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Measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all
detector side-channel attacks, is the most promising solution to the security issues in practical
quantum key distribution systems. Though several experimental demonstrations of MDI-QKD have
been reported, they all make one crucial but not yet verified assumption, that is there are no flaws
in state preparation. Such an assumption is unrealistic and security loopholes remain in the source.
Here we present, to our knowledge, the first MDI-QKD experiment with the modulation error taken
into consideration. By applying the loss-tolerant security proof by Tamaki et al (Phys. Rev. A 90,
052314 (2014)), we distribute secure keys over fiber links up to 40 km with imperfect sources, which
would not have been possible under previous security proofs. By simultaneously closing loopholes
the detectors and a critical loophole - modulation error in the source, our work shows the feasibility
of secure QKD with practical imperfect devices.

PACS numbers: 03.67.Dd, 03.67.Hk, 42.50.Ex

Quantum key distribution (QKD), in principle, offers
unconditional security based on the laws of quantum
physics rather than computational complexity [1]. How-
ever, it has been realized that, due to the gap between the
security proofs [2] and real-life implementations, practi-
cal QKD systems are vulnerable to various attacks [3].

Device-independent QKD (DI-QKD) [4], was proposed
to remove all assumptions of the internal working of
devices of QKD. The security of DI-QKD is based on
the loophole-free Bell test. Despite a number of re-
cent experimental demonstrations of loophole-free Bell
test [5], DI-QKD is impractical at practical distances
(20-30 km of telecom fiber) due to its low key rate of
about 10−10 bit per pulse [6]. Fortunately a proto-
col, namely the Measurement-Device-Independent QKD
(MDI-QKD), whose security is built on the time-reversed
entanglement QKD [7] , has been proposed [8] to re-
move all potential security loopholes in the detection
side, the most vulnerable part of a QKD system (See
also [9]). Several MDI-QKD demonstrations using po-
larization [10, 11] and time-bin phase [12] encoding have
been reported. More recently, MDI-QKD over 200 km
[13], a field test [14], a network demonstration [15], and
an implementation with 1 GHz clock rate [16] have been
reported, highlighting the practicality of this protocol.
MDI-QKD with continuous variables has also been pro-
posed [17]. The concept of measurement-device indepen-
dence has also been applied in other areas of quantum in-
formation, including entanglement witness [18] and quan-
tum coin tossing [19].

It is conceivable that MDI-QKD [8] will be widely
adopted in the near future. Since MDI-QKD is intrinsi-
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cally immune to all detector side-channel attacks, eaves-
droppers will shift their focus from hacking the detectors
to hacking the sources, which are not protected in MDI-
QKD. Several theoretical studies on MDI-QKD with im-
perfect sources have been reported [20].

A crucial assumption in discrete-variable MDI-QKD
is that the source employed must be trusted. An ideal
trusted source need to satisfy two conditions: first,
the source only emits single photons; second, informa-
tion should be encoded without flaws. However, these
two conditions cannot be satisfied perfectly with to-
day’s technology. First, phase-randomized weak coher-
ent pulses (WCPs) rather than single-photon sources are
widely used in most QKD (including BB84 and MDI-
QKD) demonstrations. Fortunately, it has been shown
that unconditional security can still be achieved with
phase-randomized WCPs [21]. Furthermore, the perfor-
mance can be significantly improved with the decoy state
method [22]. Second, encoding quantum states onto op-
tical pulses has inherent errors due to the finite inac-
curacies in practical encoding devices. However, such
errors are ignored in all previous discrete-variable MDI-
QKD demonstrations [10–14]. It is unrealistic to ignore
all those errors because they may lead to security loop-
holes that a eavesdropper might conceivably exploit to
launch attacks.

Such state preparation flaws can be taken care of using
the quantum coin idea [21, 23]. However, this approach
assumes the worst case in which an eavesdropper can
enhance the flaws by channel loss, and therefore the per-
formance is not loss tolerant. The study in [23] shows
that highly accurate state preparations are required in
MDI-QKD.

Recently, Tamaki et al have proposed a loss-tolerant
security proof [24] that can take modulation error - a
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most crucial flaw in a QKD source, into consideration.
The loss-tolerant protocol is secure against the most gen-
eral type of attacks. For ease of discussion, the intuition
behind the security of the loss-tolerant protocol can be
understood for the example of the unambiguous state dis-
crimination (USD) attack. The idea is that, as long as
the states are encoded in 2-dimensional qubits [25], it is
impossible for Eve to launch a USD attack. Therefore
Eve cannot enhance state preparation flaws of qubits by
channel loss. The performance of QKD can thus be dra-
matically improved even when the state preparation flaws
are considered. This idea has been applied to both the
BB84 protocol and the three-state prepare-and-measure
protocol [26], and an experimental demonstration is re-
ported in [27].

It is noteworthy that this security proof can be applied
to MDI-QKD. In this paper, we extend the work in [24]
and present an experimental demonstration of MDI-QKD
with state preparation imperfections over fiber links of
10 km and 40 km. By closing an important potential
loophole in MDI-QKD, we achieved improved security
compared to previous demonstrations.

The contributions of this paper are as follows. First
and most importantly, in contrast to previous MDI-
QKD demonstrations [10–14] which unrealistically as-
sume perfect state preparations, we carefully optimize
the state preparation to minimize the preparation flaws
and perform a complete characterization of the states
using quantum state tomography. For the first time, we
include the state preparation flaws into secure key rate
estimation. We highlight that this would not have been
possible under previous security proofs [21, 23]. Second,
the analysis in [24] only applies to the asymptotic case
with an infinite number of decoy states and an infinitely
long key. We present the theory (see Appendix A) which
shows how the loss-tolerant protocol can be applied to
MDI-QKD in a realistic setting, where only a finite num-
ber of decoy states and a key of finite length are avail-
able. Third, we improve the key generation speed by
increasing the system repetition rate from 500 kHz [10]
to 10 MHz and employing free-running single-photon de-
tectors with 20% quantum efficiency. These technological
improvements enable us to get a positive key rate within
a reasonable time frame, even when finite-key effects and
encoding flaws are taken into account, and thus demon-
strate the practicality of the protocol.

We first briefly explain the loss-tolerant MDI-QKD
protocol. Alice (Bob) randomly encodes her (his) key
bits into one of the three polarization states {ρ0Z , ρ1Z ,
ρ0X}, where ρiα is the density matrix of the polarization
state of single photons corresponding to the bit value
i ∈ {0, 1} in the basis α ∈ {Z,X}. She (He) then sends
her (his) encoded WCPs to an untrusted third party, Eve,
who can be an eavesdropper, to do Bell state measure-
ments (BSMs). After a sufficient number of key bits have
been transmitted, Eve announces the BSM results to Al-
ice and Bob. Alice and Bob also announce their basis
choices over a public authenticated channel and generate

a sifted key. By revealing part of the sifted key, they can
estimate the bit error rate in the Z basis and perform
error correction.

We apply the decoy state method [28] to estimate the
gain of single photons in the Z basis. The phase error
rate of single photons eX11, which quantifies the informa-
tion leakage to an eavesdropper, is estimated from the
transmission rates of fictitious states using the rejected
data analysis [24]. Privacy amplification can then be per-
formed to generate a secret key.
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FIG. 1. (Color online). Schematic of the experiment.
VOA: variable optical attenuator; PM: phase modulator; IM:
intensity modulator; AOM: acousto-optic modulator; Pol-
M:polarization modulator; BS: beam splitter; FPC: fiber po-
larization controllers; PBS: polarizing beam splitter; SPD:
single-photon detector; TIA: time interval analyzer; RNG:
random number generators; PG: pulse generators; EDL: elec-
trical delay line; SQU: square wave generator; OVDL: optical
variable delay line.

Fig.1 shows the schematic of our experiment. Alice
and Bob each have a CW laser whose wavelength is in-
dependently locked to the P16 line of a C13 acetylene
gas cell (integrated in Alice’s and Bob’s lasers by the
manufacturer) at 1542.38 nm. The frequency locking en-
sures that the frequency difference between Alice’s and
Bob’s lasers is within 10 MHz, guaranteeing the spec-
tral indistinguishability. The laser light is attenuated
by a variable optical attenuator (VOA) down to single-
photon level at the output of Alice’s / Bob’s system.
Its phase is randomized by a phase modulator into 1000
discrete random phases distributed uniformly in [0, 2π],
which gives performance close to the case of continuous
phase randomization [29]. The amplitude of the light is
modulated by an intensity modulator (IM) to generate
phase-randomized weak coherent pulses at a repetition
rate of f = 10 MHz, with a full width at half maximum
(FWHM) of around 2.5 ns.

Each pulse’s intensity is randomly modulated by an
acousto-optic modulator (AOM). We implement the 2-
decoy protocol, i.e., each pulse’s amplitude is modulated
to either the signal state or one of the two decoy states.

Key bits are encoded into the polarization states of the
optical pulses by a polarization modulator (Pol-M). The
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Pol-M consists of a phase modulator, an optical circu-
lator, and a Faraday mirror. Polarization modulation is
achieved by bi-directional modulation of the phase dif-
ference of the TE and TM components of the waveguide
in the phase modulator. Details of the Pol-M setup can
be found in [10, 30]. In the three state protocol, each
pulse’s polarization is randomly modulated to one of the
three BB84 states: the horizontal state ρ0Z , the vertical
state ρ1Z , and the diagonal state ρ0X . We fine tuned the
voltages on the Pol-Ms to minimize the preparation flaws
of these states. See Appendix B for details.

Alice’s and Bob’s pulses are sent through 2 sepa-
rate fiber spools to Eve for Bell state measurements
(BSMs). BSMs require indistinguishability between Al-
ice and Bob’s pulses in all degrees of freedom (except
polarization, which is used for encoding). The spectral
indistinguishability can be guaranteed by frequency lock-
ing in the laser as discussed above (the frequency differ-
ence of 10 MHz is much less than the bandwidth of a
transform-limited pulse of 2.5 ns). To achieve the tempo-
ral indistinguishability, arrival times of Alice’s and Bob’s
pulses are controlled by two passive electrical delay lines
(EDLs) and two optical variable delay lines (OVDLs).
The EDLs, which can adjust the delay of the the clock
signal driving the intensity modulators (and thus the ar-
rival time of the pulses), have a resolution of 0.5 ns and a
range of 63.5 ns, and are used for coarse temporal align-
ments. The relative delay is further finely adjusted by
the OVDLs with a resolution less than 10 ps, which is
much smaller than the pulses’ width of 2.5 ns FWHM.

Alice and Bob need to establish a common polarization
reference frame. To achieve this, they first align their Z
basis (ρ0Z and ρ1Z ) to the polarizing axes of the PBS in
Eve’s BSM setup. Alice has an extra polarization mod-
ulator (Pol-M2). This modulator modulates the relative
phase between |H〉 (ρ0Z ) and |V 〉 (ρ1Z ). This is equiva-
lent to a unitary rotation about the H − V axis on the
Poincaré sphere, and the amount of rotation depends on
the voltage applied on Pol-M2. Alice adjusts the voltage
such that her diagonal state ρ0X is aligned to that of Bob.

Alice and Bob’s pulses interfere at the 50/50 beam
splitter and are sent to a polarizing beam splitter (PBS),
whose outputs are connected to two free running In-
GaAs/InP single-photon detectors (SPDs, ID220) with
20% quantum efficiency and a dark count rate of 2 kHz.
Times of the detection events are recorded by a time in-
terval analyzer (TIA). Within each period (100 ns), a
7 ns window is chosen (by calibrating the arrival times
of optical pulses) to post-select detection events. There-
fore, over 90% of the dark count noise can be removed and
the effective dark count probability per window is around
1.5 × 10−5. A coincidence between these two detectors
implies a successful projection onto the triplet Bell state
|Ψ+〉 = (|HV 〉+ |V H〉)/

√
2.

We characterize the polarization states ρ0Z , ρ1Z , ρ0X

prepared by the Pol-Ms using quantum state tomogra-
phy. We perform projective measurements by sending the
polarization-encoded photons to a polarization analyzer

(HP8169A), which consists of a half-wave plate (HWP),
a quarter-wave plate (QWP), and a polarizer (POL). An-
gles of the waveplates and the polarizer are driven by elec-
trical motors with an accuracy of ±0.1◦. A SPD is con-
nected to the output of the polarizer for detections. Each
input state ρjα , jα ∈ {0Z , 1Z , 0X}, is projected into the
following polarization states: |H〉 (horizontal), |V 〉 (ver-
tical), |D〉 (diagonal), and |R〉 (right-hand circular), and
counts are accumulated for 10 s for each projective mea-
surement. Density matrices can then be reconstructed
using the maximum likelihood technique [31].

FIG. 2. (Color online).Results of quantum state tomogra-
phy. Density matrices are represented by their Stokes param-
eters and plotted on the Poincaré sphere. The Stokes pa-
rameters (S1, S2, S3) of the states are: ρ0Z (-0.0032 ±0.0042,
0.0106 ±0.0055, 0.9994 ±0.0002); ρ1Z (-0.0375 ±0.0040, -
0.0662 ±0.0052, -0.9962 ±0.0005); ρ0X (-0.6963 ± 0.0028,
0.7163 ± 0.0016, -0.0128 ± 0.0029).

Errors in the quantum state tomography are mostly
due to the following factors: errors in counting statistics,
errors in the projection states, and drifts of the source’s
intensity and input state. We monitor the intensity dur-
ing the experiment, and do not observe significant drift
in intensity. The drift in input states is due to the ran-
dom unitary transformation induced by the short fiber
connecting the encoding system and the polarization an-
alyzer. We characterize the stability and find that the
input states remain relatively stable within the span of
the quantum state tomography measurement. We there-
fore only consider the first two errors. Errors in count-
ing statistics follow the Poisson distribution. Errors in
projection states are due to errors in setting waveplates’
angles, which follow the Gaussian distribution with an
accuracy of ±0.1◦. We use Monte-Carlo method [31] to
estimate the errors in the density matrices. Additional
sets of data are generated numerically using the above
distributions. Each set of data (consisting of counts and
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waveplate angles) is used to generate a density matrix by
the maximum likelihood technique. We generate 1,000
additional simulated results for each state ρjα to get the
error distributions of the Stokes parameters. The recon-
structed density matrices together with their errors are
shown in Fig.2.

We quantify the overlap between two states ρjα
and ρsβ by F (ρjα , ρsβ )2, where F (ρjα , ρsβ ) =

Tr[
√√

ρjαρsβ
√
ρjα ] is the fidelity between ρjα and

ρsβ . The overlap between the states ρ0Z and ρ1Z is

F (ρ0Z , ρ1Z )2 = 0.0024±0.0006 (whereas the ideal overlap
is 0), and the overlaps between ρ0X and ρ0Z , and between
ρ0X and ρ1Z , are F (ρ0X , ρ0Z )2 = 0.4994 ± 0.0030 and
F (ρ0Z , ρ1Z )2 = 0.4963 ± 0.0028, respectively (whereas
the ideal overlaps are 0.5). These results are comparable
to other reported results in commercial [27] and research
[32] QKD systems. Further details of the state charac-
terization can be found in the Appendix B.

We implement the three state loss-tolerant MDI-QKD
over 10 km and 40 km of SMF-28 optical fibers.

In the 10-km demonstration, Alice and Bob are each
connected to Eve by a 5-km fiber spool. We optimize the
intensities and probability distributions of the signal and
decoy states using the model in [28]. The intensity of the
signal state is chosen to be µ = 0.20 photon per pulse,
and the intensities for the two decoy state are ν1 = 0.03
and ν2 = 0 photon per pulse. The probability to send
out the signal state µ and the decoy states ν1 and ν2 are
Pµ = 0.3, Pν1

= 0.4, and Pν2
= 0.3, respectively. The

probabilities to send out the states ρ0Z , ρ1Z , and ρ0X are
P0Z = 0.25, P1Z = 0.25, and P0X = 0.5, respectively. A
total of N = 6× 1011 pulses are sent out.

The lower bound of the secure key rate is given by [8]

R ≥ Q11,L
Z [1− h(e11,U

X )]−QµµZ f(EµµZ )h(EµµZ ), (1)

where Q11,L
Z is the lower bound of the gain of single-

photon states given that both Alice and Bob send out

signal states µ in the Z basis, e11,U
X is the upper bound

of the phase error rate of single-photon components, QµµZ
is the gain when both of them send signal states, EµµZ is
the quantum bit error rate (QBER) of the signal states
in the Z basis, f(EµµZ ) = 1.16 is the efficiency of error
correction, and h(x) = −xlog2(x) − (1 − x)log2(1 − x)
is the Shannon entropy. The values of QµµZ and EµµZ are
directly measured from the sifted key, and are shown in
Table I.

The value of Q11,L
Z is estimated using the decoy state

method [28, 33]. We consider 3 standard deviations of
statistical fluctuations for finite-key analysis, and find

Q11,L
Z = 3.96× 10−5.
With the Stokes parameters of the encoded states, we

upper bound the phase error rate e11,U
X = 18.9% using the

rejected data analysis [24] and the decoy state method.
We can then lower bound the secure key rate R ≥ 2.48×
10−6 bit per signal pulse. The number of pulses where
both Alice and Bob send signal states µ in the Z basis
is Nµµ

Z = 1.35 × 1010, and a private key of length L =

Nµµ
Z R = 33.8 kbits is generated.

The high phase error rate is due to the small key size in
this demonstration. We also estimate the key rate with-
out finite-key correction, as shown in Table I. Besides,
we perform a proof-of-principle demonstration at 40 km.
Intensities of the signal and decoy states are the same
as those in the 10 km demonstration. The key rate is
estimated without finite-key correction.

As a comparison, we simulate the performance of MDI-
QKD with source flaws using the three-state loss-tolerant
analysis and the GLLP analysis[21, 23]. The result is
shown in Fig.3, which indicates that no secure key can be
generated using the GLLP analysis, even for an infinitely
long key.

0 20 40 60 80 100 120 140 160 180
10

−10

10
−8

10
−6

10
−4

Distance(km)

K
e

y
 r

a
te

 (
p

e
r 

s
ig

n
a

l 
p

u
ls

e
)

Loss tolerant MDI−QKD

 

 

0 20 40 60 80 100 120 140 160 180
10

−10

10
−8

10
−6

10
−4

Distance(km)

K
e

y
 r

a
te

 (
p

e
r 

s
ig

n
a

l 
p

u
ls

e
)

GLLP Key Rate

 

 
δ=0, ∞ key size

δ=0.016, ∞ key size

δ=0.032, ∞ key size

δ=0.047, ∞ key size

0 0.5
10

−8

10
−7

10
−6

km

δ=0, ∞ key size

δ=0.047, ∞ key size

δ=0.10, ∞ key size

δ=0.10, N=6 × 10
11

10 km Expt., N=6 × 10
11

10 km Expt., ∞ key size

40 km Expt., ∞ key size

δ = 0.047

FIG. 3. (Color online). The upper figure shows the simu-
lated and experimental key rates of the loss-tolerant MDI-
QKD protocol, for both the infinitely long key case and the
finite-key case. We use δ

π
to quantify the relative modulation

error. See Appendix D for the definition of δ. The mod-
ulation error δ = 0.1 corresponds to F (ρ0Z , ρ1Z ) = 0.0025,
which is close to our experimental value. The lower figure
shows the simulated key rates for an infinitely long key under
the GLLP analysis. The results show that the loss-tolerant
protocol gives a positive key rate for realistic values of en-
coding flaws, while no key can be generated with the GLLP
proof. We use our experimental parameters for simulation.

In summary, we have demonstrated the first MDI-
QKD experiment with an important type of source flaws
taken into consideration. In contrast to previous demon-
strations which assume perfect state modulations with-
out verification, our experiment shows the feasibility of
generating secure keys with imperfect states prepared by
off-the-shelf devices. The methodology developed here
can be applied to high-speed systems [16] and in a net-
work setting [15].
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TABLE I. Key rate for loss-tolerant MDI-QKD at 10 km and 40 km. An infinitely long key (∞ in data size) indicates that
finite-key effect is not considered when estimating the key rate R.

Distance Data size Security bound Q11,L
Z e11,U

X QµµZ EµµZ R (bit per pulse)

10 km 6× 1011 10−3 3.96× 10−5 0.189 6.31× 10−5 0.0178 2.48× 10−6

10 km ∞ N/A 4.17× 10−5 0.079 6.31× 10−5 0.0178 1.57× 10−5

40 km ∞ N/A 1.88× 10−5 0.122 2.94× 10−5 0.0368 1.00× 10−6
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Appendix A: Upper-bounding phase error rate

1. Rejected data analysis

In this section, we give the algorithm used in the paper
to estimate the phase error rate e11

X using the rejected
data analysis as proposed in [24].

In the actual three-state MDI-QKD protocol, Alice and
Bob send the untrusted third party Eve photons encoded
in one of the three polarization states. Let |φjα〉AeE be
the purification of the state ρE,jα sent by Alice to Eve,
where jα ∈ {0Z , 1Z , 0X}, and the subscripts Ae and E
represent the extended system possessed by Alice and the
system to be sent to Eve, respectively. Sending the state
ρE,0Z (ρE,1Z ) to Eve by Alice is equivalent to preparing
the tripartite state of systems A, Ae, E

|Ψ〉AAeE =
1√
2

(|0Z〉A|φ0Z 〉AeE + |1Z〉A|φ1Z 〉AeE) (A1)

followed by a projective measurement on system A in the
Z basis with an outcome of 0 (1), and sending system E
to Eve.

Likewise, sending ρ0Z (ρ1Z ) to Eve by Bob is equivalent
to preparing the tripartite state |Ψ〉BBeE′ with systems
B, Be, and E′,

|Ψ〉BBeE′ =
1√
2

(|0Z〉B |φ0Z 〉BeE′ + |1Z〉B |φ1Z 〉BeE′),

(A2)
followed by a projective measurement on system B in
the Z basis with outcome 0 (1), and sending system E′

to Eve.
Now consider the following virtual protocol. Alice pre-

pares the state |Ψ〉AAeE , measures system A in the X
basis with outcome j ∈ {0, 1}, and sends Eve the system
E. The state sent to Eve can be written as

σ̂virE,jX = TrAAe [P̂ (|jX〉A)IAeEP̂ (|Ψ〉AAeE)], (A3)

where P̂ (x) = |x〉〈x|, and |jX〉 = 1/
√

2(|0Z〉+(−1)j |1Z〉).
Similarly, Bob prepares the state |Ψ〉BBeE , measures sys-

tem B in the X basis with outcome s ∈ {0, 1}, and sends
Eve the system E′ whose state is given by

σ̂virE′,sX = TrBBe [P̂ (|sX〉B)IBeE′ P̂ (|Ψ〉BBeE′)], (A4)

where |sX〉 = 1/
√

2(|0Z〉+ (−1)s|1Z〉).
The phase error rate of single photon components is de-

termined by the transmission rates of the fictitious states:

e11
X =

Y Ψ+,vir
0X1X

+ Y Ψ+,vir
1X0X

Y Ψ+,vir
0X0X

+ Y Ψ+,vir
1X1X

+ Y Ψ+,vir
0X1X

+ Y Ψ+,vir
1X0X

. (A5)

where Y Ψ+

jXsX
is the probability that Alice and Bob send

Eve the virtual states σ̂E,jX and σ̂E′,sX , respectively, and
Eve gets a successful Bell state measurement with out-
come |Ψ+〉 = (|H〉|V 〉+ |V 〉|H〉)/

√
2, which is given by

Y Ψ+,vir
jXsX

= Tr[σ̂virE,jX ]Tr[σ̂virE′,sX ]Tr[D̂Ψ+ σ̂′
vir

E,jX ⊗ σ̂′
vir

E′,sX ].

(A6)

In the above equation, the operator D̂ψ+ is Eve’s oper-
ation corresponding to the BSM with outcome Ψ+, and

the operators σ̂′
vir

E,jX and σ̂′
vir

E′,jX are the normalized ver-

sions of σ̂virE,jX and σ̂virE′,jX
given by

σ̂′
vir

E,jX = σ̂virE,jX/Tr[σ̂
vir
E,jX ]

σ̂′
vir

E′,jX = σ̂virE′,jX/Tr[σ̂
vir
E′,jX ]

(A7)

The density operators of the virtual states σ̂virE,jX and

σ̂virE′,sX
can be found from the density operators of the

actual states ρjα . From Eqs. (A1) and (A3), the virtual
state σE,jX sent to Eve by Alice is

σ̂virE,jX =TrAAe [P̂ (|jX〉A)IAeEP̂ (|Ψ〉AAeE)]

=
1

4
[(ρE,0Z + ρE,1Z ) + (−1)jTrAe(|φ1Z 〉AeE〈φ0Z |AeE

+ |φ0Z 〉AeE〈φ1Z |AeE)].
(A8)

Let |γ0
jα
〉E and |γ1

jα
〉E be the eigenvectors of ρE,jα , and

|λ0
E,jα
|2 and |λ1

E,jα
|2 be the corresponding eigenvalues.

The Schmidt decomposition of |φjα〉AeE is

|φjα〉AeE = λ0
E,jα |0〉Ae |γ

0
jα〉E + λ1

E,jα |1〉Ae |γ
1
jα〉E (A9)

where {|0〉Ae |1〉Ae} is a basis of Alice’s extended system
Ae. Note that since Alice possesses the extended system
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Ae, she can select the basis {|0〉Ae |1〉Ae} in the purifi-
cation of ρE,jα to optimize the key rate. In this paper,
we use the same basis {|0〉Ae |1〉Ae} for the purification
of ρE,0Z and ρE,1Z , which is not necessarily the optimal
choice. The key rate can be further improved by opti-
mizing the purification, which is left as future work.

Substituting Eq. (A9) into (A8), the virtual state
σ̂virE,jX is

σ̂virE,jX =
1

4
{(ρE,0Z + ρE,1Z )

+ (−1)j [λ0
E,0Zλ

0
E,1Z (|γ0

0Z 〉E〈γ
0
1Z |E + |γ0

1Z 〉E〈γ
0
0Z |E)

+ λ1
E,0Zλ

1
E,1Z (|γ1

0Z 〉E〈γ
1
1Z |E + |γ1

1Z 〉E〈γ
1
0Z |E)]}.

(A10)
The density operator σvirE′,sX

(the virtual state sent to

Eve by Bob) can be found using the same method.
We first discuss the case where the states lie in the

X −Z plane. In this case, the Stokes parameter SY = 0,

and the states σ̂′
vir

E,jX (with Stokes parameters (Svir,XE,jX
,

0, Svir,ZE,jX
) and σ̂′

vir

E′,sX (with Stokes parameters (Svir,XE,jX
,

0, Svir,ZE,jX
) can be written as a linear combination of the

identity matrix σ̂I and the Pauli matrices σ̂X , σ̂Z :

σ̂′
vir

E,jX =
1

2
(σ̂I + Svir,XE,jX

σ̂X + Svir,ZE,jX
σ̂Z) (A11)

σ̂′
vir

E′,sX =
1

2
(σ̂I + Svir,XE′,sX

σ̂X + Svir,ZE′,sX
σ̂Z) (A12)

Define the transmission rate of σ̂t⊗σ̂t′ , t, t′ ∈ {I,X,Z}
as

qΨ+|t,t′ =
1

4
Tr[D̂Ψ+ σ̂t ⊗ σ̂t′ ]. (A13)

From Eqs. (A6) and (A13), the transmission rate

Y Ψ+

jXsX
can be written as

Y Ψ+,vir
jXsX

= Tr[σ̂virE,jX ]Tr[σ̂virE′,sX ]× (qΨ+|I⊗I + Svir,XE′,sX
qΨ+|I⊗X + Svir,ZE′,sX

qΨ+|I⊗Z

+ Svir,XE,jX
qΨ+|X⊗I + Svir,XE,jX

Svir,XE′,sX
qΨ+|X⊗X + Svir,XE,jX

Svir,ZE′,sX
qΨ+|X⊗Z

+ Svir,ZE,jX
qΨ+|Z⊗I + Svir,ZE,jX

Svir,XE′,sX
qΨ+|Z⊗X + Svir,ZE,jX

Svir,ZE′,sX
qΨ+|Z⊗Z)

(A14)

Let Svir
jXsX

be a row vector and q be a column vector defined as

Svir
jXsX = [1, Svir,XE′,sX

, Svir,ZE′,sX
, Svir,XE,jX

, Svir,XE,jX
Svir,XE′,sX

, Svir,XE,jX
Svir,ZE′,sX

, Svir,ZE,jX
, Svir,ZE,jX

Svir,XE′,sX
, Svir,ZE,jX

Svir,ZE′,sX
], (A15)

q = [qΨ+|I⊗I , qΨ+|I⊗X , qΨ+|I⊗Z , qΨ+|X⊗I , qΨ+|X⊗X , qΨ+|X⊗Z , qΨ+|Z⊗X , qΨ+|Z⊗Z ]T , (A16)

respectively. The expression for the transmission rate

Y Ψ+,vir
jXsX

(Eq. (A14)) can be written as

Y Ψ+,vir
jXsX

= Tr[σ̂virE,jX ]Tr[σ̂virE′,sX ]Svir
jXsXq. (A17)

Once we know the transmission rates of the Pauli matri-
ces q, we can estimate Y Ψ+,vir

jXsX
and the phase error rate

e11
X . In the next session, we will discuss how to find q

from experimental data.
When the states ρE,jα prepared by Alice / Bob do not

lie in the X − Z plane, we can always find a reference
frame such that the states ρE,0Z , ρE,1Z , and ρE,0X have
a common Stokes parameter SYE (i.e., the Stokes param-
eters of the state ρE,jα is given by (SXE,jα , SYE , SZE,jα).)

We apply the filtering technique described in [24], which
shows that, for a state ρE,jα with a nonzero SYE , we can

equivalently consider the following state with its Stokes
parameters given by,

(
SXE,jα
f(q)

, 0,
SZE,jα
f(q)

) (A18)

where f(q) is given by

f(q) =
2(1− q)q

1− 2q + 2q2
(A19)

and q is determined by solving the following equation

SYE =
(2q − 1)

(1− 2q + 2q2)
. (A20)
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2. Estimating transmission rates of Pauli matrices
from experimental data

In this section, we will show how to estimate the trans-
mission rates of Pauli matrices q from experimental data.
Recall in the three-state MDI-QKD, Alice (Bob) ran-
domly sends Eve one of the three states ρE,0Z (ρE′,0Z ),
ρE,1Z (ρE′,1Z ), ρE,0X (ρE′,0X ). As in the previous sec-
tion, the subscripts E and E′ represent the systems sent
to Eve by Alice and Bob, respectively.

Let Y Ψ+,11
jαsβ

be the conditional probability that Eve gets

a successful Bell state measurement with outcome Ψ+

given that Alice sends Eve a single photon of state ρE,jα

and Bob sends Eve a single photon of state ρE′,sβ (the su-
perscript 11 represent that both Alice and Bob send out
single photons). Following the procedures described in
the previous section, the transmission rate of the actual

states Y Ψ+,11
jαsβ

can be written as

Y Ψ+,11
jαsβ

= Sjαsβq, (A21)

where Sjαsβ is related to the actual states ρE,jα (with

Stokes parameters (SXE,jα , 0, SZE,jα) and ρE′,sβ (with

Stokes parameters (SXE′,sbeta
, 0, SZE′,sβ

) as follows:

Sjαsβ = [1, SXE′,sβ
, SZE′,sβ

, SXE,jα , S
X
E,jαS

X
E′,sβ

, SXE,jαS
Z
E′,sβ

, SZE,jα , S
Z
E,jαS

X
E′,sβ

, SZE,jαS
Z
E′,sβ

]. (A22)

From experiment, we can get the following set of inde-
pendent linear equations:

Y Ψ+,11
0Z0Z

= S0Z0Z
q,

Y Ψ+,11
0Z1Z

= S0Z1Z
q,

Y Ψ+,11
1Z0Z

= S1Z0Z
q,

Y Ψ+,11
1Z1Z

= S1Z1Z
q,

Y Ψ+,11
0X0Z

= S0X0Z
q,

Y Ψ+,11
0X1Z

= S0X1Z
q,

Y Ψ+,11
0Z0X

= S0Z0X
q,

Y Ψ+,11
1Z0X

= S1Z0X
q,

Y Ψ+,11
0X0X

= S0X0X
q.

(A23)

Define a vector YΨ+,11

YΨ+,11 = [Y Ψ+,11
0Z0Z

, Y Ψ+,11
0Z1Z

, Y Ψ+,11
1Z0Z

, Y Ψ+,11
1Z1Z

,

Y Ψ+,11
0X0Z

, Y Ψ+,11
0X1Z

, Y Ψ+,11
0Z0X

, Y Ψ+,11
1Z0X

, Y Ψ+,11
0X0X

]
(A24)

and a matrix S

S =



S0Z0Z

S0Z1Z

S1Z0Z

S1Z1Z

S0X0Z

S0X1Z

S0Z0X

S1Z0X

S0X0X



The linear system (A23) can be concisely written as

YΨ+,11 = Sq. (A25)

Knowing YΨ+,11 from the experiment, the transmis-
sion rates q can be solved:

q = S
−1YΨ+,11. (A26)

The transmission rates of the virtual states can then
be calculated by Eq.(A17), and the phase error rate can
be estimated by Eq.(A5).

3. Bounding e11
X with a finite number of decoy

states

In the previous two sections, we give the method to

estimate the phase error rate e11
X from the Y Ψ+,11

jαsβ
, which

is the yield of single photon components. The param-

eter Y Ψ+,11
jαsβ

can be precisely estimated with an infinite

number of decoy states.
In reality, we can only apply a finite number of decoy

states, where the value of Y Ψ+,11
jαsβ

can not be precisely de-

termined. Instead, we can find an upper bound Y Ψ+,11,U
jαsβ

,

and a lower bound Y Ψ+,11,L
jαsβ

, either analytically [28, 34]

or by linear programming. In this case, the linear system
(A23, A25) should be replaced with the following linear
inequality:

YΨ+,11,L ≤ Sq ≤ YΨ+,11,U. (A27)

where

YΨ+,11,L = [Y Ψ+,11,L
0Z0Z

, Y Ψ+,11,L
0Z1Z

, Y Ψ+,11,L
1Z0Z

, Y Ψ+,11,L
1Z1Z

,

Y Ψ+,11,L
0X0Z

, Y Ψ+,11,L
0X1Z

, Y Ψ+,11,L
0Z0X

, Y Ψ+,11,L
1Z0X

, Y Ψ+,11,L
0X0X

],
(A28)
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and

YΨ+,11,U = [Y Ψ+,11,U
0Z0Z

, Y Ψ+,11,U
0Z1Z

, Y Ψ+,11,U
1Z0Z

, Y Ψ+,11,U
1Z1Z

,

Y Ψ+,11,U
0X0Z

, Y Ψ+,11,U
0X1Z

, Y Ψ+,11,U
0Z0X

, Y Ψ+,11,U
1Z0X

, Y Ψ+,11,U
0X0X

].
(A29)

Our task is to find an upper bound of the phase error
rate e11

X . The expression of e11
X (Eq. A5) can be rewritten

as

e11
X =

1

1 +
Y Ψ+,vir

0X0X
+Y Ψ+,vir

1X1X

Y Ψ+,vir
0X1X

+Y Ψ+,vir
1X0X

. (A30)

The upper bound of e11
X found by lower bounding

Y Ψ+,vir
0X0X

+Y Ψ+,vir
1X1X

and upper bounding Y Ψ+,vir
0X1X

+Y Ψ+,vir
1X0X

:

e11
X ≤ e

11,U
X =

1

1 +
(Y Ψ+,vir

0X0X
+Y Ψ+,vir

1X1X
)L

(Y Ψ+,vir
0X1X

+Y Ψ+,vir
1X0X

)U

. (A31)

Finding a lower bound of Y Ψ+,vir
0X0X

+ Y Ψ+,vir
1X1X

is equiva-
lent to the following linear programming problem:

min
q
{(Tr[σ̂virE,0X ]Tr[σ̂virE′,0X ]Svir

0X0X

+ Tr[σ̂virE,1X ]Tr[σ̂virE′,1X ]Svir
1X1X

)q}
(A32)

subject to the constraint given by inequality (A27).

Similarly, upper bounding Y Ψ+,vir
0X1X

+ Y Ψ+,vir
1X0X

is equiv-
alent to the following linear programming problem:

max
q
{(Tr[σ̂virE,0X ]Tr[σ̂virE′,1X ]Svir

0X1X

+ Tr[σ̂virE,1X ]Tr[σ̂virE′,0X ]Svir
1X0X

)q}
(A33)

subject to the constraint (A27).

Appendix B: State characterization

In this session, we discuss the sources of errors involved
in preparing the BB84 states, and how we minimize the
state preparation errors. We then present the details of
state characterization using quantum state tomography.

1. Sources of encoding errors

Fig. 4 shows the schematic of the bi-directional po-
larization modulator [30]. Optical pulses are launched
through an optical circulator to a phase modulator (PM).
The polarization of the light is at 45◦ to the TE axis of
the LiNbO3 waveguide inside the PM. When an optical
pulse travels through the PM for the first time, a positive

voltage +V is applied on the phase modulator. The pulse
is reflected by a Faraday mirror (FM) with its polariza-
tion rotated by 90◦, and travels back. When the pulse
travels through the PM for the second time, a negative
voltage −V is applied on the PM. Due to the different
modulation efficiency in the TE and TM modes, we intro-
duce a phase difference along the TE and TM directions.
The output state can be expressed as

|ψ〉 =
|TE〉+ eiψ|TM〉√

2
, (B1)

where |TE〉 and |TM〉 represent the polarization states
along the TE and TM directions of the PM’s waveguide,
and ψ is the phase difference introduced, which depends
on the applied voltage. By modulating ψ to {0, π, π/2},
we can generate the three states {ρ0Z , ρ1Z , ρ0X} needed
in our protocol.

Here we discuss the sources of errors in the encoding
system that lead to imperfect state preparations.
Power mismatch in TE and TM modes Ideally we want

optical pulses to be launched into the PM at an angle of
45◦ relative to the TE axis of the PM’s waveguide. Is
this case, the powers along the TE and TM directions are
equal, and the output states {ρ0Z , ρ1Z , ρ0X} are located
on a great circle on the Poincaré sphere. However, optical
pulses may be launched at an angle κ other than 45◦.
In this case, the modulated output state B1 should be
rewritten as

|ψ〉 = cos(κ)|TE〉+ sin(κ)eiψ|TM〉. (B2)

As a result, the output states {ρ0Z , ρ1Z , ρ0X} are
distributed on a small circle on the Poincaré sphere.
In this case, ρ0Z and ρ1Z are no longer orthogonal,
and their overlap (characterized by F (ρ0Z , ρ0Z )2, where
F (ρ0Z , ρ0Z ) is the fidelity between ρ0Z and ρ1Z ) is
cos2(2κ). This is the dominant error that leads to mod-
ulation errors in our encoding system.
Control voltage accuracy The accuracy is limited by

the voltage resolution of the signal source driving the

FM 

P
M

 

Circulator 

POL-M 

IN OUT 1 

2 

3 

FIG. 4. (Color online). Schematic of the polarization modu-
lator.
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PM. In our experiment, the waveform generator driving
the PM has an output amplitude of±5 V and a resolution
of 1 mV. The Vπ of the PM is around 5 V, which means
that error due to limited resolution of the driving voltage
is relatively small.

To minimize the errors in the state preparation, we
finely scan the voltage applied on the phase modulator
at a step of 0.02 V and characterize the corresponding
output states. The step size of 0.02 V guarantees that
the error due to voltage accuracy is less than 0.4%. Fig.
5 shows different states corresponding to different volt-
ages applied on the polarization modulator. ρ0Z corre-
sponds to the state when the applied voltage is 0 V. We
search around 2.5 V and 5.0 V at a step size of 0.02
V for the states ρ0X and ρ1Z with minimum encoding
errors. Each point on the Poincaré sphere corresponds
one applied voltage. The states are reconstructed using
quantum state tomography, as discussed in the next sec-
tion. Fig. 6 shows the overlap between ρ0Z and ρ0X , and
the overlap between ρ0Z and ρ1Z , with different voltages.
The voltage for ρ0X is chosen such that the overlap be-
tween ρ0Z and ρ0X is as close to 0.5 as possible, and the
voltage for ρ1Z is chosen such that the overlap between
ρ0Z and ρ1Z is minimized.

2. Quantum state tomography

Fig.7 shows the setup of the quantum state tomogra-
phy experiment. Optical pulses encoded in the polariza-
tion state ρjα, where jα ∈ {0Z , 1Z , 0X}, are sent to the
electrical polarization controller for projective measure-

FIG. 5. (Color online). Search of the states with minimum
encoding errors. We scan the voltages applied on the polariza-
tion modulator to find the states ρ0X and ρ1Z with minimum
modulation errors.
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FIG. 6. (Color online). Overlap between ρ0Z and ρ0X , and
overlap between ρ0Z and ρ1Z , with different voltages applied
on the Pol-M. The voltage for ρ0X is chosen to get the overlap
between ρ0Z and ρ0X as close to 0.5 as possible, and the
voltage for ρ1Z is chosen such that the overlap between ρ0Z

and ρ1Z is minimized.

ments. The projective state |ψ〉 is given by

|ψ〉 = U†HWP (θ)U†QWP (φ)|H〉. (B3)

The operations UHWP (φ) and UQWP (φ) are the unitary
transformations by a half wave plate (HWP) and a quar-
ter wave plate (QWP) with fast axes set to θ and φ,
respectively, which are given by

UHWP (θ) =

[
cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

]

UQWP (φ) =

[
cos2(φ) + isin2(φ) (1− i)cos(φ)sin(φ)

(1− i)cos(φ)sin(φ) sin2(φ) + icos2(φ)

]
.

In the tomography experiment, each state ρjα is pro-
jected into the following four polarization basis states:
horizontal |H〉, vertical |V 〉, diagonal|D〉, and right-hand
circular |R〉. The settings of the HWP, QWP, and POL
are summarized in Table II. Photons are detected by a
single photon detector (SPD1). Another single photon
detector (SPD2) is used to monitor the total intensity of
the incoming light pulses. The data acquisition time for
each projective measurement is t = 10s, and the counts
are summarized in Table III.

Below we describe the procedures to reconstruct the
density matrices from the data in Table III (see next sec-
tion) using the maximum likelihood technique [31]. For
each projective measurement, counts detected by SPD1
are accumulated for 10s, and the results are shown in Ta-
ble I of the main text. The total counts corresponding to
the projective measurement to |H〉, |V 〉, |D〉, and |R〉 are
denoted as nH , nV , nD, and nR, respectively. We first
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FIG. 7. (Color online). Schematic of the quantum state to-
mography setup. HWP: half wave plate; QWP, quarter wave
plate; POL: polarizer; SPD, single photon detector.

TABLE II. Angles of waveplates and polarizer angles for
quantum state tomography.

Projective state HWP QWP POL

|H〉 0◦ 0◦ 0◦

|V 〉 45◦ 0◦ 0◦

|D〉 22.5◦ 0◦ 0◦

|R〉 0◦ 45◦ 0◦

calculate a normalized count rate ñψ, ψ ∈ {H,V,D,R}
to correct the impacts of dark counts and deadtime:

ñψ =
nψ

t− nψτ
−DC (B4)

where t = 10s is the data acquisition time, τ = 10µs
is the detector deadtime, and DC = 50Hz is the dark
count rate. Note that in the above expression, the term
(t−nψτ) gives the total active time of the detector during
t, and

nψ
t−nψτ gives the counting rate per unit active time.

The density matrix to be reconstructed can be written
as

ρjα =
T †jαTjα

Tr[T †jαTjα ]
. (B5)

TABLE III. Raw counts in the quantum state tomography
experiment. Counts are accumulated for 10 s.

State
Projected states

|H〉 |V 〉 |D〉 |R〉
ρ0Z 201311 583 112867 114043

ρ1Z 982 203500 122028 110687

ρ0X 114815 117459 35646 38239
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FIG. 8. (Color online). Stability of intensities and input
states during the quantum state tomography. The upper fig-
ure shows the optical power coming out of the encoding sys-
tem (intensity was not attenuated to single photon level in
this measurement). The lower figure shows the stability test
of the input polarization states. Horizontally polarized light
coming out of the encoding system is measured at the H/V
basis by a polarizing beam splitter. The figure shows the ex-
tinction ratio (i.e., the ratio of the power at the H and V
output ports), which is around 35 dB over a period of 1200 s.
The results show that the intensities and polarization states
remain stable within the span of the tomography experiment
(< 5 minutes).

where T †jα is the conjugate transpose of Tjα , and Tjα is
given by

Tjα =

[
t1 0

t3 + it4 t2

]
.

The values of t1, t2, t3, and t4 are determined numer-
ically by minimizing the following likelihood function:

L(t1, t2, t3, t4) =
∑

ψ=H,V,D,R

[N〈ψ|ρjα(t1, t2, t3, t4)|ψ〉 − ñψ]2

2N〈ψ|ρjα(t1, t2, t3, t4)|ψ〉
(B6)

where N = ñH + ñV .
To estimate the error distributions, we use Monte

Carlo simulations to numerically generate additional
data based on the experimental data and errors in the
setup. As discussed in the main text, the intensity and in-
put polarization states are relatively stable and no drifts
are observed within the span of the tomography measure-
ment. See Fig. and its caption for details.

We therefore consider two sources of errors: errors in
counting statistics and errors in the angles of waveplates.
To simulate the errors in nψ, we assume the detection
counts follow the Poisson distribution. In the simulation,
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a random number nsimψ is generated from the Poisson
distribution with mean given by the experimental value
nψ as an input to the maximum likelihood algorithm.

Errors in setting waveplates’ angles lead to projec-
tion to a state other than the one intended. Our elec-
trical polarization controller has a accuracy of ±0.1◦

(0.00175 rad) in waveplate angle settings. To model er-
rors in waveplate angles θ and φ, random variables θsim

and φsim are generated from the normal distributions
N(θ, 0.001752) and N(φ, 0.001752), respectively, where
θ and φ are the intended angle settings, and N((̄x, σ2)
is the Gaussian distribution with mean x and variance
σ2. The state projected into is given by |ψsim〉 =

U†HWP (θsim)U†QWP (φsim)|H〉, where |H〉 is the horizon-

tal state given by |H〉 = [1, 0]T .

In each round of simulation, a set of data, including
nsimψ , θsim, and φsim , are numerically generated using
the distributions described above, and are used to cal-
culate a density matrix using the maximum likelihood
method. For each state ρjα, a total of 1 × 103 sets of
data are simulated to give the error distribution of the
density matrix constructed.

Appendix C: Experimental results

We preformed the loss tolerant MDI-QKD experiment
over 10 km and 40 km of optical fibers. The detailed
experimental data is presented below.

1. 10 km loss tolerant MDI-QKD

In this section, we present detailed experimental re-
sults not covered in the main text.

In the 10 km demonstration, we send a total of 6×1011

pulses. The probabilities of sending ρ0Z , ρ1Z , and ρ0X are
P0Z = 0.25, P1Z = 0.25, and P0X = 0.5. The intensities
of the signal state is µ = 0.2 photon per pulse, and the
intensities of the decoy states are ν1 = 0.03 and ν2 = 0
photon per pulse.

Table IV shows QΨ+,IAIB
jαsβ

, the conditional probability

that Eve gets a successful Bell state measurement with
outcome Ψ+ given that Alice sends out a pulse of inten-
sity IA in the state ρjα and Bob sends out a pulse of
intensity IB in the state ρsβ .

The upper and lower bounds of the yields of single pho-

ton components Y Ψ+,11
jαsβ

are estimated given the following

constraint [33]:

QΨ+,IAIB
jαsβ

(1− k√
N IAIB
jαsβ

QΨ+,IAIB
jαsβ

)

≤
∞∑

m,n=0

e−IA−IB
IA

mIB
n

m!n!
Y Ψ+,mn
jαsβ

≤

QΨ+,IAIB ,
jαsβ

(1 +
k√

N IAIB
jαsβ

QΨ+,IAIB
jαsβ

)

(C1)

where Y Ψ+,mn
jαsβ

is the conditional probability that Eve

gets a BSM outcome Ψ+ given that Alice sends a pulse
of m photons in the state ρjα and Bob sends a pulse of

n photons in the state ρsβ , and N IAIB
jαsβ

is the number of

pulses where Alice sends the state ρjα with intensity IA
and Bob sends the state ρsβ with intensity IB , and k is
the number of standard deviations, which is chosen to be
k = 3.

An upper bound and a lower bound of Y Ψ+,11
jαsβ

are es-

timated from the constraint in Eq. (C1) using linear
programming, and the results are presented in Table V.

We can now find an upper bound of the phase error rate
eUX by solving the linear programming problems in (A32)
and (A33), where the coefficients of the linear system
are given by the Stokes parameters of the actual encoded
states ρE,jα and ρE′,sβ , jα, sβ ∈ {0Z , 1Z , 0X}. We search
in the sets of states generated by Monte-Carlo simulation
and select the one that maximizes eUX = 18.9%, which is
4 standard deviations from the mean.

This high phase error rate is mostly due to the small
key size. As a comparison, we also estimate eUX assuming

we have an infinitely long key. That is, we take N IAIB
jαsβ

=

∞ when bounding Y Ψ+,11
jαsβ

, and the results are shown in

Table VI. The tighter bounds of Y Ψ+,11
jαsβ

lead to an upper

bound eUX = 7.9%.

2. 40 km loss tolerant MDI-QKD

We perform a demonstration of loss tolerant MDI-
QKD over 40 km of optical fiber. The parameters (in-
tensities and probability distributions of signal and de-
coy states) used are the same as those used in the 10 km
demonstration. Table VII shows the values of the gains

QΨ+,IAIB
jαsβ

. The upper and lower bounds of the yields

of single photon components Y Ψ+,11
jαsβ

estimated using the

constraints in (C1) are shown in Table VIII. As a proof-
of-principle demonstration, we do not consider finite key

effect when bounding Y Ψ+,11
jαsβ

. Using the same algorithm,

an upper bound of eX is found to be 12.2%, and the key
rate is R = 1× 10−6 bit per pulse.
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Appendix D: MDI-QKD under the GLLP analysis

In this section we show how the key rate under the
GLLP analysis is simulated. For simplicity, we assume
that the states prepared by Alice and Bob to be identical
in the GLLP simulation. We use the error preparation
flaw model in [24]. The four BB84 states with prepara-
tion flaws δ are given by

|φ0Z 〉 = |0Z〉

|φ1Z 〉 = −sinδ
2
|0Z〉+ cos

δ

2
|1Z〉

|φ0X 〉 = cos(
π

4
+
δ

4
)|0Z〉+ sin(

π

4
+
δ

4
)|1Z〉

|φ1X 〉 = cos(−π
4

+
δ

4
)|0Z〉+ sin(−π

4
+
δ

4
)|1Z〉

(D1)

where |0Z〉 and |1Z〉 are the perfect horizontal and verti-
cal states (i.e., 〈0Z |1Z〉 = 0).

Under the GLLP analysis, the imbalance of the quan-
tum coin ∆ini is defined as

∆ini =
1

2
[1− F (ρAX , ρ

A
Z)F (ρBX , ρ

B
Z )], (D2)

where ρ
A(B)
X and ρ

A(B)
Z are the density matrices of states

in the X and Z bases prepared by Alice (Bob). The
pessimistic assumption of GLLP assumes that Eve can
enhance the imbalance of the quantum coin through the
loss of single-photon components. As a result, the upper
bound of the imbalance ∆ is given by

∆ ≤ ∆ini

Y Ψ+,11
(D3)

where Y Ψ+,11 is the yield of single photons. The phase
error rate e′X is related to ∆ by [24]√

e′X ≤
√
eX+2

√
∆(

√
(1−∆)(1− eX)−

√
∆eX) (D4)

where eX is the bit error rate in the X basis, which can
be measured directly from the sifted key. In the presence
of basis-dependent flaws (∆ini 6= 0), ∆ increases dramat-
ically as the distance increases, leading to a very poor
estimation of the phase error rate e′X .
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TABLE V. Lower bounds (Y Ψ+,11,L
jαsβ

) and upper bounds (Y Ψ+,11,U
jαsβ

) of Y Ψ+,11
jαsβ

in the 10 km experiment. These bounds are

estimated assuming 3 standard deviations of statistical fluctuations for finite key analysis.

jαsβ 0Z0Z 0Z1Z 1Z0Z 1Z1Z 0X0Z 0X1Z 0Z0X 1Z0X 0X0X

Y Ψ+,11,L
jαsβ

0 2.92× 10−3 2.97× 10−3 0 1.47× 10−3 1.44× 10−3 1.42× 10−3 1.17× 10−3 2.98× 10−3

Y Ψ+,11,U
jαsβ

5.64× 10−5 3.41× 10−3 3.47× 10−3 6.41× 10−5 1.86× 10−3 1.78× 10−3 1.78× 10−3 1.54× 10−3 3.41× 10−3

TABLE VI. Lower bounds (Y Ψ+,11,L
jαsβ

) and upper bounds (Y Ψ+,11,U
jαsβ

) of Y Ψ+,11
jαsβ

in the 10 km experiment. These bounds are

estimated assuming an infinitely long key.

jαsβ 0Z0Z 0Z1Z 1Z0Z 1Z1Z 0X0Z 0X1Z 0Z0X 1Z0X 0X0X

Y Ψ+,11,L
jαsβ

4.12× 10−6 3.08× 10−3 3.14× 10−3 2.6× 10−14 1.62× 10−3 1.59× 10−3 1.56× 10−3 1.31× 10−3 3.13× 10−3

Y Ψ+,11,U
jαsβ

1.77× 10−5 3.31× 10−3 3.35× 10−3 1.18× 10−5 1.76× 10−3 1.69× 10−3 1.69× 10−3 1.45× 10−3 3.31× 10−3

TABLE VII. Experimental values of QIAIBjαsβ
(conditional probability that Eve gets a successful Bell state measurement with

outcome Ψ+ given that Alice sends ρjα with intensity IA and Bob sends ρsβ with intensity IB) in the 40 km MDI-QKD
experiment.

State Intensities IAIB

jαsβ ν2ν2 ν2ν1 ν2µ ν1ν2 ν1ν1 ν1µ µν2 µν1 µµ

0Z0Z 0 (5.31± 0.98) (4.90± 0.31) (5.48± 1.03) (1.00± 0.12) (5.97± 0.43) (5.87± 0.48) (6.57± 0.35) (1.28± 0.07)

×10−8 ×10−7 ×10−8 ×10−7 ×10−7 ×10−7 ×10−7 ×10−6

0Z1Z (2.65± 2.65) (3.98± 1.03) (5.60± 0.39) (5.73± 1.15) (1.47± 0.04) (9.55± 0.15) (7.06± 0.43) (8.77± 0.16) (5.63± 0.04)

×10−9 ×10−8 ×10−7 ×10−8 ×10−6 ×10−6 ×10−7 ×10−6 ×10−5

0Z0X (1.51± 1.51) (2.93± 0.16) (1.22± 0.01) (5.59± 0.72) (1.02± 0.03) (1.64± 0.01) (5.32± 0.27) (4.76± 0.07) (4.02± 0.02)

×10−9 ×10−7 ×10−5 ×10−8 ×10−6 ×10−5 ×10−7 ×10−6 ×10−5

1Z0Z (5.11± 3.61) (3.91± 0.95) (5.89± 0.38) (5.72± 1.01) (1.28± 0.05) (8.88± 0.13) (1.20± 0.05) (9.28± 0.14) (5.71± 0.04)

×10−9 ×10−8 ×10−7 ×10−8 ×10−6 ×10−6 ×10−6 ×10−6 ×10−5

1Z1Z 0 (4.13± 1.03) (4.55± 0.37) (8.92± 1.41) (1.42± 0.15) (8.08± 0.51) (1.15± 0.05) (1.39± 0.05) (3.05± 0.09)

×10−8 ×10−7 ×10−8 ×10−7 ×10−7 ×10−6 ×10−6 ×10−6

1Z0X 0 (2.94± 0.17) (1.27± 0.01) (8.32± 0.91) (9.02± 0.28) (1.56± 0.01) (1.29± 0.04) (4.81± 0.07) (3.40± 0.02)

×10−7 ×10−5 ×10−8 ×10−7 ×10−5 ×10−6 ×10−6 ×10−5

0X0Z (4.81± 2.40) (6.07± 0.75) (5.67± 0.26) (4.77± 0.24) (1.19± 0.03) (5.60± 0.08) (1.63± 0.01) (2.06± 0.02) (4.68± 0.03)

×10−9 ×10−8 ×10−7 ×10−7 ×10−6 ×10−6 ×10−5 ×10−5 ×10−5

0X1Z (1.51± 1.51) (5.54± 0.78) (5.30± 0.27) (4.35± 0.21) (1.15± 0.03) (5.05± 0.07) (1.63± 0.02) (1.98± 0.01) (41.3± 0.02)

×10−9 ×10−8 ×10−7 ×10−7 ×10−6 ×10−6 ×10−5 ×10−5 ×10−5

0X0X (2.19± 1.26) (3.12± 0.14) (1.21± 0.01) (4.15± 0.15) (1.99± 0.03) (2.06± 0.01) (1.60± 0.01) (2.45± 0.01) (8.04± 0.02)

×10−9 ×10−7 ×10−5 ×10−7 ×10−6 ×10−5 ×10−5 ×10−5 ×10−5

TABLE VIII. Lower bounds (Y Ψ+,11,L
jαsβ

) and upper bounds (Y Ψ+,11,U
jαsβ

) of Y Ψ+,11
jαsβ

in the 40 km experiment. These bounds are

estimated assuming an infinitely long key.

jαsβ 0Z0Z 0Z1Z 1Z0Z 1Z1Z 0X0Z 0X1Z 0Z0X 1Z0X 0X0X

Y Ψ+,11,L
jαsβ

0 1.54× 10−3 1.27× 10−3 0 6.92× 10−4 7.47× 10−4 7.46× 10−4 5.86× 10−4 1.39× 10−3

Y Ψ+,11,U
jαsβ

2.36× 10−6 1.64× 10−3 1.42× 10−3 2.77× 10−5 8.07× 10−4 8.08× 10−4 8.15× 10−4 6.44× 10−4 1.53× 10−3
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