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Abstract

In a circuit consisting of two or more resonators, the inter-cavity crosstalk is inevitable, which

could create some problems, such as degrading the performance of quantum operations and the

fidelity of various quantum states. The focus of this work is to propose a crosstalk-insensitive

method for simultaneously coupling multiple pairs of resonators, which is important in large-

scale quantum information processing and communication in a network consisting of resonators

or cavities. In this work, we consider 2N resonators of different frequencies, which are coupled

to a three-level quantum system (qutrit). By applying a strong pulse to the coupler qutrit, we

show that an effective Hamiltonian can be constructed for simultaneously coupling multiple pairs

of resonators. The main advantage of this proposal is that the effect of inter-resonator crosstalks

is greatly suppressed by using resonators of different frequencies. In addition, by employing the

qutrit-resonator dispersive interaction, the intermediate higher-energy level of the qutrit is virtually

excited and thus decoherence from this level is suppressed. This effective Hamiltonian can be

applied to implement quantum operations with photonic qubits distributed in different resonators.

As one application of this Hamiltonian, we show how to simultaneously generate multiple EPR

pairs of photonic qubits distributed in 2N resonators. Numerical simulations show that it is feasible

to prepare two high-fidelity EPR photonic pairs using a setup of four one-dimensional transmission

line resonators coupled to a superconducting flux qutrit with current circuit QED technology.

PACS numbers: 03.67.Bg, 42.50.Dv, 85.25.Cp
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I. INTRODUCTION

Circuit Quantum Electrodynamics (QED), consisting of microwave resonators and su-

perconducting qubits, has quickly developed in the last decade and is considered one of the

most promising platforms for quantum information processing (QIP) (for reviews, see [1-4]).

Superconducting qubits are very important in solid-state quantum computation and QIP,

due to the controllability of their level spacings, the scalability of circuits, and the improve-

ment of coherence times [5-14]. High-quality-factor microwave resonators have also drawn

much attention because they have many applications in QIP; for example, they can be used

as quantum data buses [15-18] and quantum memories [19,20]. A superconducting coplanar

waveguide resonator with a (loaded) quality factorQ = 106 [21,22] or with an internal quality

factor above 107 [23] was previously reported. Superconducting microwave resonators with

a loaded quality factor Q = 3.5× 107 have been recently demonstrated in experiments [24],

for which the single-photon lifetime can reach near one millisecond, while the cavity mode

remains strong-coupled with a superconducting qubit. The strong or ultrastrong coupling

between a superconducting qubit and a microwave cavity has been experimentally observed

[18,25-27]. Moreover, quantum phenomena, such as squeezing or multiphoton quantum Rabi

oscillations in the ultrastrong coupling regimes, have been theoretically investigated [28,29].

As this is relevant to this work, here we provide a brief review on the production and

manipulation of quantum states of microwave photons in circuit QED. For convenience, the

term cavity and resonator will be used interchangeably. During the past years, a number of

theoretical works [30-35] have been done on the preparation of Fock states, coherent states,

squeezed states, Schrodinger cat states and an arbitrary superposition of Fock states of a

single superconducting cavity. Experimentally, the creation of a Fock state or a superposition

of Fock states of a single superconducting cavity has been reported [17,36,37]. In recent years,

attention has shifted to larger systems involving two or more cavities. Based on circuit

QED, many theoretical proposals have been presented for implementing quantum state

synthesis of photons in two resonators [38, 39], generating entangled photon Fock states

of two resonators [40,41], creating photon NOON states of two resonators [38,39,42,43],

and preparing entangled photon Fock states or entangled coherent states of more than

two cavities [44-46]. In addition, schemes for realizing two-qubit or multi-qubit quantum

gates with microwave photons distributed in different cavities have been proposed [47,48].
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Experimentally, the creation of photon NOON states of two resonators has been reported

[49], and the coherent transfer of microwave photons between three resonators interconnected

by two phase qubits has also been demonstrated [50]. All these works are fundamental

and important, and open new avenues to use microwave photons as resource for quantum

computation and communication.

In a circuit consisting of two or more resonators, the inter-cavity crosstalk is inevitable,

which could create some problems, such as degrading the performance of quantum operations

and the fidelity of various quantum states. Let us consider a two-cavity system, for which

the inter-cavity crosstalk is described by the Hamitonian H = g(ei∆tab+ + e−i∆ta+b), where

g is the inter-cavity crosstalk strength between the two cavities, ∆ is the detuning between

the frequencies of the two cavities, and a (b) is the photon annihilation operator of one (the

other) cavity. From the form of the Hamiltonian H , it can be seen that the effect of the

cavity-cavity crosstalk depends on the ratio of α = ∆/g, which increases as α decreases.

In other words, the effect of the cavity crosstalk is strongest for ∆ = 0 (i.e., when the two

cavities have the same frequency), while it can be reduced by increasing α (e.g., increasing

the detuning ∆ for a given g). The discussion here gives a hint on how to reduce the effect of

the inter-cavity crosstalk. Namely, in order to reduce the effect of the inter-cavity crosstalk,

one could employ cavities with different frequencies.

In this work, we focus on a physical system consisting of 2N resonators coupled to a three-

level quantum system (qutrit). It is shown that by applying a strong pulse to the coupler

qutrit, an effective Hamiltonian can be obtained for simultaneously coupling multiple pairs

of resonators with different frequencies, which is insensitive to the inter-resonator crosstalk.

This effective Hamiltonian can be applied to implement quantum operations with photonic

qubits distributed in different resonators. The major advantage of this proposal is that the

inter-resonator crosstalk is greatly reduced because of using different resonator frequencies.

In addition, the intermediate higher-energy level of the qutrit is virtually excited due to

the qutrit-resonator dispersive interaction, and thus decoherence from this level is greatly

suppressed.

As one application of this constructed Hamiltonian, we show how to simultaneously

generate multiple Einstein-Podolsky-Rosen (EPR) pairs [51] of photonic qubits distributed in

2N resonators. The prepared EPR pairs are particularly useful in quantum communication

and QIP. As a specific experimental realization, we further discuss the possible experimental
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implementation of two EPR pairs of photonic qubits using a setup consisting of four one-

dimensional transmission line resonators coupled to a superconducting flux qutrit. With

realistic device and circuit parameters, numerical simulations show that the fidelity can

reach 98.42% for the joint state of two EPR pairs and is no less than 99.05% for each EPR

pair.

We note that previous works focused on the preparation of a single EPR pair in var-

ious physical systems, such as neutral Kaons [52], trapped ions [53,54], atoms interacting

with a cavity mode [55-58], Bose-Einstein condensates [59-61], two harmonic oscillators in

nonequilibrium open systems [62], center-of-mass motion of two massive objects [63], and

superconducting qubits [15,64-66]. In stark contrast, ours is aimed at simultaneously gener-

ating multiple EPR pairs by using the constructed Hamiltonian, which is insensitive to the

inter-resonator crosstalk.

This paper is organized as follows. In Sec. II, we derive the effective Hamiltonian govern-

ing the dynamics of N pairs of cavities plus one three-level coupler qutrit. This Hamiltonian

describes paired interactions between these cavities in parallel without interfering with each

other. In Sec. III, we show in detail how to simultaneously prepare N pairs of photonic

qubits using this effective Hamiltonian. In Sec. IV, we discuss the possible experimental

implementation of generating EPR states of two pairs of photonic qubits in circuit QED.

In Sec. V, we summarize our results and discuss other possible applications of this physical

process.

II. EFFECTIVE HAMILTONIAN

Consider 2N resonators coupled to a qutrit A (Fig. 1). The first set of N resonators are

labeled as resonators a1, a2, ..., and aN while the second set of N resonators are labeled as

resonators b1, b2, ...,and bN . In addition, the three levels of qutrit A are denoted as |g〉 , |e〉
and |f〉 (Fig. 2). Suppose that resonator aj (bj) with j = 1, 2, ..., N is coupled to the |g〉
↔ |f〉 (|e〉 ↔ |f〉) transition with coupling strength gj (µj) and detuning ∆j = ωfg − ωaj =

ωfe − ωbj > 0 (Fig. 2). Here, ωaj (ωbj) is the frequency of resonator aj (bj). In addition, a

classical pulse of frequency ω is applied to the qutrit A, which is resonant with the |g〉 ↔ |e〉
transition (Fig. 2). In the interaction picture, the Hamiltonian of the whole system is given
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FIG. 1: (color online) Diagram of a coupler qutrit A (the circle at the center) and 2n coupled

resonators. Each rectangle represents a resonator. The coupler qutrit A can be an artificial

atom, such as a quantum dot or a superconducting qutrit capacitively/inductively coupled to each

resonator.

by (assuming ~ = 1)

H =

N∑

j=1

(
gje

i∆jtâjS
+
fg +H.c.

)
+

N∑

j=1

(
µje

i∆jtb̂jS
+
fe +H.c.

)

+
(
ΩS+

eg +H.c.
)
, (1)

where S+
fg = |f〉 〈g|, S+

fe = |f〉 〈e| , S+
eg = |e〉 〈g| , Ω is the Rabi frequency of the pulse, and

âj (b̂j) is the photon annihilation operator of resonator aj (bj).

Under the large-detuning condition ∆j ≫ gj, µj, the intermediate level |f〉 can be adia-

batically eliminated, and the Raman transitions between the states |g〉 and |e〉 are induced

by resonator pairs (aj , bj) (j = 1, 2, ..., N). Under the following condition

|∆j −∆k|
∆−1

j +∆−1
k

≫ gjgk, gjµk, µjµk; j 6= k, (2)

the Raman couplings associated with resonator pairs (aj , ak) , (bj , bk), and (aj , bk), with

j 6= k, are suppressed because the corresponding effective coupling strengths are much

smaller than the detunings of these Raman transitions. In addition, we assume ∆j ≫ Ω so

that the energy shift of the qutrit dressed states produced by the classical pulse is very small

compared to ∆j , and hence the effect of this pulse on the strength of each Raman coupling is

negligible. Under these conditions, we can obtain the following effective Hamiltonian [67,68]
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FIG. 2: (Color online) Illustration of the qutrit-resonator dispersive interaction. The |g〉 ↔ |f〉

transition of the qutrit is simultaneously coupled to the n resonators (a1, a2, ..., an), with cou-

pling constants g1, g2, ..., gn and detunings ∆1,∆2, ...,∆n, respectively. The |e〉 ↔ |f〉 transition

of the qutrit is simultaneously coupled to the other n resonators (b1, b2, ..., bn), with coupling con-

stants µ1, µ2, ..., µn and detunings ∆1,∆2, ...,∆n, respectively. In addition, a microwave pulse is

resonantly coupled to the |g〉 ↔ |e〉 transition of the qutrit, with a Rabi frequency Ω.

Heff = −
N∑

j=1

g2j
∆j

âj â
+
j |g〉 〈g| −

N∑

j=1

µ2
j

∆j

b̂j b̂
+
j |e〉 〈e|

−
N∑

j=1

λj(âj b̂
+
j S

+
eg + â+j b̂jS

−

eg)

+ΩSx, (3)

where S−

eg = |g〉 〈e| , Sx = S+
eg + S−

eg, and λj =
gjµj

∆j
. Here, the terms in the first line are

ac-Stark shifts of the level |g〉 (|e〉) induced by the resonator mode aj (bj). The terms in the

second line represent the Raman couplings induced by the N pairs of cavities.

In a rotated basis {|+〉, |−〉} with |±〉 = (|g〉±|e〉)/
√
2, one has S+

eg =
(
S̃z + S̃+ − S̃−

)
/2,

S−

eg =
(
S̃z − S̃+ + S̃−

)
/2, and Sx = S̃z, where S̃z = |+〉〈+| − |−〉〈−| , S̃+ = |+〉〈−|,
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and S̃− = |−〉〈+|. In addition, one has |g〉 〈g| = 1
2

(
I + S̃+ + S̃−

)
and |e〉 〈e| =

1
2

(
I − S̃+ − S̃−

)
.

Performing the unitary transformation eiH0t, with

H0 = ΩSx = ΩS̃z, (4)

one obtains

H̃eff = eiH0t(Heff −H0)e
−iH0t

= −1

2

(
N∑

j=1

g2j
∆j

âj â
+
j

)(
I + ei2ΩtS̃+ + e−i2ΩtS̃−

)

−1

2

(
N∑

j=1

µ2
j

∆j
b̂j b̂

+
j

)(
I − ei2ΩtS̃+ − e−i2ΩtS̃−

)

−
n∑

j=1

λj
2

[
âj b̂

+
j (S̃z + ei2ΩtS̃+ − e−i2ΩtS̃−)

+â+j b̂j(S̃z − ei2ΩtS̃+ + e−i2ΩtS̃−)
]
. (5)

In the strong driving regime Ω ≫ g2j
4∆j

,
µ2

j

4∆j
,
λj

4
, one can apply a rotating-wave approximation

and discard the terms that oscillate with high frequencies. Thus, the above Hamiltonian

reduces to

H̃eff = −1

2

N∑

j=1

(
g2j
∆j

âj â
+
j +

µ2
j

∆j
b̂j b̂

+
j

)
⊗ I

−
N∑

j=1

λj
2

(
âj b̂

+
j + â+j b̂j

)
S̃z. (6)

Performing the additional unitary transformation eiH
′

0
t, with

H ′

0 = −1

2

N∑

j=1

(
g2j
∆j

âj â
+
j +

µ2
j

∆j
b̂j b̂

+
j

)
⊗ I, (7)

we have

He = eiH
′

0
t
(
H̃eff −H

′

0

)
e−iH′

0
t

= −
N∑

j=1

λj
2

(
eiδjtâj b̂

+
j + e−iδjtâ+j b̂j

)
S̃z, (8)
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where δj =
g2j−µ2

j

∆j
. In the following, we set gj = µj (achievable by tuning the coupling

capacitance between the qubit and resonator aj, as well as the coupling capacitance between

the qubit and resonator bj), resulting in

He = −
N∑

j=1

λj
2

(
âj b̂

+
j + â+j b̂j

)
S̃z. (9)

We note that previous works [69,70] considered the coupling of a quantized cavity mode

and a strong classical pulse via a superconducting qubit or two-level atoms, which also

employed the strong driving limit in the derivation of the effective Hamiltonians. In this

sense, they are related to this work. However, they [69,70] are different from ours. The

reasons are: they were focused on how to construct the simultaneous implementation of

a Jaynes-Cummings and anti-Jaynes-Cummings dynamics for a system composed of a su-

perconducting qubit/two-level atoms and one cavity, and only a single quantized cavity

mode was involved there. Instead, our work is aimed at deriving an effective Hamiltonian

for simultaneously coupling multiple pairs of resonators. One can see that the form of our

effective Hamiltonian of Eq. (9) is different from those given in [69,70]. In addition, our

effective Hamiltonian (9) contains two quantized cavity modes for each pair of resonators,

instead of just one single cavity mode.

III. GENERATION OF MULTIPLE EPR STATES

When the qutrit is in the state |+〉 (readily prepared by applying a π-pulse resonant with

the |g〉 ↔ |e〉 transition of the qutrit initially in the ground state |g〉), it will remain in this

state because the state |+〉 is not affected by the Hamiltonian (9). Thus, the qutrit part

can be ignored and the effective Hamiltonian (9) further reduces to

He = −
N∑

j=1

λj
2
(âj b̂

+
j + â+j b̂j). (10)

This Hamiltonian describes the coupler-mediated effective interactions for the N pairs of

cavities (aj , bj) in parallel, which will be used below to simultaneously generate multiple

EPR states of N pairs of photonic qubits.

Note that the Hamiltonian (10) is obtained under unitary transformations eiH0t and

eiH
′

0
t. To obtain the time-propagating states in the original internation picture, two reverse
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transformations e−iH0t and e−iH′

0
t need to be performed on the corresponding time-evolution

states under this Hamiltonian.

Assume now that the first set of resonators (a1, a2, ..., aN) is initially in the state |ψ (0)〉a =∏N
j=1 |1〉aj , i.e., each resonator in this set is initially prepared in the single-photon state;

while the second set of resonators (b1, b2, ..., bN) is initially in the state |ψ (0)〉b =
∏N

j=1 |0〉bj ,
i.e., each of these resonators is initially prepared in the vacuum state.

One can easily find that under the Hamiltonian He, the state of the resonator system

after an evolution time t is given by

|ψ (t)〉ab = e−iHet |ψ (0)〉a |ψ (0)〉b

= e−iHet

N∏

j=1

(
|1〉aj |0〉bj

)

= e−iHet

N∏

j=1

(
a+j |0〉aj |0〉bj

)

=
N∏

j=1

[(
e−iHeta+j e

iHet
)
e−iHet |0〉aj |0〉bj

]

=

N∏

j=1

{[
cos

(
λjt

2

)
â+j + i sin

(
λjt

2

)
b̂+j

]
|0〉aj |0〉bj

}

=

N∏

j=1

[
cos

(
λjt

2

)
|1〉aj |0〉bj + i sin

(
λjt

2

)
|0〉aj |1〉bj

]
, (11)

where we have used the relation e−iHet |0〉aj |0〉bj = |0〉aj |0〉bj . After returning to the original

interaction picture, the state of the whole system is given by

|Φ (t)〉′abA = e−iH0te−iH′

0
t |ψ (t)〉ab |ϕ (t)〉A

= |ψ (t)〉′ab ⊗ |ϕ (t)〉A , (12)

where a common phase factor e−iΩt is dropped. Here, |ϕ (t)〉A = |ϕ (0)〉A = |+〉 , and

|ψ (t)〉′ab =

N∏

j=1

[
eig

2

j t/∆jeiµ
2

j t/(2∆j ) cos

(
λjt

2

)
|1〉aj |0〉bj + ieig

2

j t/(2∆j)eiµ
2

j t/∆j sin

(
λjt

2

)
|0〉aj |1〉bj

]

= ei3nλt/2
N∏

j=1

[
cos

(
λt

2

)
|1〉aj |0〉bj + i sin

(
λt

2

)
|0〉aj |1〉bj

]
, (13)

where we have used gj = µj (set above) and g
2
j/∆j = λj ≡ λ (independing of j). It can be

seen from Eq. (13) that for t = π/ (2λ) , the 2N resonators are prepared in the following
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state
N∏

j=1

|EPR〉ajbj =
N∏

j=1

1√
2

(
|1〉aj |0〉bj + i |0〉aj |1〉bj

)
, (14)

which is a product of N EPR pairs of photonic qubits. This result implies that the N EPR

photonic pairs are simultaneously generated after the operation. Here, |0〉aj (|0〉bj ) and |1〉aj
(|1〉bj ) represent the two logic states of the photonic qubit aj(bj).

Note that the above-mentioned condition g2j/∆j = λj ≡ λ can be rewritten as

g2j/∆j = g2k/∆k, (j 6= k), (15)

which can be readily met by adjusting the detuning ∆j or ∆k (e.g., varying the resonator

frequency). Alternatively, this condition can be satisfied by adjusting the coupling strength

gj or gk (e..g, through a prior design of the sample with appropriate qutrit-resonator coupling

capacitances).

As shown above, the N EPR photonic pairs are prepared based on the effective Hamil-

tonian (9), which was derived without considering the unwanted couplings of the res-

onators/pulse with the irrelevant level transitions of the qutrit. To minimize decoherence

effects induced due to the leakage into the level |f〉, one can employ the DRAG pulse with

a cosine envelope shape [71] or a detuned pulse with the DRAG pulse shaping [72], which

can significantly reduce both leakage error and phase error. In addition, one can design the

qutrit level structure with a large level anharmonicity, such that the unwanted couplings of

the resonators/pulse with the irrelevant qutrit level transitions are negligible. The strong

pulse may cause heating of the qutrit. For a short pulse, the effect of incoherent processes

caused due to the heating, such as thermal excitations or noise at the |e〉 ↔ |f〉 transition, is
negligible [72]. For a long pulse, the unwanted incoherent processes induced by the heating

can be suppressed through improved thermalization by cooling the sample [73].

IV. POSSIBLE EXPERIMENTAL IMPLEMENTATION

We now provide a quantitative analysis on the experimental feasibility of the proposal.

As an example, let us consider a setup of four one-dimensional transmission line resonators

coupled by a superconducting flux qutrit (Fig. 3).

With the unwanted interaction being considered, the Hamiltonian (1) is modified as

H ′ = H + δH1 + δH2 (with N = 2), where δH1 describes the unwanted inter-resonator
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FIG. 3: (color online). Diagram of a setup for four one-dimensional transmission line resonators

coupled to a superconducting flux qutrit via capacitances C1, C2, C3, and C4, respectively.

crosstalk while δH2 describes the unwanted |e〉 ↔ |f〉 transition induced by the pulse. The

expression of δH1 is given by

δH1 = ga1b1e
i∆a1b1

ta1b
+
1 + ga1b2e

i∆a1b2
ta1b

+
2

+ga2b1e
i∆a2b1

ta2b
+
1 + ga2b2e

i∆a2b2
ta2b

+
2

+ga1a2e
i∆a1a2

ta1a
+
2 + gb1b2e

i∆b1b2
tb1b

+
2 + h.c., (16)

where gajbk is the coupling strength between the two resonators aj and bk with frequency

detuning ∆ajbk = ωbk − ωaj (j, k = 1, 2); ga1a2 is the coupling strength between the two

resonators a1 and a2 with frequency detuning ∆a1a2 = ωa2 − ωa1 ; and gb1b2 is the coupling

strength between the two resonators b1 and b2 with frequency detuning ∆b1b2 = ωb2 − ωb1.

δH2 is given by

δH2 = Ωfee
i∆tS+

fe +H.c., (17)

where ∆ = ωfe − ωeg, and Ωfe is the pulse Rabi frequency associated with the |e〉 ↔ |f〉
transition.

It should be mentioned that the |g〉 ↔ |f〉 transition induced by the pulse is negligible

because ωeg ≪ ωfg (Fig. 2). For simplicity, we also assume that the resonator-induced

coherent transitions between any other irrelevant levels are negligibly small. This can be

achieved by a prior design of the coupler with a sufficiently large anharmonicity of the level

spacings (readily available for a superconducting flux device).

Taking into account the qutrit dephasing and energy relaxation as well as the resonator

dissipation, the system dynamics, under the Markovian approximation, is determined by the
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FIG. 4: (Color online) Fidelity versus the normalized detuning c1 = ∆1/g1. Here and in Fig. 5,

there is a relation, c2 = ∆2/g2 =
√
2c1, for the ∆1 and ∆2 used in the numerical simulations.

master equation

dρ

dt
= −i [H ′, ρ] +

2∑

j=1

κajL [aj ] +

2∑

j=1

κbjL [bj ]

+γfeL
[
σ−

fe

]
+ γfgL

[
σ−

fg

]
+ γegL

[
σ−

eg

]

+
∑

l=e,f

γϕ,l (σllρσll − σllρ/2− ρσll/2) , (18)

where L [Λ] = ΛρΛ+ − Λ+Λρ/2 − ρΛ+Λ/2 (with Λ = aj , bj, σ
−

fe, σ
−

fg, σ
−

eg), σee = |e〉 〈e| , and
σff = |f〉 〈f |. In addition, κaj (kbj ) is the decay rate of resonator aj (bj); γeg is the energy

relaxation rate for the level |e〉 associated with the decay path |e〉 → |g〉; γfe (γfg) is the

relaxation rate for the level |f〉 related to the decay path |f〉 → |e〉 (|f〉 → |g〉); γϕ,e (γϕ,f)
is the dephasing rate of the level |e〉 (|f〉). For numerical calculations, here we use the

QuTiP software [74,75]. QuTiP is an open-source software for simulating the dynamics of

open quantum systems, which can transfer quantum objects to matrices and solve master

equations numerically by using an ordinary differential equation solver.

The fidelity of the prepared two EPR states for the two pairs of photonic qubits is given

by F =
√

〈ψid| ρ̃ |ψid〉. Here, |ψid〉 = |EPR〉a1b1 ⊗ |EPR〉a2b2 is for the ideal case; while ρ̃

is the reduced density operator of the two pairs of photonic qubits after tracing ρ over the

degrees of the coupler qutrit, when the operation is performed in a realistic system (with

dissipation and dephasing considered).

In a real situation, it may be a challenge to obtain homogeneous coupling strengths.

Thus, we consider µ1 = 0.95g1 and µ2 = 0.95g2 in our numerical simulation. Namely, there
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FIG. 5: (color online). Fidelity versus c1 and Ω. The figure was plotted for gcs = 0.4gm. Here,

c1 = ∆1/g1 is the normalized detuning and Ω is the Rabi frequency.

exists a difference of 5% between the coupling strengths for each pair of resonators, which

may be reasonable in experiments. Note that our numerical simulations are performed by

choosing the operation time t = π/ (2λ) above, which is the operation time for an ideal

homogeneous coupling.

For a three-level flux qutrit, the transition frequency between two neighboring levels

can be varied from 5 GHz to 20 GHz. As an example, we consider ωeg/2π = 7.5 GHz

and ωfg/2π = 12.5 GHz, for which we have ∆/2π = −2.5 GHz. We set ∆1/2π = 0.75

GHz and ∆2/2π = 1.5 GHz, which yields ∆a1a2/2π = ∆b1b2/2π = −0.75 GHz, ∆a1b1/2π =

∆a2b2/2π = −7.5 GHz, ∆a1b2/2π = −8.25 GHz, and ∆a2b1/2π = −6.75 GHz (Fig. 2). For

simplicity, we choose gajbk = ga1a2 = gb1b2 ≡ gcs and Ωfe = Ω. Other parameters used in

the numerical simulation are: (i) γ−1
ϕ,e = 2.5 µs, γ−1

ϕ,f = 1.5 µs, γ−1
eg = 5 µs, γ−1

fe = 2.5 µs,

γ−1
fg = 3.5 µs (a conservative consideration, e.g., see Ref. [12]); and (ii) κ−1

aj
= κ−1

bj
= 10 µs

(j = 1, 2).

We now numerically calculate the fidelity for the two prepared EPR-pair states. For given

values of ∆1,∆2, and g1, the value of g2 can be determined by Eq. (15). We define c1 = ∆1/g1

and c2 = ∆2/g2. Based on Eq. (15), we have c2 =
√
∆2/∆1c1 =

√
2c1 for the ∆1 and ∆2

chosen above. To see how the inter-resonator crosstalk affects the operation performance,

in Fig. 4 we plot the fidelity versus c1, by choosing Ω/2π = 100 MHz and considering

gcs = 0, 0.2gm, 0.4gm, 0.6gm, 0.8gm, gm. Here and below, gm = max{g1, g2, µ1, µ2}. From Fig.
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4, one can see that the effect of the inter-cavity crosstalk coupling is very small even when

gcs = 0.4gm, and a high fidelity > 97.86% can be reached for c1 = 11 (corresponding to

c2 = 11
√
2). In this case, the estimated operation time is ∼ 40 ns. In the following analysis,

we choose gcs = 0.4gm. Note that according to the discussion in [44], a smaller crosstalk

gcs ≤ 0.01gm can be achieved with the typical capacitive cavity-qutrit coupling illustrated

in Fig. 1.

We now consider the dependence of the operation performance on the value of the Rabi

frequency Ω of the pulse. Figure 5 shows the fidelity versus c1 and Ω. From Fig. 5, one

can see that the operation performance strongly depends on the pulse Rabi frequency Ω.

On the other hand, Fig. 5 shows that for c1 ∈ [7, 17] (c2 ∈ [7
√
2, 17

√
2]), a high fidelity

F ≥ 92.4% can be reached for a wide range of Ω: Ω/2π ∈ [50, 200] MHz. Note that a pulse

Rabi frequency Ω/2π ∼ 300 MHz or higher was reported in experiments [76,77]. In Figure 5,

the optimal point is c1 = 10.2 (c2 = 10.2
√
2) and Ω/2π = 110 MHz, for which the maximum

fidelity of the joint state of the two prepared EPR pairs is Fmax = 98.42%, corresponding

to the fidelities Fa1b1 = 99.05% and Fa2b2 = 99.07% for the qubit pairs (a1, b1) and (a2, b2),

respectively.

For c1 ∈ [7, 17] and c2 ∈ [7
√
2, 17

√
2], we have g1/2π ∈ [107, 44] MHz, g2/2π ∈ [151, 62]

MHz, µ1/2π ∈ [102, 42] MHz, and µ2/2π ∈ [143, 59] MHz. The coupling strengths of these

values are readily achievable in experiments because a coupling strength ∼ 636 MHz has

been reported for a superconducting flux device coupled to a one-dimensional transmission

line resonator [78]. For the transition frequencies of the qutrit and the detunings given

above, we have ωa1/ (2π) ∼ 11.75 GHz, ωa2/ (2π) ∼ 11 GHz, ωb1/ (2π) ∼ 4.25 GHz, and

ωb2/ (2π) ∼ 3.5 GHz. Thus, for the values of κ−1
aj

and κ−1
bj

used in the numerical simulation,

the required quality factors for the four resonators are Qa1 ∼ 7.4 × 105, Qa2 ∼ 6.8 × 105,

Qb1 ∼ 2.7 × 105, and Qb2 ∼ 2.2 × 105, available in experiments [21-23]. The analysis

here demonstrates that the high-fidelity generation of two EPR pairs of photonic qubits

distributed in the four resonators is feasible within present-day circuit QED techniques.

The prepared EPR pairs of photonic qubits can be read out by employing the conventional

approach [79], i.e., mapping the states of the photonic qubits to superconducting qubits,

whose states can be detected fast and accurately [80]. One can also use an alternative

method introduced in [69] to measure the photonic qubits with a relatively fast speed and

minimal action of decoherence.
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V. CONCLUSION

We have presented an efficient method for simultaneously coupling multiple pairs of

resonators by using a qutrit as a coupler. This proposal significantly reduces the effects

of unwanted inter-resonator crosstalks which are inherent in a circuit consisting of two or

more resonators. We showed that, under frequency matching conditions, the dynamics of

the resonators is described by an effective Hamiltonian, which can be used for one-step

generation of multiple EPR pairs of photonic qubits. Further, our numerical simulation

demonstrated that the obtained EPR states can have high fidelities using present-day circuit

QED technology. Finally, we note that this effective Hamiltonian has other applications.

For instance, it can be directly applied to implement various quantum operations, such as

the simultaneous transfer or exchange of multi-photon quantum states between spatially-

separated resonators or cavities.
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