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We model repetitive quantum error correction (QEC) with the single-error-correcting five-qubit
code on a network of individually-controlled qubits with always-on Ising couplings. We use our
previously designed universal set of quantum gates based on sequences of shaped decoupling pulses.
In addition to being accurate quantum gates, the sequences also provide dynamical decoupling (DD)
of low-frequency phase noise. The simulation involves integrating the unitary dynamics of six qubits
over the duration of tens of thousands of control pulses, using classical stochastic phase noise as a
source of decoherence. The combined DD/QEC protocol dramatically improves the coherence, with
the QEC alone being responsible for more than an order of magnitude infidelity reduction.

I. INTRODUCTION

Quantum error correction[1–4] (QEC) makes it possi-
ble to perform large scale quantum computations with a
finite error rate per qubit[5–11]. Much like their classical
counterparts, quantum error correcting codes (QECCs)
rely on adding redundant qubits to control errors. How-
ever, e.g., unlike the classical information transmission
problem, qubits are subject to errors all the time, partic-
ularly during the syndrome extraction. Hence in order to
achieve scalability, special fault-tolerant (FT) protocols
must be used both for QEC and for any operation with
the encoded qubits. This increases the overhead and is
one of the reasons why the error probability thresholds for
scalable quantum computation are so small—e.g., around
1% per local gate in the case of the toric and related
surface codes[8, 12, 13]. The number of qubits needed,
measurement complexity, and stringent requirements for
gate speed and fidelity are among the reasons why an
experimental demonstration of repetitive quantum error
correction with an universal quantum code so far remains
elusive[14–25].

A possible way to loosen these requirements is to com-
bine active QEC with one of the passive error reduction
techniques depending on the correlations in the dominant
decoherence channel[26–34]. In particular, dynamical
decoupling(DD) and other related techniques[35–46] are
most effective in suppressing the effects of low-frequency
(e.g., 1/f) noise which is often the leading mechanism
for the loss of phase coherence. Moreover, DD can be
used to achieve scalability in gate design, since pulses
and sequences intended for a large system can be con-
structed to a given order in the Magnus series[47] on
small qubit clusters[38, 39]. DD type methods are also
excellent for accurately controlling systems where not all
interactions are known as one can decouple interactions
with a given symmetry[48–50]. And DD can be made to
remain stable even when the environment has sharp spec-
tral features[51], or high-frequency modes[52], or even
substantial pulse errors[53, 54]. In short, or at least in
principle, using DD at the lowest level of coherence pro-
tection could substantially reduce the required repetition
rate of the QEC cycle. In many instances, this could

make a crucial difference, enabling the use of QEC.

Recently, we have made substantial progress towards
developing a combined DD/QEC coherence protection
protocol by constructing a universal set of quantum gates
based on soft-pulse DD sequences[55, 56]. The gates are
designed to work on a network of qubits with always-
on Ising couplings forming a sparse bipartite graph. In
addition to providing accurate control, these gates also
work as decoupling sequences suppressing the effect of
low-frequency phase noise to second order in the Mag-
nus series. With these gates, we demonstrated[55] the
effectiveness of repetitive QEC using the single-error-
detecting [[4, 2, 2]] QECC which encodes two qubits into
four. This was done by simulating full unitary dynam-
ics of five driven qubits in an Ising chain, using low-
frequency classical noise as the source of decoherence.

We have also studied[56] the errors associated with the
gates similar to those constructed in Ref. 55. In a sys-
tem with always-on pairwise qubit couplings, for any gate
constructed perturbatively up to an order K, only the
errors forming clusters that involve up to K + 1 qubits
are suppressed. Large-weight clusters of correlated errors
can be suppressed exponentially when gates are executed
fast enough. However such a choice can only be made
for a network whose couplings are sufficiently sparse. In-
creasing the maximum degree z of the graph connectivity,
with a fixed pulse duration and other gate parameters,
may lead to the proliferation of large uncorrectable error
clusters.

In our previous work[55], we simulated a linear Ising
chain with z = 2, an arrangement most favorable for con-
trolling multi-qubit correlated errors[57]. On the other
hand, the optimal arrangement for surface codes is pla-
nar. The corresponding analytical bound on maximum
gate duration needed for FT is small[56]. Thus, it re-
mains an open question whether perturbation-theory-
based gates like those constructed in Ref. 55 can be prac-
tical for use in repetitive QEC.

In this work we numerically simulate repetitive quan-
tum error correction using our universal gate set[55, 56]
on a network with z ≥ 4, as would be needed for the
surface code. Specifically, we use a six-qubit star graph
(see Fig. 1) with Ising couplings between the qubits with
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FIG. 1. (Color online) Arrangement of qubits on a bipartite
star graph for implementing the [[5,1,3]] code. This particular
arrangement of the qubits was chosen to minimize the total
number of gate operation during the stabilizer generator mea-
surement cycle. (a) The qubit to be encoded, Q6, is initially
placed at the center. At the end of encoding, it is swapped
with an ancilla qubit, initially Q1. (b) During the stabilizer
measurement cycle, the single ancilla qubit Q6 at the center
is used to sequentially measure all four stabilizer generators
supported by the five qubits around it.

z = 5.
We simulate QEC with the [[5, 1, 3]] code both in the

traditional and in the error-detection (Zeno) modes. This
code can actually be seen as a variant of a surface code
with rotated periodicity vectors[58, 59]. We simulate the
full unitary dynamics over several error correcting cycles
(up to seventy thousand shaped pulses) with instanta-
neous projective measurements of the ancillas, and we use
classical Gaussian time correlated phase noise as a source
of decoherence. We consider the cases of low-frequency
noise with Gaussian time correlations, as well as bimodal
noise generated from a combination of low-frequency and
high-frequency components. The constructed protocols
show substantial improvement of coherence compared to
the case of unprotected qubits, including an over an order
of magnitude average infidelity reduction attributable to
error correction alone.

The structure of the paper is as follows. In Sec. II,
we give a brief overview of dynamical decoupling, of the
universal gate set used, and our implementation of the
[[5, 1, 3]] code on a star graph. In Sec. III, we present the
results of numerical simulations. This is followed by the
conclusions in Sec. IV.

II. GATE AND CODE IMPLEMENTATION

A. Dynamical control on an Ising network

The goal of dynamical control is to drive the desired
unitary evolution of a quantum system over a given time
interval. While the details of the dynamics during the
interval may differ greatly, the net result of such an evo-
lution can be, to some extent, insensitive to the details of
system’s interactions. For example, in the simplest case
of single-qubit dynamical decoupling, the qubit interac-
tions are averaged out during the period of the controlled

evolution.
We consider the following general Hamiltonian

H = HC +H0, H0 = HS +HB +HSB, (1)

where HC ≡ HC(t) is the time-dependent control Hamil-
tonian, and the remaining Hamiltonian H0 is separated
into the parts HS and HB acting on the qubit “system”
and on the bath respectively, and the system-bath cou-
pling Hamiltonian HSB.

In this work, following Refs. 55 and 56, we consider
a sparse bipartite network of qubits with the Ising cou-
plings between nearest neighbors[60],

HS ≡
1

2

∑

〈i,j〉

Jijσ
z
i σ

z
j , (2)

and decoherence due to slow dephasing of individual
qubits, generally described by the following bath and
bath-coupling Hamiltonians:

HB =
∑

i

Bi, HSB =
1

2

∑

i

Aiσ
z
i . (3)

Each qubit is assumed to have its own individual bath,
i.e., the bath operators Bj commute with each other, and
the coupling operators Ai commute with each other and
all Bj , j 6= i.

The decoupling technique assumes that the control
Hamiltonian HC dominates the dynamics. We implicitly
assume that any large energies have already been elimi-
nated from the system HS and system-bath coupling HSB

Hamiltonians by a rotating wave approximation (RWA).
Then, the Hamiltonian (2) can be viewed as an effec-
tive Hamiltonian for any set of interactions as long as
the transition frequencies of the neighboring qubits dif-
fer sufficiently. Similarly, the bath model (3) is an effec-
tive description of qubits operating well above the bath
frequency cut-off to eliminate direct spin flip transitions,
with dephasing caused, say, by phonon scattering.

We also assume the ability to control the qubits indi-
vidually, with the control Hamiltonian

HC ≡
∑

j

H
(j)
C , H

(j)
C =

1

2

∑

µ=x,y,z

Vjµ(t)σµj , (4)

where the time dependent control signals Vjµ(t) are ar-
bitrary, except for some implicit limits on their ampli-
tude and spectrum. Our gates[55, 56] are designed as se-
quences of one-dimensional pulses, with the control fields
on a given qubit applied along x, y, or z axis exclusively,
so that only one of Vx(t), Vy(t), or Vz(t) can be non-
zero at any given time. We also imposed a restriction
that no pulses be applied simultaneously on any pair of
neighboring qubits.

As a result of these assumptions, the multi-qubit
unitary evolution operator with the complete Hamilto-
nian (1) over the duration of a single-pulse interval can
be written as a product of mutually commuting terms,
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each of them involving the controlled qubit and vari-
ous products of σz Pauli operators for its uncontrolled
neighbors.[56] Each of these operators can be computed
order-by-order in the time-dependent perturbation the-
ory; in Ref. 56 we carried such an expansion up to
third order. In each order of the series, the depen-
dence on the pulse shape is encoded in terms of just
a few coefficients[51–53, 56]. For example, the first-
order correction is expressed in terms of just two such
coefficients, the time averages of cosφ(t) and sinφ(t)

over the duration of the pulse, where φ(t) =
∫ t

0
dt′V (t′)

is the time-dependent rotation angle corresponding to
the given pulse shape V (t), 0 ≤ t ≤ τp, and τp is
the pulse duration. With generic pulse shapes, such
as a Gaussian, this produces errors that scale linearly
with τp. Specially designed self-refocusing pulses can
be constructed to suppress this effect, e.g., to linear
or quadratic orders in powers of τp, depending on the
shape[38, 53]. For example, to the linear order, this is
done by choosing a functional form V (t) which guaran-
tees 〈cosφ(t)〉 = 〈sinφ(t)〉 = 0. If the pulse shape is
symmetric, V (t) = V (τp − t), this requires only one ad-
ditional condition on the shape[38, 53, 62].

While in a multi-qubit setting such special pulse shapes
do not eliminate all first- or second-order errors over
the pulse duration, the resulting series have fewer terms
which can be subsequently dealt with easier by properly
designing the pulse sequences.

B. Universal gate set

With generic set of inter-qubit couplings, increasing
the number of qubits requires progressively longer se-
quences to decouple the inter-qubit couplings[48]. How-
ever, when the couplings form a bipartite graph, such
a decoupling to an arbitrary (fixed) order can be done
with a single sequence of a finite duration independent of
the number of qubits in the system[55]. We constructed
a gate set formed by an arbitrary single-qubit rotation
and an entangling controlled-phase gate [more precisely,
arbitrary-angle ZZ rotation, exp(−iασzi σzj ) for a pair of
neighboring qubits i and j]. According to general the-
ory, such a gate set is universal[63]. These gates can
be executed simultaneously on an arbitrary set of non-
neighboring qubits (pairs of qubits), and in addition pro-
vide DD protection for every qubit. In particular, all the
Hamiltonian terms not directly involved in the gate are
averaged out.

Single-qubit gates[55, 56] are based on the leading-
order dynamically corrected gates[64, 65], in turn based
on the Eulerian path construction[66]. The original
single-qubit DCG sequence[64, 65] guarantees leading-
order cancellation of an arbitrary bath coupling. This
is achieved by executing a sequence of identically-shaped
pulses driving the qubit through an (extended) Eule-
rian cycle on the Cayley graph corresponding to the
decoupling group. Explicitly, the single-qubit DCG

sequence[64, 65] can be formally written as

(X)(I)(Y)(I)(X)(I)(Y) (Y)(X)(Y)(X) (P ), (5)

where (X) and (Y) represent finite-duration π pulses in
X and Y direction, (P ) the pulse nominally implement-
ing the desired single-qubit rotation, and I is the com-
posite pulse implementing a unity operation by running
a half-time double-amplitude version of P followed by an
identical pulse applied in the opposite direction. As writ-
ten, the sequence works for pulses of arbitrary symmetric
shapes, as long as these shapes remain the same during
the sequence.

To build dynamically-protected single-qubit gates on
a bipartite qubit network with always-on couplings, we
separated the DCG sequence into a part to be executed
on the sublattice A [X pulses in the original sequence
(5)] and a part to be executed on the sublattice B (Y
pulses in the original sequence replaced by X pulses).
Each of these are partial-group sequences as they go over
Eulerian cycles corresponding to subgroups of the two-
sublattice decoupling group, specifically chosen to control
Ising bath coupling (3). As a result, the entire sequence
is only effective against dephasing, and it requires self-
refocusing pulses (see Sec. II A) to achieve the leading-
order cancellation.

The construction allows simultaneous rotations in any
set of non-neighboring qubits (e.g., the entire sublattice
A or B can be rotated at once), with P representing the
desired rotation or zero applied field on idle qubits. In
actual implementation we used the stretched pulse P of
duration 2τp, so that the unity operation I in Eq. (5) is
composed of two pulses of duration τp. Overall, the du-
ration of such a single-qubit gate is 16τp. The Hadamard
gate H is implemented as a product of two rotations,
with the net duration 32τp.

Same sequences used with second-order self-refocusing
pulses[38, 53] (see the portion t ≤ 16τp on Fig. 2) yields
second-order cancellation of inter-qubit couplings and the
bath terms in Eq. (3), except for terms proportional to
the commutators [Bi, Ai]. These terms are readily inter-
preted as the derivatives of time-dependent fields acting
on the qubits. Such terms can also be canceled[56], e.g.,
using symmetrized versions of our sequences (involving
32 pulses instead of 16), if one uses more complicated
pulse shapes akin to those developed in Ref. 67. While se-
quences achieving higher cancellation orders can be read-
ily designed using the same general approach[64, 65, 68],
the advantage of the particular sequences we use in this
work is that they are shorter.

Two-qubit ZZ-rotation gates[55, 56] are designed
using a different approach, see Fig. 2. The idea is to selec-
tively decouple some of the inter-qubit interactions, with
the needed rotations generated by the residual interac-
tions when the sequence is repeated over some specified
amount of time. This only requires conventional decou-
pling sequences which are, generally, easier to design.

The qubits are divided into four sets: idle qubits on
sublattices A and B (depending on the chosen graph),
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FIG. 2. (Color online) Pulse sequences used to implement the CNOT gate between qubits Q5 and Q6 on a star graph. It is
a combination of four single-qubit gates (0 < t ≤ 16τp, 32τp < t ≤ 48τp, 48τp < t ≤ 64τp, and 64τp < t ≤ 80τp) and a single
instance of the ZZ-coupling sequence, 16τp < t ≤ 32τp. For better accuracy this latter sequence has to be repeated several
times, we used Nrep = 5 repetitions, see Ref. 56 for detailed discussion of the associated errors. Second-order self-refocusing
pulse shapes Q1(π) and Q1(π/2) from Refs. 38 and 53 are used. The shading shows the direction of the applied pulses as
indicated.

and the sets A′ ⊆ A and B′ ⊆ B which together make
up all of the pairs of neighboring qubits where we want to
preserve the couplings. The corresponding sequences are
denoted VA, VB , VA′ , and VB′ . The universal idle-qubits
sequences VA and VB must decouple both the system (2)
and the bath (3) Hamiltonians, and have sufficient flex-
ibility so that the coupling with a neighboring opposite-
sublattice qubit driven by the sequence VB′ and VA′ re-
spectively could also be decoupled. On the other hand,
the sequences VA′ and VB′ executed on the pairs of qubits
to remain coupled must average out the bath Hamiltoni-
ans (3), but leave some fraction f of the original coupling
(2) between these qubits.

We designed the global sequences VA and VB to allow
for construction of local versions of the sequences VB′(f)
and VA′(f), with some range of allowed fractions f . This
makes the fraction f locally adjustable[56], to accommo-
date for possible local variations of the couplings Jij . In
this work we assume all couplings equal (non-zero Jij = J
iff the sites i and j are connected), and use the fastest
version of these sequences of duration τseq = 16τp with a
fixed fraction f = 1/2, as used originally in Ref. 55. Over
the duration of the sequence, for each pair of qubits des-
ignated to be coupled, the original coupling Jij ≡ J in
Eq. (2) is reduced to fJ = J/2, which gives the rotation
angle α = fJτsec/2.

We constructed a cnot gate using the identity[69, 70]

U
(C-X)
jk = YjXkX̄j Ȳj Ȳk exp

(
−iπ

4
σzjσ

z
k

)
Yk (6)

= ZjXkȲk exp
(
−iπ

4
σzjσ

z
k

)
Yk, (7)

where, e.g., Xk ≡ −iσxk and X̄k ≡ iσxk respectively are
the unitaries corresponding to ±π rotations of the k-th
qubit around the X axis. Eq. (7) requires a ZZ rotation
with the rotation angle α = π/4. Thus, the pulse dura-
tion τp and the number of repetition Nrep must satisfy
the design equation[55]

Nrep Jτp =
π

16
. (8)

Larger values of Nrep correspond to smaller values of the
perturbation-theory parameter Jτp which improves the
fidelity as it provides better decoupling. On the other
hand, this also increases the cost in terms of the number
of pulses. The actual set of driving fields used to imple-
ment the cnot gate with Nrep = 1 are shown in Fig.2.
For our calculations we used Nrep = 5.

We also implemented two other controlled two-qubit
gates using the identities

U
(C-Y )
jk = e−iπ/4X̄2Z̄jZ̄k exp

(
−iπ

4
σzjσ

z
k

)
Xk, (9)

U
(C-Z)
jk = e−iπ/4Z̄jZ̄k exp

(
−iπ

4
σzjσ

z
k

)
, (10)
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as well as the swap gate as a sequence of three cnot
gates.[63]

C. Five-qubit code on a star graph

We use the smallest single-error-correcting code [71–
73] formally denoted as [[5, 1, 3]]. This distance-three
code encodes a single qubit in a two-dimensional sub-
space Q of the 25-dimensional Hilbert space of n = 5
qubits. It is a stabilizer code[2]: the subspace

Q = {|ψ〉 : Gi |ψ〉 = |ψ〉 , i = 1, 2, . . . r}

is a common +1 eigenspace of the r = 4 independent
commuting stabilizer generators,

G1 = XZZXI ≡ σx1σz2σz3σx4 ,
G2 = IXZZX ≡ σx2σz3σz4σx5 ,
G3 = XIXZZ ≡ σx1σx3σz4σz5 ,
G4 = ZXIXZ ≡ σz1σx2σx4σz5 ,

(11)

expressed as Kronecker products of single-qubit Pauli op-
erators σµi , µ = x, y, z. Notice that to reduce the confu-
sion with the pulse unitaries in Sec. II B, here we quote
both the commonly used positional and the traditional
notations for multi-qubit Pauli operators.

As for any stabilizer code, encoding of the five-qubit
code can be done efficiently[2]. We have used the con-
ceptual encoding circuit in Fig. 3(a), which produces
the code in the basis with the logical operators X̄ =
−XXXXX and Z̄ = ZZZZZ. This circuit is based
on a representation of the five-qubit code as a code word
stabilized (CWS) code[74], and was constructed as a sim-
plification of the circuit containing the Hadamard gate
on the information qubit, encoder for the classical five-
qubit repetition code, and the graph state encoder[75].
Explicitly, the resulting basis wavefunctions correspond-
ing to the eigenvalues λZ̄ = (−1)m, m = 0, 1, are (up to
a normalization)

|Ψm〉 = |0000m〉 − |0110m〉+ |1001m〉 − |1111m〉
+ |0010m̄〉+ |0100m̄〉 − |1101m̄〉 − |1011m̄〉

−(−)m ×
(
|0001m̄〉+ |1110m̄〉+ |0111m̄〉+ |1000m̄〉

+ |0011m〉 − |0101m〉 − |1010m〉+ |1100m〉
)
. (12)

To implement the same circuit on the star graph, we
used two more swap operations, plus an additional swap
at the end to place the ancilla at the center, see Fig. 3(b).
This initializes for the stabilizer generator measurement
cycle shown in Fig. 4.

III. SIMULATIONS

We implemented the described encoding/decoding and
the measurement circuits at the Hamiltonian level, using

(a)

|0〉 H • • • 1

|0〉 H • • • 2

|0〉 H • • • 3

|0〉 H • • • 4

|ψ〉 • • 5




(b)

|0〉 × 1

|0〉 H • • • 2

|0〉 H • × 3

|0〉 H • • • 4

|0〉 H • × • 5

|ψ〉 • • × • × • • × 6 |0〉





FIG. 3. (a) Conceptual encoding circuit for the [[5,1,3]] code
using the Hadamard, cnot, and controlled-phase gates. On
the input, the first four qubits are initialized in |0〉 states
and the last qubit contains the state |ψ〉 ≡ α |0〉 + β |1〉 to
be encoded. On the output, the corresponding logical state
α |0̄〉+β |1̄〉 of the five-qubit code is produced. The decoding is
done by inverting the encoding circuit. (b) Actual encoding
circuit implemented on a six-qubit star graph. Two swap
operations are required since qubits on the leaves can only
interact with the qubit 6 in the center. In addition, the ancilla
qubit is swapped to the center at the end to prepare for the
measurement cycle, see Fig. 4.

pulse sequences described in Sec. II B, and classical zero-
mean Gaussian phase noise with Gaussian time correla-
tions,

〈Ai(t)〉 = 0, 〈Ai(t)Aj(t′)〉 = σ2δije
−(t−t′)2/τ2

n , (13)

as a source of decoherence, cf. Eq. (3). Notice that for
a single uncontrolled qubit, such a field would produce
asymptotic dephasing rate 1/T2 = (

√
π/2)σ2τn.

The corresponding many-body unitary dynamics has
been simulated with a C++ program using the Eigen3
library[76] for matrix algebra. The program uses a
custom-built algorithm to schedule the pulse sequences
and measurement events, and the fourth-order Runge-
Kutta algorithm for explicitly integrating the time de-
pendent Schrödinger equation for the unitary time evo-
lution of clusters of multiple qubits. In all simulations
shown we used 1024 time steps per nominal pulse du-
ration τp, resulting in relative integration errors better
than 10−9, comparable to numerical precision.

A. Quantum error detection mode

We first consider the working of the [[5,1,3]] code in
the error detection mode (quantum Zeno cycle[77, 78]).
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FIG. 4. The circuit for a single cycle of measuring the stabilizer generators (11) for the five-qubit code on a star graph. On
the input and the output, the first five qubits contain an encoded state. The same ancilla qubit 6 at the center is used for each
measurement; M stands for measurement and resetting to |0〉 if needed. We implemented this circuit which uses 16 cnot gates
(duration 144τp each) and 8 rounds of Hadamard gates (duration 32τp each) applied in parallel, with the total measurement
cycle duration of 2560τp (640τp per stabilizer generator). In our simulations, the entire cycle is repeated several times for
repetitive QEC.

In an actual experiment, one is supposed to measure the
stabilizer generators repeatedly, with the experiment ter-
minated once an error is detected as indicated by a non-
zero syndrome bit. In our simulations, instead, each syn-
drome measurement was replaced by an instantaneous
projection

P0 ≡ (11 + σz6)/2, (14)

which selects the many-body sector with the ancilla qubit
Q6 at the center in the state |0〉. The success probability
averaged over the initial state |ψ〉 was calculated accord-
ing to the expression

p0 ≡ Tr(Uρ0U
†P0), (15)

where U is the N×N unitary evolution matrix up to the
moment of measurement, ρ0 = M−1PM is the density
matrix describing the uniform distribution of the initial
wavefunctions in a subspace of dimensionality M , and
PM is the corresponding projector. In our simulations,
N = 64 is the dimensionality of the six-qubit Hilbert
space, and we compute a reduced N×M evolution matrix
V which include only M = 2 columns corresponding to
the number of basis states of the initial qubit, see the
encoding circuit in Fig. 3. Respectively, we used Eq. (15)
in the form

p0 =
1

2
Tr(V †P0V ). (16)

Given the reduced evolution matrix V ≡ V (t) at a given
time moment t, and the corresponding ideal evolution
matrix V0, the overall fidelity averaged over the initial
state can be calculated using the expression

F ≡ F (V, V0) =
Tr(V †0 V V

†V0) + |Tr(V †0 V )|2
M(M + 1)

. (17)

The derivation is similar to that given in the Appendix
of Ref. 53 for the case of M = N .

Results of simulations for several sets of parameters
of the Gaussian noise, the r.m.s. amplitude σ and the
correlation time τn, are shown in Fig. 5. Each plot is an
average over 20 instances of the stochastic noise, with the
time axis starting at the first measurement after the end
of the encoding. Having in mind an experiment where
the success probability and the state fidelity would be
measured separately, and to match the quantities com-
puted in Ref. 55, we plot the success probability (SP),
and the fidelity “with measurements” (WM) conditioned
on the error-free syndrome measurements, Fsucc = F/p0,
where p0 is given by Eq. (16). Notice that this expression
is an approximation which ignores possible correlations
between p0 and Fsucc. These correlations would be ab-
sent with ideal syndrome measurements; we expect them
to be small in our case since the measurement fidelity
is high. The effect of such correlations is additionally
suppressed since Fsucc is numerically close to one.

To compare the contributions of the DD protection and
of the projective measurements (Zeno cycle) to the over-
all fidelity, in Fig. 5 we also show the average fidelity (17)
calculated when decoupling pulses are applied but “no
measurements” are done (NM), and when no projective
measurements and “no pulses” are applied (NP). Since
they involve no projective measurements, these quanti-
ties are independent of the success probability (15). For
each version of the cycle, filled symbols show the infideli-
ties 1−F after each syndrome measurement, while open
symbols show the corresponding infidelities to the end of
the final decoding. Notice that thus computed fidelities
involve all six qubits; final infidelities could be addition-
ally reduced by tracing out all but one information qubit,
see Sec. III B.

These plots show about an order of magnitude infi-
delity reduction due to QEC during the cycle. The code
can detect any one- and two-qubit error, and a small
fraction of higher-weight errors. The fact that the Zeno
cycle works, indicates that errors seen by the code are
not dominated by multi-qubit correlations. In addition,
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FIG. 5. (Color online) Infidelities during the Zeno cycle for
different noise correlation times and noise amplitudes as in-
dicated. The time axis starts after the completion of the
encoding circuit, at the instance of the first measurement, see
Figs. 3(b) and 4. The different curves correspond to cases
where no pulses are applied (NP), DD pulses are applied but
no measurements are done (NM), and with the syndrome mea-
surements (WM). Closed and open symbols respectively rep-
resent the infidelities at the end of each syndrome measure-
ment and at the end of the final decoding. Note that the axis
for the cumulative success probability (SP) is on the right.

the infidelities increase sharply with shorter noise corre-
lation times, as expected due to the asymmetry of the
single-qubit gates, see Sec. II B.

Two of the plots shown have exactly the same noise
parameters and use the same pulse shapes as in our ear-
lier work[55] where Zeno cycle was simulated with the
[[4, 2, 2]] error-detecting code, with five qubits arranged
in a chain. The corresponding success probabilities and
state fidelities are similar in magnitude. We believe this
to be a combined result of an improvement due to more
efficient code and faster syndrome measurements in the
present case, negated by increased errors due to larger
connectivity of the star graph, as discussed in detail in
Ref. 56.

B. QEC mode

In this mode we simulated projective measurements of
the ancilla by applying instantaneous projection opera-
tors P0 [Eq. (14)] or P1 ≡ 11−P0. These are six-qubit pro-
jectors selecting the sector with the ancilla qubit Q6 at
the center in the state |0〉 or |1〉, respectively. Given the
normalized wavefunction Ψ of the system, the projectors

should be chosen with the probabilities p0 ≡ 〈Ψ|P0 |Ψ〉
and p1 ≡ 〈Ψ|P1 |Ψ〉 = 1 − p0, respectively. This im-
plies a separate simulation would be needed for every
state ψ of the initial qubit (see the encoding circuit in
Fig. 3). Instead, to speed up the simulations, we calcu-
lated the reduced unitary evolution matrix V and used
the probability (16) averaged over the initial state of the
qubit. The normalization of V was corrected after each
projection. This approximation is similar to that used
in the previous section to define the fidelity Fsucc condi-
tioned on the string of zero-syndrome measurements in
each previous cycle. Here, we also expect the effect of
any potential unaccounted correlations to be suppressed
due to the smallness of p1 = 1− p0.

As in the previous section, we simulated decoherence
with classical phase noise applied on all six qubits in-
volved in the simulations. The noise was uncorrelated
between different qubits. For each qubit, the noise was
generated as a stationary zero-mean Gaussian stochas-
tic process with Gaussian time correlations. Individual
traces of such simulations for three realizations of the
Gaussian stochastic noise with identical correlation time
τn = 32τp and different r.m.s. amplitudes as indicated
are shown in Fig. 6. Each panel shows four different
infidelity measures 1− F computed during a single sim-
ulation run. The fidelities Fb and Fa are computed ac-
cording to Eq. (17), respectively, just before and right
after each projective measurement. The fidelities F ′b and
F ′a computed at the same time moments include idealized
recovery channel, see Eq. (18) and the discussion below.

The five-qubit code is a “perfect” single-error-
correcting code, since the fifteen (24 − 1) non-zero syn-
dromes corresponding to four stabilizer generators (11)
are in a one-to-one correspondence with the fifteen single-
qubit errors. We used this idealized map for decoding.
Notice, however, that in our simulations the stabilizer
generators are measured sequentially, with the entire
measurement cycle typically repeated just a few times.
To increase the syndrome measurement fidelity, we did
not adhere to a fixed measurement cycle and instead trig-
gered the beginning of a cycle by a syndrome measure-
ment returning a non-zero bit. After the fourth mea-
surement, the correction would be computed and applied
immediately. Typically, the infidelities 1− Fb computed
right before a trigger event were small, whereas right af-
ter the infidelity 1− Fa jumps to near one, as the wave-
function is projected outside of the code. The infidelities
1−Fb remain large right before the subsequent three mea-
surements, creating an easy to spot four-dot pedestal in
the combined trace. For example, no trigger events hap-
pened in the top trace in Fig. 6 (σ = 5 × 10−3/τp), one
happened in the middle trace (σ = 20 × 10−3/τp), and
two in the bottom trace (σ = 50× 10−3/τp).

To look beyond the simple system fidelity (17), we also
calculated the fidelity including the idealized recovery
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FIG. 6. (Color online) Sample error correction traces for
[[5, 1, 3]] code in the presence of the stochastic phase noise
on all six qubits. The noise correlation time is τn = 32τp and
noise amplitudes σ are as indicated (in units τ−1

p ). Plots show
different infidelity measures 1− F during the stabilizer mea-
surement cycle and at the end of the decoding. Here Fb and
Fa are the regular fidelities [Eq. (17)], respectively, computed
just before and right after each projective measurement. F ′b
and F ′a are the corresponding fidelities which include idealized
recovery for single qubit errors, see Eq. (18). Larger symbols
indicate the infidelities at the end of the decoding circuit,
where the circle corresponds to the full-system fidelity (17),
and the diamond to the single-qubit fidelity after tracing out
the qubits away from the center.

map,

F ′(V, V0) = F (V, V0) +

15∑

i=1

F (V,EiV0), (18)

where Ei, i = 1, . . . , 15, are all single-qubit errors on
the peripheral qubits, and F (V, V0) is the usual fidelity
(17). This expression corresponds to idealized error cor-
rection, with the summation over all single-qubit errors
corresponding to that over all possible syndromes.

We should mention that in our calculations both fi-
delity expressions include the ancilla qubit which has not
been traced out. However, since the ancilla is reset to |0〉
state after each projective measurement, it is effectively
excluded for the fidelities Fa and F ′a computed right after
the measurement. The ancilla is also included in the full-
system fidelity F computed at the end of the decoding
circuit, but not in the final fidelity F ′ which only looks
at the state of the single qubit in the center. In our plots
these fidelities are shown with bigger symbols.

The plots in Fig. 6 show the simulated infidelities for
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FIG. 7. (Color online) Infidelities 1−F for the [[5, 1, 3]] code
averaged over 25 realizations of the stochastic Gaussian noise,
with the noise correlation times τn and amplitudes σ as in-
dicated. Large infidelities after trigger events have been ex-
cluded from the averages. F are the regular fidelities [Eq. (17)]
computed right after each projective measurement, F ′ are
the corresponding fidelities which include idealized recovery
for single qubit errors, see Eq. (18). In addition FD and F ′D,
respectively, are the fidelities (17) and (18) for DD-only simu-
lations with the same pulse sequences run but error correction
turned off (no projective measurements). Larger symbols in-
dicate the respective quantities at the end of the decoding
circuits, with F ′ and F ′D replaced by the average single-qubit
decoded fidelities, with the qubits away from the center traced
out.

one simulation run each, they are strongly affected by the
details of the particular noise realization and the mea-
surement results simulated probabilistically. In Fig. 7 we
show (in the logarithmic scale) infidelities averaged over
25 different realizations of the stochastic noise. To re-
duce the unphysical fluctuations, large infidelities after
the trigger events have been excluded from the averages.

The data in Fig. 7 also include average infidelities
1−FD and 1−F ′D [Eqs. (17) and (18)] produced in identi-
cal simulations but with error correction turned off (the
same pulse sequences but no projective measurement).
Except for the plots in Fig. 7(d), where QEC becomes rel-
atively ineffective due to strong noise with shorter corre-
lation time, the DD-only infidelities show a substantially
steeper growth than those where both DD and QEC was
active. The overall QEC effectiveness can be quantified
by comparing the final single-qubit infidelities 1 − F ′D
and 1 − F ′ at the end of the decoding (two larger cir-
cles). The corresponding ratios of average infidelities for
different panels in Fig. 7 are: (a) 14.3, (b) 15.0, (c) 9.73,
and (d) 1.36. Except for the data in Fig. 7(d), QEC in
these plots gives average infidelity reduction by an order
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of magnitude or better. Notice that for this data, trigger
events are rare; here QEC fidelity is similar to that for
the Zeno cycle, see Sec. III A.

In the three plots where QEC works well, Fig. 7(a)–(c),
the data for 1−F ′ is some two orders of magnitude below
that for 1−F , indicating that in the present setup single-
qubit errors strongly dominate. This is in an apparent
contrast with the results of our Ref. 56, where we con-
cluded that multi-qubit errors are an unavoidable feature
of the perturbatively designed gates. We notice, how-
ever, that due to asymmetry of single-qubit gates, in the
presence of time-dependent noise, the leading-order error
terms are single-qubit Pauli operators[56], with the coef-
ficients scaling as a derivative of the classical fields Ai(t).
Further correlated errors are formed in higher orders of
the Magnus series, they can be represented as connected
clusters on the connectivity graph. On the star graph,
these include a single bond joining the ancilla at the cen-
ter to one of the code qubits, and, in the next order, two
bonds, which could result in a correlated error involving
the ancilla and two qubits of the code. Thus, after the
ancilla is projected during the measurement, the remain-
ing errors on the qubits forming the code are expected to
have smaller weight than they would with a different con-
nectivity graph. The applicability of these arguments is
improved by our choice Nrep = 5, which gives the pertur-
bation theory parameter Jτsec = π/5, where τsec = 16τp
is the typical sequence duration, see Eq. (8).

This analysis is confirmed by the plots in Fig. 8, which
show infidelity traces for different amplitudes of the noise
with the correlation time τn = 128τp. The two top pan-
els, with noise amplitudes σ = 0 and σ = 5 × 10−3/τp,
show near identical plots for F ′, indicating that with the
noise parameters as in Fig. 8(b), multi-qubit errors are
strongly dominated by the systematic errors due to the
couplings J . At the same time, single-qubit errors are
dominated by the stochastic noise, since at σ = 0, the
plots for F and F ′ fall nearly on top of each other.

Similar conclusions can be also drawn from the data
in Fig. 9, which shows the effect of a much faster noise,
with the correlation time τn = τp. Namely, the infideli-
ties in Fig. 9(a) were generated by averaging the results
of 25 simulations with different realizations of Gaussian
noise with the correlation time τn = 128τp, while the
noise for infidelities in Fig. 9(b), in addition, also in-
cluded weaker but faster-varying noise components with
τn = τp. Dynamical decoupling has nearly no effect on
such a fast noise. Respectively, the usual infidelity 1−F
increased by an order of magnitude, while the infidelity
1−F ′ including idealized recovery map [see Eq. (18)] in-
creased by more than two orders of magnitude. Such a
different scaling of the two infidelities dominated by one-
and multi-qubit errors, respectively, is consistent with
the expectation of the absence of DD protection against
the faster noise. Quantitatively, the ratios of the final
average single-qubit infidelities at the end of the decod-
ing in runs with and without error correction are 15.7 in
Fig. 8(a) and 8.0 in Fig. 8(b).
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FIG. 8. (Color online) Same as Fig. 6 but with longer noise
correlation time, τn = 128τp. Different infidelities are labeled
as in Fig. 7.
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FIG. 9. (Color online) Same as Fig. 7, but comparing the
effect of fast dephasing noise. The plots at the left show infi-
delities averaged over 25 realizations of a Gaussian stochastic
noise with r.m.s. amplitude σ = 20×10−3/τp and τn = 128τp.
For the data on the right, in addition, there was also a weak
noise with σ = 2 × 10−3/τp and a much shorter correlation
time τn = τp. Such a noise is not affected by the DD. With
the addition of the fast noise, the infidelity 1 − F increased
by about an order of magnitude, while the infidelity 1 − F ′
accounting by multi-qubit errors increased by two orders of
magnitude, consistent with the expected absence of DD pro-
tection against the fast noise component.



10

IV. DISCUSSION

For many years, the road to building a quantum com-
puter appeared to be somewhat straightforward: one just
had to manufacture a sufficient number of quality qubits
and implement a universal set of quantum gates with suf-
ficiently high fidelity. Now that we are there, or nearly
there, it turns out that fidelity is not the ultimate mea-
sure of performance in large qubit systems. As the num-
ber of qubits in a quantum computer grows, exponen-
tially so does the number of ways it can go wrong. Un-
derstanding what is going on for a particular implementa-
tion of a quantum computer requires detailed numerical
simulations with as many qubits and as much physical
detail as possible.

In this paper we present one such simulation, imple-
menting repetitive QEC with the [[5, 1, 3]] code on a six-
qubit network with always-on Ising couplings and clas-
sical time-correlated phase noise as a source of decoher-
ence. The one- and two-qubit gates are implemented by
carefully designing sequences of shaped pulses. A realis-
tic simulation of such gates and associated errors requires
a time ordered integration of the corresponding multi-
qubit unitary dynamics. Such simulations, much like cur-
rent experiments, are limited to small system sizes. As
a result, one can only use the simplest weak codes, with
very few ancillary qubits, which makes the gate accuracy
requirements more stringent.

As in any case where gates are designed perturbatively,
up to some fixed order in the perturbation (interaction)
Hamiltonian, the systematic errors associated with our
gates are correlated multi-qubit errors, which worsen as
the connectivity of the qubit network increases. On the
other hand, the [[5, 1, 3]] code we used is able to correct
only single-qubit errors. To make QEC possible, we had
to tune the couplings down and make the two-qubit gates
longer, increasing the intrinsic fidelities of our gates to six
nines or more. As a result, just a few rounds of repeti-
tive QEC required tens of thousands of pulses, with the
fidelity noticeably suffering, e.g., from relatively modest
integration errors (not shown). In this weakly coupled
regime, our simulations show that single-qubit errors due
to phase noise do not propagate excessively.

Overall, we have demonstrated repetitive quantum er-
ror correction in a quantum-mechanical simulation, using
classical time-correlated phase noise as a source of deco-
herence. The error correction is shown to be responsible
for the average infidelity reduction by an order of mag-

nitude or more. We have also presented a combined pro-
tocol for integrating dynamical decoupling and quantum
error correction. Dynamical decoupling is particularly
effective against low-frequency noise which in our simu-
lations had an asymptotic dephasing time T2 as short as
few nominal pulse lengths τp. We also see that our com-
bined DD/QEC protocol remains effective in the presence
of weak high-frequency phase noise.

While a dephasing-only model appears to be simplistic,
we notice that as a result of controlled dynamics, some of
the dephasing propagates to the longitudinal channel[52].
In particular, our original simulations, which involved
similar gates with the three-qubit code protecting against
single-qubit phase errors, produced a much smaller fi-
delity improvement from QEC[79].

Our model excludes many physical effects which may
be relevant for a specific physical implementation of a
quantum computer. These include parasitic couplings
between nominally disconnected qubits, multi-level struc-
ture of the solid-state qubits and corresponding leakage
errors, violations of the rotating wave approximation, re-
alistic decoherence which may produce additional cor-
relations between the qubits, etc. Even when the cor-
responding effects are small, they can result in errors
correlated in time or between qubits, and thus strongly
affect the overall coherent multi-qubit dynamics. De-
signing coherence protection schemes with improved sta-
bility against such effects is also possible, if one knows
which decoherence mechanisms are dominant. Each ad-
ditional improvement would require more finely tuned
pulse shapes, longer gates, or a longer code, increasing
the requirements on the dynamical range of the qubit
system used in the experiment. Thus, in our opinion,
careful studies of realistic models which incorporate such
effects are absolutely necessary in order to construct a
scalable quantum computer.
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