis and also a more direct approach to show that these ideas are capable of demonstrating
the LOCC-impossibility of various measurements, often in a quite straightforward way.

V. IMPOSSIBILITY OF A MEASUREMENT BY LOCC

Following the ideas presented in the preceding sections, it is possible to find all allowable LOCC protocols
for a given overall final measurement. As illustrated in the example discussed above, one checks to see
which parties can measure first to initiate a protocol, and for each party that can measure first, then at
the next round one checks to see which parties can measure next, and so on until the procedure fails or
the measurement is successfully implemented.5 To see how we get all possible protocols, recall that all

5 Notice that we can assume the party that just measured will not measure next. To see this, assume Alice just measured
with outcome A ⊗ B ⊗ C ⊗ · · · , where the possible outcomes of her local measurement were found under the condition that
B ⊗ C ⊗ · · · does not change when she measures. If she measures again next before any of the other parties measure, then
the conditions determining her allowed outcomes have not changed. Therefore, her allowed local outcomes A will also not
have changed, so we may just as well omit her second (consecutive) measurement while still accounting for all possible ways
in which the protocol can subsequently progress. We will therefore, without loss of generality, always assume that a party
that just measured will not measure again until after a different party has measured in the interim.
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allowed measurements at any given round and by any given party correspond to a vector in the nullspace of
a matrix, Q, defined by Eq. (7) or (14), and that nullspace is parametrized by a set of coefficients, say cj ≥ 0.
When we then consider the next measurement, we do so as a function of those coefficients parametrizing
the immediately preceding measurement, and indeed, of those coefficients associated with all previous local
measurements in the protocol up until the given round. In this way, we find all allowable next measurements
following all allowable preceding measurements, and thus we find all protocols for the given ordering of the
parties. Hence, by considering all orderings of the parties,6 we find all possible protocols for the overall
measurement.
We have seen in the preceding sections that our methods are capable of demonstrating that a given

party is unable to measure next in an LOCC protocol that is required to exactly implement a given overall
measurement. If none of the parties is able to measure next at some fixed point in our procedure (of designing
LOCC protocols) before the desired measurement is fully implemented, then for that ordering of the parties,
the desired overall measurement cannot be implemented. If this is true for all possible orderings of the
parties, then this measurement cannot be exactly implemented by LOCC. Thus, our methods are capable
of proving the LOCC-impossibility of a given measurement. While this conclusion can be reached at any
stage of the process, it turns out that it is often sufficient to only investigate the very first measurement.
That is, there are a wide array of separable measurements that can be proved impossible by LOCC via these
methods by showing that no first measurement is possible by any of the parties, see below Theorem 5 and
in Sec. VI.
Before looking at specific cases, let us note that the nullspace of Q, which we will henceforth denote as N ,

is always at least one-dimensional. For example, there always exists ~c such that
∑

j cjÂj ⊗ B̂j ⊗ Ĉj ⊗ · · · =
IA⊗IB⊗IC⊗· · · , because by assumption, the overall measurement is complete. Therefore when considering
the first local measurement to initiate an LOCC protocol, this ~c lies in N , which must therefore be at
least one-dimensional as claimed. Similarly, when considering any later measurement from parent node
A⊗B ⊗ C ⊗ · · · to children A′

m ⊗B ⊗ C ⊗ · · · , say, then Lemma 3 tells us that there must exist ~c such that
∑

j cjÂj ⊗ B̂j ⊗ Ĉj ⊗ · · · = A ⊗ B ⊗ C ⊗ · · · , or else the expression on the right-hand side of this equality
could not have been that parent to begin with. Hence, once again, the claim is verified. If N is exactly
one-dimensional, then the only ray in N lies along the given ~c that corresponds to that parent node, so the
only children possible are in fact identical to their parent (up to a positive factor), which implies that the
party under consideration cannot measure next. If this is true for every party, then there exists no next
measurement for any one of the parties, and that parent node must then be terminal, a leaf node (and is

then, in fact, not actually a parent). If that leaf is not one of the Âj ⊗B̂j ⊗ Ĉj ⊗ · · · , then the procedure has
failed to find a protocol that exactly implements the given overall measurement for the associated ordering
of the parties’ measurements, and if this is true for all possible orderings, we may then conclude the given
overall measurement cannot be implemented by LOCC. Hence, we have the following theorem.

Theorem 5. Let N be the nullspace of matrix Q, which is defined by the matrix elements given in Eq. (7)
or (14), when considering a next measurement by party α, which is to immediately follow a preceding mea-
surement by party β. Then we have the following:

1. If the dimension of N is equal to unity, party α cannot measure next.

2. If the dimension of N is equal to unity for all parties other than party β, then that branch must
terminate at the given point.

3. If the dimension of N is equal to unity for all parties other than party β and the (unique, normal-
ized) vector defining N does not correspond to one of the final measurement outcomes in the desired
overall measurement M, then the associated ordering of the parties’ measurements to that point in the
procedure cannot implement M.

4. If the dimension of N is equal to unity for all parties other than party β and the (unique, normalized)
vector defining N does not correspond to one of the final measurement outcomes in the desired overall
measurement M, and if this eventuality occurs at some point in each of the protocols designed for all
possible orderings of the parties, then M 6∈LOCC.

6 For the first measurement one has P parties that can measure first, and then there are P−1 parties that can possibly measure

at each subsequent round. Therefore, there are on the order of (P − 1)(r−1) orderings that need be considered for protocols
with r rounds. For P ≥ 3, the computational expense thus grows exponentially in r, though it does appear [23] that (at
least) an exponential scaling in r is unavoidable.



9

Let us now illustrate this theorem through examples. In [26], we presented an infinite class of separable
measurements and showed they could not be implemented by finite-round LOCC. Then, in [27], we showed
that each measurement in a subset of that class was the unique, optimal (and separable) measurement for
unambiguously discriminating [28–30] a corresponding set of states, and we therefore saw that this optimal
measurement cannot be achieved by LOCCN. Here, we will take the simplest case from the latter subclass
and use the ideas presented in the present paper to explicitly show this task cannot be achieved by LOCC,
even when an infinite number of rounds are used. We note that it can be shown that the same conclusion
holds for each member of this subclass; that is, none of these unique, optimal (and separable) measurements
for unambiguous state discrimination can be achieved by LOCC, even with an infinite number of rounds.
The example we consider here involves two parties each holding a qubit system, and the set of states to

be unambiguously discriminated has four members. As shown in [27], the unique, optimal separable (and
global) measurement for this task has rank-1 POVM elements that are proportional to projectors onto the
following five states.

|Ψj〉 = |ψ(1)
j 〉 ⊗ |ψ(2)

j 〉, j = 1, . . . , 5, (19)

with

|ψ(α)
j 〉 = 1√

2

(

|0〉+ e2πijpα/5|1〉
)

, (20)

where p1 = 1 and p2 = 2. It can be shown [26] that

I =
2

5

N
∑

j=1

Ψj, (21)

with Ψj = |Ψj〉〈Ψj |. Defining ω = eiθ with θ = 2π/5, and

Wk =
1

2

[

1 ωk

ω−k 1

]

, (22)

we have that

Ψj =Wj ⊗W2j . (23)

An orthogonal basis for the subspace SA spanned by the first party’s local operators Wk can be chosen to
include the Pauli operators, as {IA(B), σx, σy} (these work also for SB). Then if Alice measures first, we

omit IB from the basis for SB , choose the Q̃l as {IA ⊗ σx, IA ⊗ σy , σx ⊗ σx, σx ⊗ σy , σy ⊗ σx, σy ⊗ σy}, and
find from Eq. (7) that

Q =















cos 2θ cos θ cos θ cos 2θ 1
sin 2θ − sin θ sin θ − sin 2θ 0

cos θ cos 2θ cos θ cos 2θ cos θ cos 2θ cos θ cos 2θ 1
cos θ sin 2θ − sin θ cos 2θ sin θ cos 2θ − cos θ sin 2θ 0
sin θ cos 2θ cos θ sin 2θ − cos θ sin 2θ − sin θ cos 2θ 0
sin θ sin 2θ − sin θ sin 2θ − sin θ sin 2θ sin θ sin 2θ 0















. (24)

On the other hand if Bob measures first, we omit IA from the basis for SA, choose the Q̃l as {σx ⊗ IB , σx ⊗
σx, σx ⊗ σy, σy ⊗ IB , σy ⊗ σx, σy ⊗ σy}, and find

Q =















cos θ cos 2θ cos 2θ cos θ 1
cos θ cos 2θ cos θ cos 2θ cos θ cos 2θ cos θ cos 2θ 1
cos θ sin 2θ − sin θ cos 2θ sin θ cos 2θ − cos θ sin 2θ 0

sin θ sin 2θ − sin 2θ − sin θ 0
sin θ cos 2θ cos θ sin 2θ − cos θ sin 2θ − sin θ cos 2θ 0
sin θ sin 2θ − sin θ sin 2θ − sin θ sin 2θ sin θ sin 2θ 0















. (25)
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In both Eqs. (24) and (25), the nullspace of Q is one-dimensional, given by all vectors proportional to

(1, 1, 1, 1, 1)
T
. Then, since

∑

j Ψj ∝ IA⊗ IB (or by Theorem 5), we conclude that neither party can measure
first, and therefore no LOCC protocol exists that exactly implements this measurement.
Now we consider another example. Perhaps the most widely studied example of a separable measurement

that cannot be implemented by LOCC was also the first such example of what has been called “nonlocality
without entanglement”, discovered in [1]. This problem involves the local distinguishability of a set of nine
states on a 3 × 3 system. Here, we consider the more general case of what has been called the “rotated
domino states” [9], the projectors onto those nine states being

Â1 ⊗ B̂1 = [1]A ⊗ [1]B,

Â2 ⊗ B̂2 = [0]A ⊗ (cos θ2|0〉B + sin θ2|1〉B) (cos θ2〈0|B + sin θ2〈1|B) ,
Â3 ⊗ B̂3 = [0]A ⊗ (sin θ2|0〉B − cos θ2|1〉B) (sin θ2〈0|B − cos θ2〈1|B) ,
Â4 ⊗ B̂4 = [2]A ⊗ (cos θ4|1〉B + sin θ4|2〉B) (cos θ4〈1|B + sin θ4〈2|B) ,
Â5 ⊗ B̂5 = [2]A ⊗ (sin θ4|1〉B − cos θ4|2〉B) (sin θ4〈1|B − cos θ4〈2|B) , (26)

Â6 ⊗ B̂6 = (cos θ6|1〉A + sin θ6|2〉A) (cos θ6〈1|A + sin θ6〈2|A)⊗ [0]B,

Â7 ⊗ B̂7 = (sin θ6|1〉A − cos θ6|2〉A) (sin θ6〈1|A − cos θ6〈2|A)⊗ [0]B,

Â8 ⊗ B̂8 = (cos θ8|0〉A + sin θ8|1〉A) (cos θ8〈0|A + sin θ8〈1|A)⊗ [2]B,

Â9 ⊗ B̂9 = (sin θ8|0〉A − cos θ8|1〉A) (sin θ8〈0|A − cos θ8〈1|A)⊗ [2]B,

with 0 < θn ≤ π/4. It has been shown that this measurement cannot be implemented by LOCC [1, 6, 9, 25].
Nonetheless, let us offer one more proof of this fact. This can be done by finding the matrix Q, defined in
Eq. (7), and showing that its nullspace is one-dimensional, but rather than writing down the 20× 9 matrix
Q, we will take a somewhat more direct approach, which should offer additional insights into how/why this
whole business works.
Let us consider the case that Alice measures first, so each of her initial outcomes must be equal to

A ⊗ IB =
∑

j cjÂj ⊗ B̂j, for some operator A and non-negative coefficients cj. Then, dividing the 9 × 9

matrix A⊗ IB into its nine 3× 3 blocks, the diagonal blocks are found from Eqs. (26) to be respectively





c2 cos
2 θ2 + c3 sin

2 θ2
1
2 (c2 − c3) sin 2θ2 0

1
2 (c2 − c3) sin 2θ2 c2 cos

2 θ2 + c3 sin
2 θ2 0

0 0 c4 cos
2 θ4 + c5 sin

2 θ4



 , (27)





c8 cos
2 θ8 + c9 sin

2 θ8 0 0
0 c1 0
0 0 c4 cos

2 θ4 + c5 sin
2 θ4



 , (28)

and




c8 cos
2 θ8 + c9 sin

2 θ8 0 0
0 c6 cos

2 θ6 + c7 sin
2 θ6

1
2 (c6 − c7) sin 2θ6

0 1
2 (c6 − c7) sin 2θ6 c6 cos

2 θ6 + c7 sin
2 θ6



 . (29)

There are also two pairs of non-zero off-diagonal blocks, each of the first pair being proportional to (c4 −
c5) sin 2θ4[2]B while the other pair are each proportional to (c8− c9) sin 2θ8[0]B. Since the overall operator is
A⊗ IB , each block must be proportional to IB. The only way the off-diagonal blocks can be proportional to
IB is if the relevant proportionality constant is equal to zero. Therefore, we have that c4 = c5 and c8 = c9.
The first diagonal block then tells us that c2 = c3 = c4, the second diagonal block tells us that c8 = c1 = c4,
and in turn, the last diagonal block tells us that c6 = c7 = c8. Hence, we see that the only possibility is
cj = c, the same for all j, and since

∑

j Âj ⊗ B̂j = IA ⊗ IB , it must be that A ∝ IA, and we conclude
that Alice cannot measure at all. In the same way using a similar analysis, one sees that Bob also cannot
measure, and therefore we arrive at the conclusion that this set of states cannot be distinguished by LOCC.
Notice that in this section, the impossibility of LOCC has been demonstrated by showing that no party

can measure first to initiate an LOCC protocol. These examples notwithstanding, LOCC-impossibility can
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clearly also be shown by demonstrating that no party can measure next at any later point in the design
of such a protocol. Anecdotally, however, it appears to often (though certainly not always) be the case in
known examples that no party can measure first to initiate a protocol, see Sec. VI for further examples of
this phenomenon.

VI. CONCLUSIONS

We have given a method of designing LOCC protocols to exactly implement quantum measurements,
and for every finite integer r, the method provides an r-round protocol whenever one exists for the given
measurement (in principle, the method will also provide an infinite-round protocol whenever one exists, but
of course, it would take an infinite amount of time to find such a protocol). When the method fails to find an
LOCC protocol, a direct conclusion is that the measurement cannot be implemented by LOCC, even when
an infinite number of rounds of communication are allowed, see Theorem 5. We have given examples where
a protocol can indeed be obtained, see Secs. III and IV, and we have also given examples of measurements
where this approach proves that the measurement cannot be implemented by LOCC, including an infinite
class of examples [27] for which this conclusion had not been previously known, see Sec. V. While the
examples in the main text involve only rank-1 operators in all cases, there is nothing about our method that
restricts to such cases. Quite to the contrary, the method works regardless of the rank of the associated
operators, as demonstrated by the class of examples given in the Appendix.

We note here that the method turns out to be extremely useful and can be employed to prove impossibility
by LOCC in problems that go well beyond the few examples discussed above. Indeed, we have utilized a
numerical implementation of these ideas to check the dimension of nullspace N of matrix Q, defined by
Eq. (7), to prove LOCC-impossibility for a wide range of cases that have appeared previously in the literature
(and for which it has previously been shown that they cannot be implemented by LOCC). These cases include
additional examples of nonlocality without entanglement, involving the perfect discrimination of certain
complete, mutually orthogonal product bases, which can readily be obtained from associated unextendible
product bases (UPB) [31] (the projectors onto these basis states constitute a separable measurement that
perfectly discriminates the given UPB). Examples to which we have applied this numerical approach include
full orthogonal product bases derived from (i) the GenTiles1 UPB [4], which involves a d× d system with d
an even integer, where we have numerically demonstrated LOCC-impossibility for all even d with 4 ≤ d ≤ 36
(beyond which we then run out of memory); (ii) GenTiles2 [4], which involves an m× n system with n > 3,
m ≥ 3, and n ≥ m, and we have numerically shown that these states cannot be perfectly discriminated
by LOCC for 3 < m < 10, m < n < 100, and for 11 < m < 36, m < n < 36 (beyond which we then
ran out of patience); and (iii) the Niset-Cerf construction [5] of UPBs involving P ≥ 3 parties each with
systems of dimension at least P − 1, which we have considered cases where all P systems are of the same
dimension d and shown numerically that these states cannot be perfectly discriminated by LOCC for cases
when P = 3 and 2 ≤ d ≤ 11 (after which we run out of memory), when P=4 and 2 ≤ d ≤ 6 (and then run
out of memory) and for P = 5 and d = 4 (beyond which we run out of memory). As mentioned in Sec. IV,
we have also proved that each member of the entire class of measurements given in [27], each of which is
optimal for unambiguous state discrimination, is impossible by LOCC, extending to infinite-round protocols
the previously known result [27] that these measurements are impossible by LOCCN. We note that in all
these cases, the impossibility by LOCC follows from the fact that no party can measure first to initiate an
LOCC protocol.

Acknowledgments — We thank Li Yu for a helpful discussion. This work has been supported in part by the
National Science Foundation through Grant No. 1205931.
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Appendix A: Designing an LOCC measurement requiring more than one round of communication

Consider a class of measurements having seven product operators, for which the local positive operators
are related as

B̂1 = 2B̂2 = 3B̂3

B̂5 =
1

2

(

IB − 2B̂1 − B̂4

)

B̂6 = B̂1 + B̂4

B̂7 = IB − B̂1 − B̂4 (A1)

Â4 =
1

2

(

Â1 + Â2

)

Â5 =
1

3

(

Â1 + Â3

)

Â6 = IA − Â1 − Â2

Â7 = IA − Â1 − Â3.

An LOCC protocol for this class of measurements was obtained as Example 5 in [23] by an entirely
different method than that given in the present paper. Here, for simplicity, we will also assume that
SA = {Â0, Â1, Â2, Â3} and SB = {B̂0, B̂1, B̂4} is each a linearly independent set of operators, where Â0 := IA
and B̂0 := IB. Let us first note that any linear combination of our seven product operators can be written
as

7
∑

j=1

cjÂj ⊗ B̂j = c1Â1 ⊗ B1 +
1

2
c2Â2 ⊗ B̂1 +

1

3
c3Â3 ⊗ B̂1 +

1

2
c4

(

Â1 + Â2

)

⊗ B̂4

+
1

6
c5

(

Â1 + Â3

)

⊗
(

IB − 2B̂1 − B̂4

)

+ c6

(

IA − Â1 − Â2

)

⊗
(

B̂1 + B̂4

)

+ c7

(

IA − Â1 − Â3

)

⊗
(

IB − B̂1 − B̂4

)

(A2)

=

[

c7IA +

(

1

6
c5 − c7

)

(

Â1 + Â3

)

]

⊗ IB

+

[

(c6 − c7) IA +

(

c1 −
1

3
c5 − c6 + c7

)

Â1 +

(

1

2
c2 − c6

)

Â2 +

(

1

3
c3 −

1

3
c5 + c7

)

Â3

]

⊗ B̂1

+

[

(c6 − c7) IA +

(

1

2
c4 −

1

6
c5 − c6 + c7

)

Â1 +

(

1

2
c4 − c6

)

Â2 +

(

c7 −
1

6
c5

)

Â3

]

⊗ B̂4.

For our purposes, we wish to consider this sum as being equal to a given node in an LOCC tree, so it must
be equal to a product operator, say A ⊗ B. Now, if Alice can measure first, each node corresponding to
the outcomes of her first measurement will have B ∝ IB . Since {IB , B̂1, B̂4} is linearly independent, this

requires that the coefficients of B̂1 and B̂4 in the preceding equation must vanish. Then also using the linear
independence of {IA, Â1, Â2, Â3}, it must be that c6 = c7 and c5 = 3c1 = 3c4 = 6c7 so c1 = c4, c2 = 2c6 = c4,
and c3 = 3c7. Since c5 = 6c7, we have from the IB part of Eq. (A2) that A = c7IA, implying that Alice
cannot measure first.

Let us now utilize the approach outlined in the main text. We first define dual bases for SA,SB as

S̃A = {Ã0, Ã1, Ã2, Ã3} and S̃B = {B̃0, B̃1, B̃4}, respectively, where Tr(Ã†
i Âj) = δij and Tr(B̃†

i B̂j) = δij .

Form the set, Q̃l, from the tensor products of all operators in S̃A with all those in S̃B , and define Qall to
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have matrix elements qalllj = Tr(Q̃†
l Âj ⊗ B̂j). Then, we find

Qall =







































0 0 0 0 0 0 1
0 0 0 0 0 1 −1
0 0 0 0 0 1 −1
0 0 0 0 1/6 0 −1
1 0 0 0 −1/3 −1 1
0 0 0 1/2 −1/6 −1 1
0 0 0 0 0 0 0
0 1/2 0 0 0 −1 0
0 0 0 1/2 0 −1 0
0 0 0 0 1/6 0 −1
0 0 1/3 0 −1/3 0 1
0 0 0 0 −1/6 0 1







































(A3)

The rows of this matrix in top-to-bottom order correspond to operators Q̃l respectively as Ã0 ⊗ B̃0, Ã0 ⊗
B̃1, Ã0 ⊗ B̃4, Ã1 ⊗ B̃0, Ã1 ⊗ B̃1, Ã1 ⊗ B̃4, Ã2 ⊗ B̃0, Ã2 ⊗ B̃1, Ã2 ⊗ B̃4, Ã3 ⊗ B̃0, Ã3 ⊗ B̃1, Ã3 ⊗ B̃4.
Note that this matrix has more rows than would appear in any of the matrices Q that will appear when

using the method described in the main text. However, we can save computational expense by using Qall

to obtain all the Q matrices needed to analyze every measurement in a complete LOCC protocol, from the
very first one to the last. For the first measurement by either party, we just need to discard those rows in
Qall that involve the other party’s identity operator in the operators, Q̃l. For Alice going first, this means
we discard rows 1, 4, 7, 10, while for Bob going first, discard rows 1, 2, 3. Equivalently, we can multiply Qall

by a diagonal matrix that has zeros in the diagonal element corresponding to those rows we wish to discard,
and ones in all the other entries along the diagonal. This is because a row of zeros in Q is irrelevant for our
purposes (clearly, we can choose to discard row 7 in Qall from the outset). For subsequent measurements,
use of Qall is a bit more involved, and we will see it is generally necessary to multiply Qall by a non-diagonal
matrix. In general, it is necessary to take linear combinations of the rows of Qall in a way that uses only
those Q̃l that are orthogonal to the preceding measurement outcome of the parties (collectively denoted Ā
in the discussion of the main text) that are not about to measure. For the present example, if Alice is to

measure after Bob just obtained outcome B = qB0 + rB1 + rB4, then we want Bob’s part of the Q̃l to be
orthogonal to this operator B. This can be done in various ways, but one way, which we will utilize below,
is to choose Bob’s part of the Q̃l to be either rB̃0 + ωqB̃1 + ω2qB̃4 or rB̃0 + ω2qB̃1 + ωqB̃4 [ω is defined
below just before Eq. (A7)], which for the first choice corresponds to adding r times the first row of Qall to
ωq times the second row and ω2q times the third row, and making similar combinations of the other sets of
three consecutive rows in Qall. See the discussion below for explicit demonstration of how this works.
We have already seen that Alice cannot measure first, so now let us consider if Bob can measure first.

Discarding the first three rows of Qall, we find that the nullspace of what remains is spanned by the two

orthogonal vectors (2, 2, 3, 2, 6, 1, 1)T , which corresponds to IA ⊗ IB, and (37, 96,−33, 96,−66, 48,−11)T ,
where superscript T indicates the transpose operation. Since this nullspace is two-dimensional, Bob can
indeed measure first, with outcomes of the form

~cT = (c1, c2, c3, c4, c5, c6, c7) = (c6 + c7, 2c6, 3c7, 2c6, 6c7, c6, c7) . (A4)

This corresponds to outcomes IA ⊗ B =
∑

j cjÂj ⊗ B̂j , with

B = c7IB + (c6 − c7)
(

B̂1 + B̂4

)

= c6B̂6 + c7B̂7. (A5)

[This is perhaps more easily seen from the following argument: Returning to Eq. (A2), the linear indepen-

dence of {IB, B̂1, B̂4} implies that for some set of coefficients, aj , j = 1, 2, 3,

a0A = c7IA +

(

1

6
c5 − c7

)

(

Â1 + Â3

)

,

a1A = (c6 − c7) IA +

(

c1 −
1

3
c5 − c6 + c7

)

Â1 +

(

1

2
c2 − c6

)

Â2 +

(

1

3
c3 −

1

3
c5 + c7

)

Â3, (A6)

a4A = (c6 − c7) IA +

(

1

2
c4 −

1

6
c5 − c6 + c7

)

Â1 +

(

1

2
c4 − c6

)

Â2 +

(

c7 −
1

6
c5

)

Â3.
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Now, if Bob measures first, then A ∝ IA, which tells us that c5 = 6c7, c1 = c6 + c7, c2 = 2c6 = c4, and
c3 = 3c7. This leaves a freedom in choosing, say, c6 and c7, as indicated in Eq. (A4). Though this method
may appear easier, it may nonetheless be useful for computational implementations to work directly with
Qall.]
We now ask what measurements Alice can make to follow such outcomes in Bob’s first measurement. We

wish to choose a new basis S ′
B whose dual basis has only one operator not orthogonal to B of Eq. (A5).

One way to do this using Qall is as follows. Define ω = e2πi/3, and start with the (non-normalized) Fourier
matrix

F3 =





1 1 1
1 ω ω2

1 ω2 ω



 . (A7)

We may replace the first row of ones in F3 by zeros (since that first row will lead to an operator that is not

orthogonal to B in our chosen set of Q̃l operators), but it is just as well to remove that row entirely, calling
the resulting matrix F′

3. Multiply F′
3 on the right by

M =





c6 − c7 0 0
0 c7 0
0 0 c7



 , (A8)

and for the moment assume c7 6= 0. The reason this works can be seen in a way similar to the discussion at

the end of the paragraph following Eq. (A3). That is, if we multiply the vector of operators,
(

B̃0, B̃1, B̃4

)T

by F′
3M, we get a vector of operators that is orthogonal to (c7B0, (c6 − c7)B1, (c6 − c7)B4)

T
, where the

latter is representative of B in Eq. (A5). We cannot multiply Qall by F′
3M, since the inner dimensions don’t

match, but what we really need to do is this: tensor F′
3M with the 4× 4 identity matrix I4 to get I4 ⊗F′

3M

(it is In with n = 4 because the dimension of the span of SA is 4), and multiply this by Qall on the right.
The result is

Q′
1 := (I4 ⊗ F′

3M)Qall =























0 0 0 0 0 −c7 c6
0 0 0 0 0 −c7 c6
c7ω 0 0 c7ω

2/2 (c6 − c7ω)/6 c7 −c6
c7ω

2 0 0 c7ω/2 (c6 − c7ω
2)/6 c7 −c6

0 c7ω/2 0 c7ω
2/2 0 c7 0

0 c7ω
2/2 0 c7ω/2 0 c7 0

0 0 c7ω/3 0 (c6 − c7ω)/6 0 −c6
0 0 c7ω

2/3 0 (c6 − c7ω
2)/6 0 −c6























, (A9)

We wish to find vectors, ~c ′1 = (c′1, · · · , c′7)T such that Q′
1~c

′ = ~0. Note that the last column of Q′
1 is

proportional to c6, the second-to-last one, to c7. If both these quantities are non-zero, the nullspace of
this matrix is one-dimensional, corresponding to IA ⊗ B, or in other words, to the result of Bob’s initial
measurement. Therefore, Alice cannot measure next unless c6 = 0 or c7 = 0. Furthermore, since IA ⊗ B
is not an outcome of the overall desired measurement, then since we are interested in implementing that
measurement without error, Bob’s initial measurement must correspond to one of these two choices, c6 = 0
or c7 = 0. In the first case, B = c7B̂7, c

′
7 is unconstrained, and we find that the nullspace is two-dimensional,

containing all vectors of the form ~c ′1 = (c′1, 0, 3c
′
1, 0, 6c

′
1, 0, c

′
7)

T
. This tells us that Alice can measure next

with outcomes of the form A1 ⊗ B̂7, where

A1 = c′7IA + (c′1 − c′7)
(

Â1 + Â3

)

. (A10)

On the other hand, if c7 = 0 and B = c6B̂6 = c6

(

B̂1 + B̂4

)

, our choice of F′
3M above corresponds to

operators Q̃l all of the form A⊗B̃0 for some A, in particular excluding operators of the form A′⊗
(

B̃1 − B̃4

)

,

which should be included since
(

B̃1 − B̃4

)

is orthogonal to B. So we need to start over by instead choosing

M′ =

[

1 0 0
0 1 −1

]

, (A11)
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and multiplying Qall by I4 ⊗M′ to obtain

Q′
2 := (I4 ⊗M′)Qall =























0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 1/6 0 −1
1 0 0 −1/2 −1/6 0 0
0 0 0 0 0 0 0
0 1/2 0 −1/2 0 0 0
0 0 0 0 1/6 0 −1
0 0 1/3 0 −1/6 0 0























. (A12)

In this case, we seek vectors ~c ′2 = (c′1, · · · , c′7)T such that Q′
2~c

′ = ~0. Now the second-to-last column of Q′
2 is

all zeroes, so c′6 is unconstrained. We find that the nullspace of Q′
2 is also two-dimensional, containing all

vectors of the form ~c ′2 = (c′1, 2c
′
1, 0, 2c

′
1, 0, c

′
6, 0)

T
. This tells us that Alice can measure next with outcomes

of the form A2 ⊗ B̂6, where

A2 = c′6IA + (c′1 − c′6)
(

Â1 + Â2

)

. (A13)

This completes the analysis of the second round of measurements. To summarize to this point in the protocol,
we see that Bob’s first measurement can have two distinct outcomes, one being c7IA⊗B̂7 followed by Alice’s
outcomes of the form given in Eq. (A10), and the other being c6IA ⊗ B̂6 followed by Alice’s outcomes of the
form given in Eq. (A13). Note that since the outcomes of Bob’s first measurement must sum to IA ⊗ IB ,
we have that c6 = 1 = c7. We next consider what measurements Bob can make following each of these
outcomes.
For the third round, following Bob’s initial outcome of B̂7 and Alice’s subsequent measurement, we need

to choose operators Q̃l orthogonal to A1 in Eq. (A10). To do so, we multiply Qall on the left by M71 ⊗ I3,
where

M71 =





1 ω 0 ω2

1 ω2 0 ω
0 0 1 0











c′1 − c′7 0 0 0
0 c′7 0 0
0 0 1 0
0 0 0 c′7






=





c′1 − c′7 ωc′7 0 ω2c′7
c′1 − c′7 ω2c′7 0 ωc′7

0 0 1 0



 , (A14)

to obtain

Q′′
71 := (M71 ⊗ I3)Q

all =



























0 0 0 0 −c′7/6 0 c′1
ωc′7 0 ω2c′7/3 0 c′7/3 c′1 + ω2c′7 −c′1
0 0 0 ωc′7/2 c′7/6 c′1 + ω2c′7 −c′1
0 0 0 0 −c′7/6 0 c′1

ω2c′7 0 ωc′7/3 0 c′7/3 c′1 + ωc′7 −c′1
0 0 0 ω2c′7/2 c′7/6 c′1 + ωc′7 −c′1
0 0 0 0 0 0 0
0 1/2 0 0 0 −1 0
0 0 0 1/2 0 −1 0



























. (A15)

If both c′1 and c′7 are nonzero, the nullspace of this matrix, which we will denote as ~c ′′, is one-dimensional,

in which case Bob cannot measure next. This would leave a final outcome of the protocol as A1 ⊗ B̂7, with
A1 6∝ Â7. Therefore, these outcomes must be excluded, since they introduce errors into the protocol. If

c′1 = 0, the nullspace is still one-dimensional and of the form (0, 0, 0, 0, 0, 0, c′′7)
T
, so Bob cannot measure

following such an outcome. Nonetheless, since this outcome corresponds to c′7Â7 ⊗ B̂7, it is a valid terminal
outcome at the previous round.
On the other hand if c′7 = 0, then M71 does not provide enough operators Q̃l to span the space orthogonal

to A1 = c′1

(

Â1 + Â3

)

, so instead use

M72 =





1 0 0 0
0 1 0 −1
0 0 1 0



 , (A16)
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where the first row corresponds to Ã0, the second row to Ã1 − Ã3, and the third row to Ã2. Then, we have

Q′′
72 := (M72 ⊗ I3)Q

all =



























0 0 0 0 0 0 1
0 0 0 0 0 1 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 0
1 0 −1/3 0 0 −1 0
0 0 0 1/2 0 −1 0
0 0 0 0 0 0 0
0 1/2 0 0 0 −1 0
0 0 0 1/2 0 −1 0



























. (A17)

The nullspace of this matrix is of the form (c′′1 , 0, 3c
′′
1 , 0, c

′′
5 , 0, 0), which is two-dimensional, parametrized by

c′′1 and c′′5 . This corresponds to outcome

A1 ⊗ B1 = Â5 ⊗
[

3c′′1 B̂1 + c′′5

(

IB − 2B̂1 − B̂4

)

/2
]

. (A18)

Therefore, Alice’s preceding measurement has the two outcomes 3c′1Â5 ⊗ B̂7 = c′1

(

Â1 + Â3

)

⊗ B̂7 and

c′7Â7 ⊗ B̂7 = c′7

(

IA − Â1 − Â3

)

⊗ B̂7, and since these must add to IA ⊗ B̂7, their coefficients must be

c′1 = 1 = c′7. The latter outcome is terminal as Â7 ⊗ B̂7, and the other is followed by Bob’s measurement
leading to outcomes of the form given in Eq. (A18).

To see what measurements Alice can make after this latter outcome, we must choose the Q̃l to be orthogonal
to its B part, B1. This can be done by using

M73 =

[

3c′′1 − c′′5 ωc′′5/2 −ω2 (3c′′1 − c′′5 )
3c′′1 − c′′5 ω2c′′5/2 −ω (3c′′1 − c′′5)

]

, (A19)

in the form of

Q′′′
73 := (I4 ⊗M73)Q

all

=























0 0 0 0 0 c′′5ω/2− (3c′′1 − c′′5)ω
2 − (3c′′1 − c′′5/2)ω/2

0 0 0 0 0 c′′5ω
2/2− (3c′′1 − c′′5)ω − (3c′′1 − c′′5/2)ω

2

c′′5ω/2 0 0 − (3c′′1 − c′′5 )ω
2/2 −c′′1ω/2 −c′′5ω/2 + (3c′′1 − c′′5)ω

2 − (3c′′1 − c′′5/2)ω/2
c′′5ω

2/2 0 0 − (3c′′1 − c′′5)ω/2 −c′′1ω2/2 −c′′5ω2/2 + (3c′′1 − c′′5 )ω − (3c′′1 − c′′5/2)ω
2/2

0 c′′5ω/4 0 − (3c′′1 − c′′5 )ω
2/2 0 −c′′5ω/2 + (3c′′1 − c′′5)ω

2 0
0 c′′5ω

2/4 0 − (3c′′1 − c′′5)ω/2 0 −c′′5ω2/2 + (3c′′1 − c′′5 )ω 0
0 0 c′′5ω/6 0 −c′′1ω/2 0 (3c′′1 − c′′5/2)ω/2
0 0 c′′5ω

2/6 0 −c′′1ω2/2 0 (3c′′1 − c′′5/2)ω
2/2























.

(A20)

Except as noted below, the nullspace of this matrix is one-dimensional implying Alice cannot measure next,
including when c′′1 = 0, which represents the case of the preceding outcome being c′′5Â5⊗B̂5. This is therefore
an acceptable, terminal outcome of the protocol. Note that the nullspace of Q′′′

1 is not one-dimensional when

c′′5 = 3c′′1 , but in that case M73 corresponds to Q̃l whose B-parts are all B̃1, while we should include B̃0+ B̃4

as well, since this is also orthogonal to B1 of Eq. (A18). Therefore, we must replace M73 by

M74 =

[

1 0 1
0 1 0

]

, (A21)

which leads to (I4 ⊗M74)Q
all having a one-dimensional nullspace that corresponds to an outcome propor-

tional to
(

Â1 + Â3

)

⊗
(

IB − B̂4

)

. Since the nullspace is one-dimensional this outcome must be terminal,

but since it is not one of our desired measurement outcomes, it must be excluded.
The other exception toQ′′′

73 having a one-dimensional nullspace is when c′′5 = 0, corresponding to A1⊗B1 =

3c′′1Â5 ⊗ B̂1. This was then one outcome of Bob’s preceding measurement, the only other one having been

c′′5Â5 ⊗ B̂5, which was terminal as we just saw in the preceding paragraph. Since these outcomes must sum
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to the outcome prior to this measurement, which was 3Â5 ⊗ B̂7 (see below Eq. (A18)), we have c′′1 = 1
and c′′5 = 6. Returning to the current measurement outcome by Alice, in this case the nullspace of Q′′′

73 is
three-dimensional, including all vectors of the form (c′′′1 , c

′′′
2 , c

′′′
3 , 0, 0, 0, 0) and allowing outcomes of Alice’s

subsequent measurement to be any linear combination of Â1, Â2, and Â3. However, since the sum of all

these outcomes must be equal to the previous outcome, 3Â5 ⊗ B̂1 =
(

Â1 + Â3

)

⊗ B̂1 (otherwise, she did

not make a complete measurement), and recalling that all of these coefficients c′′′j are non-negative, we must

exclude Â2 from this list. Furthermore by a similar argument, no subsequent measurements Bob makes
can ever yield any of the B̂j other than B̂1. This implies Bob cannot measure again along this branch

of the protocol, so Alice will do well to just measure with two outcomes, one being c′′′1 Â1 ⊗ B̂1 and the

other being c′′′3 Â3 ⊗ B̂1, and be done with it. Finally, since these outcomes must add to 3Â5 ⊗ B̂1, their
coefficients must be c′′′1 = 1 = c′′′3 . Thus, we have completed this branch of the protocol, which begins with

outcome IA⊗B̂7 of Bob’s initial measurement, followed by a series of two-outcome measurements, in order as
follows: 3Â5⊗B̂7, Â7 ⊗B̂7, the latter being terminal while the former is followed by 3Â5⊗B̂1, 6Â5⊗B̂5, the
latter again being terminal and the former followed by Â1 ⊗ B̂1, Â3 ⊗ B̂1, both of these then being terminal,
completing this branch.
This leaves us needing only to analyze the B̂6 branch, that descended from the other of Bob’s initial

outcomes. We have already seen that Alice’s subsequent measurement outcomes must be of the form A2

given in Eq. (A13), and we must find operators orthogonal to these. This can be done by choosing

M61 =





c′1 − c′6 ωc′6 ω2c′6 0
c′1 − c′6 ω2c′6 ωc′6 0

0 0 0 1



 , (A22)

and then

Q′′
61 := (M61 ⊗ I3)Q

all =



























0 0 0 0 1/6 0 −1
0 0 1/3 0 −1/3 0 1
0 0 0 0 −1/6 0 1
0 0 0 0 c′6ω/6 0 c′1 + c′6ω

2

c′6ω c′6ω
2/2 0 0 −c′6ω/3 c′1 −c′1 − c′6ω

2

0 0 0 −c′6/2 −c′6ω/6 c′1 −c′1 − c′6ω
2

0 0 0 0 c′6ω
2/6 0 c′1 + c′6ω

c′6ω
2 c′6ω/2 0 0 −c′6ω2/3 c′1 −c′1 − c′6ω

0 0 0 −c′6/2 −c′6ω2/6 c′1 −c′1 − c′6ω



























. (A23)

The nullspace of this matrix is one-dimensional, so Bob cannot measure next, unless c′6 = 0. When c′6 6= 0,
Alice’s preceding outcome is still acceptable for the desired measurement if c′1 = 0, and then Alice’s outcome

is terminal, being c′6Â6 ⊗ B̂6.

When c′6 = 0, M61 does not provide enough operators Q̃l to span the space orthogonal to A2 =

c′1

(

Â1 + Â2

)

= c′1Â4, so instead use

M62 =





1 0 0 0
0 1 −1 0
0 0 0 1



 . (A24)

Then,

Q′′
62 := (M62 ⊗ I3)Q

all =



























0 0 0 0 0 0 1
0 0 0 0 0 1 −1
0 0 0 0 0 1 −1
0 0 0 0 1/6 0 −1
1 −1/2 0 0 −1/3 0 1
0 0 0 0 −1/6 0 1
0 0 0 0 1/6 0 −1
0 0 1/3 0 −1/3 0 1
0 0 0 0 −1/6 0 1



























. (A25)
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The nullspace of this matrix is two-dimensional with vectors of the form, ~c ′′2 = (c′′1 , 2c
′′
1 , 0, c

′′
4 , 0, 0, 0)

T
,

corresponding to outcomes A2⊗B2 =
(

Â1 + Â2

)

⊗
(

c′′1 B̂1 + c′′4 B̂4/2
)

= 2Â4⊗
(

c′′1 B̂1 + c′′4 B̂4/2
)

. Comparing

to Eq. (A13), this implies the preceding measurement outcome by Alice was c′1Â4 ⊗ B̂6, which along with

the other (terminal) outcome c′6Â6 ⊗ B̂6 found in the preceding paragraph, must add to IA ⊗ B̂6. This tells
us that c′1 = 2 and c′6 = 1.

Following outcome 2Â4 ⊗
(

c′′1 B̂1 + c′′4 B̂4/2
)

, we find Alice’s possible subsequent measurements by consid-

ering

M63 =

[

1 0 0
0 c′′4 −2c′′1

]

, (A26)

and then

Q′′
63 := (I4 ⊗M63)Q

all =























0 0 0 0 0 0 1
0 0 0 0 0 c′′4 − 2c′′1 2c′′1 − c′′4
0 0 0 0 −1/6 0 1
c′′4 0 0 −c′′1 (c′′1 − c′′4 ) /3 2c′′1 − c′′4 c′′4 − 2c′′1
0 0 0 0 0 0 0
0 c′′4/2 0 −c′′1/2 0 2c′′1 − c′′4 0
0 0 0 0 1/6 0 −1
0 0 c′′4/3 0 (c′′1 − c′′4 ) /3 0 c′′4 − 2c′′1























. (A27)

The nullspace of this matrix is one-dimensional, implying Alice cannot measure next, unless c′′4 = 0 or
c′′4 = 2c′′1 . Therefore, if 2c′′1 6= c′′4 6= 0, Bob’s preceding measurement outcome had to be terminal. If

c′′1 6= 0 so B2 6∝ B̂4, and since A2 ∝ Â1 + Â2 = Â4, these outcomes must be excluded, as they lead
to errors in the final measurement. If c′′1 = 0, Alice also cannot measure next, but this yields the valid,

terminal measurement outcome, c′′4Â4 ⊗ B̂4 from the preceding measurement by Bob. The case of c′′4 = 2c′′1 ,

corresponding to a preceding outcome of 2c′′1Â4⊗B̂6, must also be excluded for the following reason. In this

case the nullspace is two-dimensional, with vectors of the form (c′′′1 , 2c
′′′
1 , 0, 2c

′′′
1 , 0, c

′′′
6 , 0)

T , corresponding to

outcomes
[

c′′′6 IA + (c′′′1 − c′′′6 )
(

Â1 + Â2

)]

⊗ B̂6. If c′′′6 = 0, Alice’s measurement outcome is 2c′′′1 Â4 ⊗ B̂6,

so Alice did not actually measure. So we require that for these outcomes, c′′′6 > 0 (recall that all these c
coefficients are non-negative). However, since Alice is making a complete measurement, the sum of all her

outcomes must be Â4 = Â1+ Â2, which is impossible if even one of those outcomes has c′′′6 > 0, which would
leave a non-vanishing contribution of IA. Hence, this type of outcome must be excluded.

Finally, if c′′4 = 0, for which the preceding measurement outcome was c′′1

(

Â1 + Â2

)

⊗ B̂1, the nullspace

is three-dimensional, including all vectors of the form (c′′′1 , c
′′′
2 , c

′′′
3 , 0, 0, 0, 0) and allowing outcomes of Alice’s

subsequent measurement to be any linear combination of Â1, Â2, and Â3. However, similarly to what we
argued above, we must here exclude outcome Â3, and Bob may as well just measure with the two terminal
outcomes Â1 and Â2 to complete this branch of the protocol. Considering the two allowed outcomes of
Bob’s preceding measurement, c′′4Â4 ⊗ B̂4 and c′′1Â4 ⊗ B̂1, we must have c′′1 = 2 = c′′4 , since these must add

to 2Â4 ⊗ B̂6, the outcome obtained beforehand.
Thus, we have completed this branch of the protocol, which begins with outcome IA ⊗ B̂6 of Bob’s initial

measurement, followed by a series of two-outcome measurements, in order as follows: 2Â4 ⊗ B̂6, Â6 ⊗ B̂6,
the latter being terminal while the former is followed by 2Â4⊗ B̂1, 2Â4 ⊗ B̂4, the latter again being terminal
and the former followed by Â1 ⊗ B̂1, Â2 ⊗ B̂1, both of these then being terminal, completing this branch.
A summary of these results is depicted as an LOCC tree in Fig. 1.
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Â6

2Â4
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FIG. 1. Summary of the results of this appendix, depicting an LOCC protocol for the measurement of Eq. (A1).
[Note that only the local operators are indicated next to each node in this diagram, rather than the full multipartite
operator.]
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