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Singly ionised Lutetium has recently been suggested as a potential clock candidate. Here we report
a joint experimental and theoretical investigation of Lu+. Measurements relevant to practical clock
operation are made and compared to atomic structure calculations. Calculations of scalar and
tensor polarizabilities for clock states over a range of wavelengths are also given. These results will
be useful for future work with this clock candidate.
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I. INTRODUCTION

The development of atomic clocks has played an impor-
tant role in todays society with applications in many dif-
ferent technologies, most notably the Global Positioning
System and navigation. Increased levels of performance
have allowed tests of fundamental physics [1] and new
avenues of exploration in quantum many body physics
[2, 3]. Increasing levels of accuracy and stability con-
tinue to be made with atomic clocks based on optical
transitions in isolated atoms [4–12]. By now a number of
groups have demonstrated superior performance over the
current caesium frequency standards with the best clocks
to date having inaccuracy at the 10−18 level [4, 5, 13]. For
ion-based clocks, a significant bottleneck to improved lev-
els of accuracy is the relatively low stability achieved with
a single ion. Recently singly ionised Lutetium has been
proposed as a possible candidate to overcome this hurdle
[14, 15].

The clock transition in singly ionised Lutetium is a
highly forbidden M1 1S0 to 3D1 transition [14, 16]. This
ion has a number of fortuitous properties that are al-
most ideally suited for clock applications [14, 15]. The
2.45 MHz linewidth of the 3D1 to 3P o

0 detection transi-
tion provides the possibility of a very low Doppler cooling
limit and yet sufficiently large for practical detection. A
novel averaging scheme eliminates shifts associated with
the J = 1 level placing it on an equal footing with J = 0
to J = 0 candidates [14]. A very large hyperfine and fine
structure splitting results in a very low magnetic field
dependence of both the average frequency and the com-
ponent transitions contributing to the average. Finally,
initial estimates of the differential scalar polarisability in-
dicate that it is sufficiently small to allow practical room
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temperature operation, with a sign that allows micro-
motion shifts to be eliminated. This latter property has
kindled the idea of clock operation on large ion crystals
[15].

All of the available low-lying D states in Lu+ are po-
tentially long lived. These spectator states could be in
principle be used as clock states themselves. However, in
so far as clock operation with the 3D1 state is concerned,
the remaining D levels could potentially complicate clock
operation via the need for a more complicated laser sys-
tem. In this paper we give a detailed investigation of
these potential issues using 175Lu+. Measurements of
lifetimes and branching ratios relevant to practical clock
operation are made and compared to atomic structure
calculations. In addition we provide calculations of scalar
and tensor polarizabilities for clock states over a range of
wavelengths. This work provides the first step in evalu-
ating the potential of this clock candidate and the cal-
culations given will provide a useful reference for future
experimental work.

II. EXPERIMENT SETUP

A. Apparatus

The experiments are performed in a four-rod linear
Paul trap with axial end caps, similar to the ones de-
scribed in [17, 18]. The trap consists of four stainless steel
rods of diameter 1.0 mm whose centers are arranged on
the vertices of a square with 3.6 mm length of the side.
A 3.6 MHz rf potential is applied via a step-up trans-
former to two diagonally opposing electrodes. A small
DC voltage applied to the other two electrodes ensures
a splitting of the transverse trapping frequencies. Ax-
ial confinement is provided by two axial pins separated
by 7 mm. Using this configuration, the measured trap-
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FIG. 1. Lu+ level structure showing (a) the 848 nm clock and
646 nm detection transitions and (b) the repumping lasers
used to optically pump into and out of the 3D1 level.

ping frequencies are (ωx, ωy, ωz)/2π ≈ (350, 300, 80) kHz.

These frequencies were measured using 138Ba+ which is
used throughout for continuous sympathetic cooling.

The level structure for Lu+ is given in Fig. 1 showing
the 1S0 to 3D1 clock transition, and the 3D1 to 3P o

0 tran-
sition for detection and cooling. Optical pumping and
state preparation is achieved via the 3P o

1 level. The ex-
periments reported here use 175Lu+ which has a nuclear
spin I = 7/2. The 350 nm laser is a frequency doubled
diode and addresses the 1S0 F = 7/2 to 3P o

1 F
′ = 7/2

transition. It propagates orthogonal to a 0.5 mT B-field
and is linearly polarized along the direction of the field.
The measured optical pumping time out of the 1S0 level
is 2 µs which is the 1/e decay time of the 1S0 population.
The 598 nm laser is also a frequency doubled diode laser
and addresses the 3D1 F = 9/2 to 3P o

1 F
′ = 9/2 tran-

sition. Optical pumping out of the 3D1 level is achieved
in conjunction with the 646 nm laser and the measured
optical pumping time is 6 µs. The 622 nm laser is a mul-
timode laser which is sufficiently broad to address all hy-
perfine states of the 3D2 to 3P o

1 transition and the mea-
sured optical pumping time is 10 µs. Both the 598 nm
and 622 nm laser are linearly polarized and propagate
along the B-field.

B. Detection

As shown in Fig. 1, detection is achieved via scatter-
ing on the 3D1 to 3P o

0 levels. To address the three sep-
arate hyperfine levels, a wideband electro-optic modula-
tor (EOM) generates sidebands of approximately 8 GHz
which are separated from the carrier using a cavity. The
carrier is frequency shifted via an acousto-optic modula-
tor (AOM) before being recombined with the sidebands.
This provides independent frequency control of all three
beams. All beams are linearly polarized and propagate

along the 0.5 mT B-field.

Fluorescence at 646 nm is collected onto an avalanche
photodiode (APD). A narrowband filter eliminates scat-
tered light from all other light sources including the
650 nm light used for cooling 138Ba+. This allows con-
tinuous sympathetic cooling throughout the 175Lu+ de-
tection window. Since the ion is continuously cooled, we
can operate at near full saturation for optimum detection
efficiency and we typically achieve a mean photon count
rate of & 5 photons/ms.

For the experiments reported here, we desire a de-
tection scheme to determine when the ion goes bright
(dark) with high detection efficiency. To do this we use
a Bayesian detection scheme similar to that reported in
[19]. From the number of photons collected in a given
detection time step, we update the probability that the
ion is in a bright state via

P (b|n) =
P (n|b)P (b)

P (n|b)P (b) + P (n|d)P (d)
, (1)

where P (b|n) (P (d|n)) is the conditional probability the
ion is in a bright (dark) state given n photons, P (n|b)
(P (n|d)) is the conditional probability of getting n pho-
tons given the ion is in a bright (dark) state, and P (b)
((P (d))) is the current probability the ion is in the bright
(dark) state. The probability P (b) is updated in real time
via a field programmable gate array with the conditional
probabilities P (n|b) and P (n|d) stored on chip. Detec-
tion is initiated with P (b) = 0.5 and terminated when
P (b) reaches pre-programmed thresholds for bright and
dark states. We note that the performance of this scheme
is insensitive to the choice of time step.

When continuously monitoring for a state change, P (b)
is initialised to 0.5 and updated in subsequent detection
windows to P (b|n) according to eq 1. If P (b) falls below
(above) 0.5, the ion is assumed to have gone dark (bright)
and detection continues until the appropriate threshold
is reached, in which case the state change is deemed ver-
ified. Alternatively, if P (b) subsequently falls above (be-
low) 0.5, the state change is deemed in error, and P (b)
is reinitialised to 0.5. The error rate for determining the
ion is in the bright state is limited by hyperfine induced
decay from 3P o

0 to states other than 3D1. Thus P (b) can-
not achieve values arbitrarily close to one before the ion
decays to a dark state. Similarly, determination of the
3D2 dark state is limited by possible decay to the 3D1.

For the experiments reported in section III D, we also
require an accurate estimate of the total collection effi-
ciency. This is achieved using 138Ba+ by repeated cycles
of optical pumping between the S1/2 and D3/2 levels. Op-

tically pumping from S1/2 to D3/2, produces precisely

one 650 nm photon. From the photons collected over
several million cycles we infer a collection efficiency of
0.00326(2).
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TABLE I. Branching ratios for decay from 3P o
1. Theoretical

values are from calculations given in section IV B.

Lower level Exp. Theory
6s2 1S0 0.3915(44) 0.376
6s5d 3D1 0.1862(17) 0.186
6s5d 3D2 0.4178(45) 0.435
6s5d 1D2 0.00438(18) 0.0036

III. MEASUREMENTS

A. 3P o
1 branching ratios

Optical pumping via the 3P o
1 level results in unde-

sired population of the 1D2 metastable level. The 3P o
1

level decays to 1S0, 3D1, 3D2 and 1D2 with respective
decay rates W0,W1,W2, and W3 and branching ratios
Bk = Wk/

∑
Wk. Since

∑
Bk = 1 we need three more

equations to uniquely determine Wk. This is achieved
via three separate optical pumping experiments.

We first prepare the ion in 3D1 by optically pump-
ing with the 350, 622, and 646 nm lasers until the ion is
bright. For this step, we set the threshold count rate to
a high value to ensure the initial state is bright with high
probability. We then optically pump the ion into 1S0

(3D2) using the 646, 598 and 622 (350) nm lasers. The
ion is then pumped out of the 1S0 (3D2) level using the
350 (622) nm laser and the population, P0 (P1), in 3D1 is
measured. Neglecting any decay of population appearing
in 1D2 we have

P0 =
B0

B0 +B3

B1

1−B0
, P1 =

B2

B2 +B3

B1

1−B2
(2)

Similarly, optical pumping to 3D2, followed by optical
pumping with both the 350, and 622 nm lasers, gives a
population, P2, in the 3D1 level of

P2 =
B2

B2 +B3

B1

1−B0 −B2
. (3)

For each Pk, 2 × 104 measurements were made giving
P0 = 0.3027(32), P1 = 0.3166(33) and P2 = 0.9669(13).
The inferred branching ratios from these measurements
are given in table I along with theoretical estimates from
section IV B. The error bars given are the statistical er-
ror. The main systematic is due to decay of the 1D2 dur-
ing optical pumping. Since the measured optical pump-
ing times for each laser is ∼ 10µs, which is much less
than the 1D2 lifetime as discussed in the next section,
the effect of the decay is less than the statistical error.

There is fair agreement between the experimental and
theoretical results with the three main decay channels be-
ing within 4%. The larger discrepancy of ∼ 18% for de-
cay to 1D2 can be expected given the significantly smaller
decay rate.
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FIG. 2. Histogram of dark times associated with the 1D2

decay. We have omitted all times less than 200 ms or greater
than 1 s with 200 ms subtracted of the remaining times.

B. 1D2 Lifetime

To measure the 1D2 lifetime, we first optically pump
to this level using the 350, 598, 622, and 646 nm lasers.
After (10 ms), we switch off the 598 nm laser and moni-
tor fluorescence of the 646 nm light. The 1D2 lifetime is
due to an E2 decay to 1S0. However, spin mixing gives
a small contribution from M1 transitions to 3D2 as dis-
cussed in section IV B and values of relevant transitions
are tabulated in table V. Decay to 3D3 occurs with a
branching ratio ∼ 1% and the lifetime of this state is
> 10 s. Hence, these decays are infrequent and result in
very long dark periods. Decay to 3D2 or 1S0 occurs with
probability qS . These levels are optically pumped to the
detection level, 3D1, with a small probability, pS , of being
repumped back to 1D2. Neglecting effects of decays to
3D3 and optical pumping times, the distribution of dark

times is exponential with a rate W
(m)
S = (1 − pSqS)WS

where WS is the total linewidth of the 1D2 level. In Fig.2,
we give the measured distribution of dark times from

which we infer W
(m)
S = 5.41(12) s−1. For this data we

have eliminated all times less than 200 ms or greater than
1 s with 200 ms subtracted of the remaining times. Elimi-
nating times less than 200 ms removes any data points re-
sulting from imperfect optical pumping to the 1D2 level,
and eliminating all times greater than 1 s eliminates a
small number of events associated with decay into 3D3.
Denoting the M1 decay rates from 1D2 to 3D2 by WS,J

and the E2 decay rate from 1D2 to 1S0 by WS,0, we can
express the total linewidth, WS , by

WS,0 =
W

(m)
S − (WS,1 +WS,3)

1− pS
−WS,2, (4)

and

WS =
W

(m)
S

1− pS
− pS

1− pS
(WS,1 +WS,3), (5)
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where we have used the fact that

qS =
WS,0 +WS,2

WS
. (6)

In terms of the branching ratios, Bk, from section III A,
we have

pS =
B3

B1 +B3
. (7)

This maybe determined from the measurements, Pk,
made in section III A and we infer pS = 0.02297(88).
From the calculated M1 transition rates given in ta-
ble V we infer decay rates 5.20(12) s−1 and 5.53(12) s−1

for WS,0 and WS respectively. The errors given include
only the statistical uncertainty from the experimental
measurements. We note that the measured rates are
∼ 30% larger than the theoretical estimates given in sec-
tion IV B.

C. 3D2 Lifetime

We measure the 3D2 lifetime similar to the 1D2 case.
We first optically pump to 3D2 using the 350, 598, and
646 nm lasers. After (10 ms), we switch off the 598 nm
laser and monitor fluorescence of the 646 nm light. The
3D2 lifetime is due to a spin forbidden E2 decay to 1S0

with a small contribution from an M1 decay to 3D1.
Decays to 1S0 result in optical pumping to 3D1 and re-
pumping to 3D2. Neglecting optical pumping times, the
distribution of dark times is also exponential with a rate

W
(m)
T = (1 − pT qT )WT , where pT is the probability of

being repumped from 1S0 to 3D2 and qT is the branching
ratio for decay from 3D2 to 1S0. In Fig.3, we give the
measured distribution of dark times from which we in-
fer W

(m)
T = 0.022(1) s−1. Note that, for each dark cycle,

optically pumping to the 3P o
1 can result in population of

1D2 which extends the optical pumping time. Since the
probability that this occurs is small and the lifetime of
this state is much less than the measured mean dark time
we may neglect this effect.

We can express the E2 decay rate, WT,0, and total
linewidth WT as

WT,0 =
1

1− pT

(
W

(m)
T −W2,1

)
(8)

and

WT =
W

(m)
T

1− pT
− pT

1− pT
W2,1 (9)

where W2,1 is the M1 decay rate for the 3D2 to 3D1

transition and we have used the fact that

qT =
WT,0

WT
. (10)
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FIG. 3. Histogram of dark times associated with the 3D2

decay.

In terms of the branching ratios, Bk, from section III A,
we have

pT =
B2

1−B0
. (11)

This maybe determined from the measurements, Pk,
made in section III A and we infer pT = 0.6917(33). To-
gether with the calculated M1 transition rates given in
table V we infer decay rates 0.0519(33) and 0.0579(33)
for WT,0 and WT respectively. The errors given include
only the statistical uncertainty from the experimental
measurements. We note that the measured rates are
∼ 25% larger than the theoretical estimates given in sec-
tion IV B.

Given that the measured lifetime is very long, measure-
ments could potentially be compromised by off-resonant
scattering out of 3D2 by the Barium cooling lasers, the
350 repump laser or the 646 nm detection beam. Of these,
the most significant scattering rate is from coupling to
the 5d5p 3F2 level by the 350 nm laser. From dipole ma-
trix elements given in table II and a measured intensity
of ∼500 mW/cm2, the scattering rate from 3D2 to 3D1

averaged over all possible 3D2 states is ∼ 3.5× 10−5 s−1.
This less than 1% of the calculated M1 decay rate be-
tween these states and so contributes much less than the
statistical error to the overall decay rates. We can ex-
pect scattering rates to 3D3 and 1D2 to be of a similar
magnitude and thus equally negligible.

D. Hyperfine quenching of 3P o
0.

Decay from 3P o
0 to 3D1 is the only dipole allowed tran-

sition from 3P o
0. However, the hyperfine interaction in-

duces a low multipole electromagnetic decay to other
states. In the case of Lu+, this results in a quenching
of the fluorescence rate for the 3D1 to 3P o

0 detection
channel. When fluorescing on this transition, the rate
of scattering out of the detection channel is given by

λ = wρee =
w

W

〈n〉
qτD

(12)
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FIG. 4. Histogram of bright times when fluorescing on the
3D1 to 3P o

0 transition.

where W is the linewidth of the upper state, w is the
total decay rate from 3P o

0 to states other than 3D1, 〈n〉
is the background subtracted mean number of photons
collected in a time τD, and q is the overall detection ef-
ficiency of the imaging system. Measuring λ involves
determining when the ion goes dark and so the measured
rate must also include the error rate in that determina-
tion. Even an error rate of 10−3 in a 1 ms detection time
would result in a significant contribution to the measured
rate. Since there is negligible probability of repumping
from the dark state back to the bright state, we can re-
peatedly test a dark state event to confirm the measure-
ment similar to the approach reported in [19].

To measure λ, we first optically pump using 350, 622,
and 646 nm lasers until the ion is bright. For this step,
we set the threshold count rate to a high value to ensure
the initial state is bright with high probability. We then
switch off the repump lasers and monitor the time the ion
remains fluorescent. The distribution of bright times is
given in Fig.4 which gives a fitted value of λ = 0.624(5).
Using measured count rates for the bright and dark states
of 6.290(5) and 0.560(3) per ms respectively, together
with the measured detection efficiency of 0.00326(2) we
infer a ratio w/W = 3.55(6)×10−7. We used an artificial
background to match the photon count rate of a bright
ion to determine the contribution of the measured rate
from detection errors. Out of 105 events we obtained
an average detection time of 6 ms with no errors found.
This bounds the contribution to < 0.0016/s which is well
below the statistical uncertainty.

Decay out of the detection channel is dominated by
decays from 3P o

0 to 1S0 and 3D2. In two separate exper-
iments, we determine the contribution from each of these
decays by repumping using either 350 or 622 after the
ion is confirmed dark and measure the fraction returning
to the bright state. From these measurements and the
branching ratios determined in section III A the percent-
age of decays going to 1S0 and 3D2 are 0.497(19) and
0.562(30) respectively. These values are in reasonable
agreement with theoretical values given in table VIII .

IV. THEORY

In this section we give details of atomic structure cal-
culations. We start with polarizabilities of relevant clock
states, namely the 6s2 1S0, 5d6s 3D1, and 5d6s 3D2 lev-
els. We then determine lifetimes and branching ratios
for low-lying levels, followed by a determination of the
quenching rate of the 3P o

0 level.

A. Polarizabilities

We evaluated the scalar static and dynamic polariz-
abilities of the 6s2 1S0, 5d6s 3D1, and 5d6s 3D2 states
of Lu+ using the high-precision relativistic method
that combines configuration interaction (CI) and lin-
earized coupled-cluster (all-order) method [20]. In this
CI+all-order method, the energies and wave functions
are determined from the time-independent multiparticle
Schrödinger equation

Heff(En)Φn = EnΦn, (13)

where the effective Hamiltonian is defined as

Heff(E) = HFC + Σ(E). (14)

Here HFC is the Hamiltonian in the frozen core approxi-
mation and Σ is the energy-dependent correction, which
takes into account virtual core excitations in all orders.
To establish the importance of the higher-order correc-
tions, we also carried out the calculations constructing
the effective Hamiltonian using second-order many-body
perturbation theory (CI+MBPT method) [21].

We separate the scalar dynamic polarizability α(ω)
into three parts:

α(ω) = αv(ω) + αc(ω) + αvc(ω), (15)

where αv is the valence polarizability, αc is the ionic core
polarizability, and a small term αvc that corrects ionic
core polarizability for the Pauli principle-violating exci-
tations to occupied valence shells.

The valence part of the a.c. electric dipole polarizabil-
ity of the |0〉 state is

αv(ω) = 2
∑
k

(Ek − E0) |〈Φ0|D0|Φk〉|2

(Ek − E0)
2 − ω2

=
∑
k

[
|〈Φ0|D0|Φk〉|2

Ek − E0 + ω
+
|〈Φ0|D0|Φk〉|2

Ek − E0 − ω

]
, (16)

where D0 is the z-component of the effective electric
dipole operator D, defined in atomic units (~ = m =
|e| = 1) as D = −r. The effective (or “dressed”) electric
dipole operator includes random-phase approximation
(RPA), core-Brueckner (σ), structural radiation (SR),
and normalization corrections which are descibed in de-
tail in [22]. In order to accurately account for highly-
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TABLE II. Contributions to the 6s2 1S0, 5d6s 3D1, and 5d6s 3D2 scalar static polarizabilities of Lu+ in a.u. The contributions
to the valence polarizabilities of several lowest-lying intermediate states are listed separately with the corresponding absolute
values of electric-dipole reduced matrix elements given in column labeled “D”. The theoretical and experimental [23] transition
energies are given in columns ∆Eth and ∆Eexpt. The remaining valence contributions to the 1S0 polarizability are given in
row labeled “Other”. For the 3D1 and 3D2 polarizabilities we present the contribution of other (not explicitly listed in the
table) intermediate states with fixed total angular momentum Jn in rows labeled “Other (Jn = 0, 1, 2, 3)”. In rows labeled
“Total (Jn = 0, 1, 2, 3)” we give total contribution of all intermediate states with fixed total angular momentum Jn. In rows
“Total val.” we present the total values of αv. The contributions from the αc and αvc terms are listed together in rows labeled
“Core + Vc”. The dominant contributions to the polarizabilities, listed in columns α[A] and α[B], are calculated with the
experimental [23] and theoretical energies, respectively.

State Contribution ∆Eth ∆Eexpt Da α[A] α[B]

6s2 1S0 6s2 1S0 − 6s6p 3P o
1 29073 28503 0.820 3.45 3.39

6s2 1S0 − 6s6p 1P o
1 38862 38223 3.518 47.38 46.60

6s2 1S0 − 5d6p 3Do
1 46593 45532 0.811 2.11 2.07

6s2 1S0 − 5d6p 3P o
1 51285 50049 0.447 0.59 0.57

6s2 1S0 − 5d6p 1P o
1 60214 59122 1.354 4.54 4.46

Other 2.03 2.03
Total val. 60.10 59.11
Core + Vc 3.92 3.92
Total 64.02 63.03
Recommended 63.0

5d6s 3D1 5d6s 3D1 − 6s6p 3P o
0 15297 15468 1.480 6.91 6.99

5d6s 3D1 − 5d6p 3P o
0 38664 38167 1.892 4.57 4.52

Other (Jn = 0) 0.33 0.33
Total (Jn = 0) 11.82 11.83

5d6s 3D1 − 6s6p 3P o
1 16521 16707 1.287 4.83 4.89

5d6s 3D1 − 5d6p 3Do
1 34041 33736 2.391 8.26 8.19

5d6s 3D1 − 5d6p 3P o
1 38733 38253 2.089 5.56 5.49

Other (Jn = 1) 0.59 0.59
Total (Jn = 1) 19.25 19.16

5d6s 3D1 − 6s6p 3P o
2 20510 20657 0.351 0.29 0.29

5d6s 3D1 − 5d6p 3F o
2 29925 29429 2.741 12.46 12.25

5d6s 3D1 − 5d6p 1Do
2 34094 33662 1.716 4.27 4.21

5d6s 3D1 − 5d6p 3Do
2 35488 35108 2.259 7.09 7.01

5d6s 3D1 − 5d6p 3P o
2 39899 39405 0.555 0.38 0.38

Other (Jn = 2) 4.50 4.50
Total (Jn = 2) 28.99 28.65

Total val. 60.05 59.64
Core + Vc 3.84 3.84
Total 63.89 63.48
Recommended 63.5

5d6s 3D2 5d6s 3D2 − 6s6p 3P o
1 15867 16068 2.084 7.91 8.01

5d6s 3D2 − 6s6p 1P o
1 25656 25788 0.814 0.75 0.76

5d6s 3D2 − 5d6p 3Do
1 33387 33097 1.986 3.49 3.46

Other (Jn = 1) 5.26 5.26
Total (Jn = 1) 17.41 17.49

5d6s 3D2 − 6s6p 3P o
2 19857 20018 1.220 2.18 2.19

5d6s 3D2 − 5d6p 3F o
2 29271 28790 2.552 6.62 6.51

5d6s 3D2 − 5d6p 1Do
2 33440 33023 0.098 0.01 0.01

5d6s 3D2 − 5d6p 3Do
2 34834 34469 2.653 5.97 5.91

Other (Jn = 2) 3.71 3.71
Total (Jn = 2) 18.49 18.34

5d6s 3D2 − 5d6p 3F o
3 33052 32483 3.727 12.52 12.30

5d6s 3D2 − 5d6p 3Do
3 36720 36298 2.748 6.09 6.02

Other (Jn = 3) 4.13 4.13
Total (Jn = 3) 22.73 22.45

Total val. 58.63 58.27
Core + Vc 3.84 3.84
Total 62.47 62.10
Recommended 62.1

aThe values are obtained in the CI + all-order approximation and include RPA, σ, SR, and normalization corrections.
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excited discrete states and a continuum we calculated
αv(ω) using inhomogeneous equation in valence space
rather than sum-over states formula given by Eq. (16) We
use the Sternheimer [24] or Dalgarno-Lewis [25] method
implemented in the framework of the CI+all-order ap-
proach following Ref. [26]. Given the Φ0 wave function
and energy E0 of the |0〉 state, we find intermediate-state
wave functions δψ± from the inhomogeneous equation,

|δψ±〉 =
1

Heff − E0 ± ω
∑
k

|Φk〉〈Φk|D0|Φ0〉

=
1

Heff − E0 ± ω
D0|Φ0〉. (17)

Using Eq. (16) and δψ± introduced above, we obtain

αv(ω) = 〈Φ0|D0|δψ+〉+ 〈Φ0|D0|δψ−〉 , (18)

where superscript v emphasizes that only excitations of
the valence electrons are included in the intermediate-
state wave functions δψ± due to the presence of Heff .

1. Static polarizabilities

In case of static polarizabilities, ω = 0, Eq. (16) is
written as

αv(0) = 2
∑
k

|〈Φ0|D0|Φk〉|2

Ek − E0
. (19)

While we do not use the sum-over-states approach in
the calculation of the polarizabilities, it is important to
establish the dominant contributions to the final values
for the purpose of estimating theoretical uncertainties.
We combine the electric-dipole matrix elements and en-
ergies according to the sum-over-states formula, Eq. (19),
for the valence polarizability to calculate the contribu-
tions of specific transitions between low-lying states and
these are given in table II. Remaining valence contri-
butions of higher-lying states are given in rows labeled
“Other”.

We have carried out two calculations of the dominant
contributions of the intermediate states to the polariz-
abilities. In the first calculation (Column α[B] in Ta-
ble II) we used our theoretical values of the energy levels
in the denominator of Eq. (19). In the second calcu-
lation (Column α[A] in Table II) we used experimental
energies, where available. Corresponding theoretical and
experimental [23] transition energies are given in columns
∆Eth and ∆Eexpt in cm−1. The difference between the
results is -1.6% for the 1S0 polarizability and -0.6% for
the 3D1 and 3D2 polarizabilities, demonstrating that de-
viation of our theoretical energies from the experimental
values does not significantly affect overall accuracy of the
polarizabilities. The absolute values of the corresponding
reduced electric-dipole matrix elements in a.u. are listed
in columns labeled “D”. These are calculated using the

TABLE III. The scalar (α0) and tensor (α2) polarizabili-
ties, obtained in the CI+MBPT+RPA, CI+all-order+RPA,
and CI+all-order+AC approximations (where “AC” means
all corrections) are presented (in a.u.) in columns (1), (2), and
(3), correspondingly. Final (recommended) values are given
in the last column. The uncertainties are given in parentheses.

Polarizability (1) (2) (3) Final

,[-0.3pc] α0(6s2 1S0) 62.5 63.3 63.0 63.0(0.8)

α0(5d6s 3D1) 61.5 64.3 63.5 63.5(2.8)
α2(5d6s 3D1) -4.8 -5.2 -5.1 −5.1(4)

α0(5d6s 3D2) 60.3 62.9 62.1 62.1(2.6)
α2(5d6s 3D2) -5.1 -5.7 -5.6 −5.6(6)

α0(3D1)− α0(1S0) -1.0 1.0 0.5 0.5
α0(3D2)− α0(1S0) -2.2 -0.4 -0.9 −0.9

CI + all-order method and include RPA, σ, SR, and nor-
malization corrections. Calculation of the RPA, σ, and
SR corrections is discussed in [22].

The contributions from αc and αvc terms evaluated in
the RPA approximation are listed together in rows la-
beled “Core +Vc”. Taking into account that the main
contribution to the 3D1 and 3D2 levels comes from the
5d3/26s configuration (99% and 80%, respectively), we

determined αvc terms for the 3D1,2 polarizabilities as
αvc(5d3/2) +αvc(6s). In rows labeled “Total” we present

the total values of the scalar static 1S0, 3D1, and 3D2

polarizabilities. Our final values are given in rows labeled
“Recommended”.

To determine uncertainties of the polarizabilities we
have also calculated them using two other approxima-
tions: the CI+MBPT+RPA and CI+all-order+RPA.
In both cases only RPA corrections were included.
CI+MBPT method omits higher-order core-valence cor-
relations. The results obtained in the CI+MBPT+RPA,
CI+all-order+RPA, and CI+all-order+AC approxima-
tions (where abbreviation “AC” means all corrections,
including RPA, σ, SR, and normalization) are presented
in Table III in columns (1), (2), and (3), correspondingly.

We consider the results obtained in the CI+all-
order+AC approximation as the final values according
to Sr study [27]. Comparison of the data in columns (2)
and (3) in Table III illustrates that the corrections be-
yond RPA only slightly change the values of the 1S0 and
3D1,2 polarizabilities. We estimate the polarizability un-
certainties as the spread of the results in columns (1),
(2), and (3).

2. Dynamic polarizabilities

We have also calculated the dynamic scalar and tensor
polarizabilities for the 1S0, 3D1, and 3D2 states for the
wavelengths of experimental interest. The results, pre-
sented in Table IV, are obtained in the framework of the
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TABLE IV. The dynamic scalar (α0), tensor (α2), and dif-
ferential ∆1,2 ≡ α0(3D1,2)−α0(1S0) polarizabilities (in a.u.),
obtained in the CI+all-order+AC approximation, are calcu-
lated for the wavelengths (frequencies) given in 1st (2nd) line.

λ (nm) 847.7 1064 1560 1760 10600
ω (a.u.) 0.05375 0.04282 0.02921 0.02589 0.00430

6s2 1S0 α0 68.9 66.6 64.6 64.3 63.0

5d6s 3D1 α0 85.4 73.9 67.6 66.6 63.6

α2 −13.0 −8.3 −6.2 −5.9 −5.1

5d6s 3D2 α0 79.6 70.9 65.6 64.8 62.2

α2 −14.1 −9.1 −6.8 −6.5 −5.6

∆1 16.5 7.3 2.9 2.3 0.5
∆2 10.7 4.3 1.0 0.5 −0.9

CI+all-order+AC approximation, i.e., all corrections to
the matrix elements are included.

In Fig. 5 we plot differential scalar polarizabilities
α(3D1)−α(1S0) and α(3D2)−α(1S0) represented by red
solid and blue dashed lines, respectively, vs. the wave-
length λ. The vertical dotted lines correspond to λ =
1064 and 1560 nm.

α(
3 D

1,
2)

 - 
α(

1 S 0
) (

a.
u.

)

0

2.5

5

7.5

10

12.5

15

17.5

λ (nm)
0 2000 4000 6000 8000 104

FIG. 5. (Color online) Differential scalar polarizabilities
α(3D1) − α(1S0) and α(3D2) − α(1S0) represented by red
solid and blue dashed lines, respectively, vs. the wavelength
λ. The vertical dotted lines correspond to λ = 1064 and 1560
nm.

B. Lifetimes of the low-lying states

In Table V, we list the lifetimes τ of the low-lying
6s6p 3,1P oJ and 5d6s 3,1DJ states together with most im-
portant reduced matrix elements, and relevant transition
rates and branching ratios.

The E1, E2, and M1 transition probabilities (in s−1)
are obtained in terms of reduced matrix elements (MEs)
of the electric-dipole, electric-quadrupole, and magnetic-
dipole operators, and transition frequencies ω as

WE1(γJ → γ′J ′) = 2.02613 · 10−6 ω
3 〈γ′J ′||D||γJ〉2

2J + 1
,

WE2(γJ → γ′J ′) = 1.11995 · 10−22 ω
5 〈γ′J ′||QE ||γJ〉2

2J + 1
,

WM1(γJ → γ′J ′) = 2.69735 · 10−11 ω
3 〈γ′J ′||µ||γJ〉2

2J + 1
.

In these equations, MEs of the E1 and E2 operators are
expressed in a.u., MEs of the M1 operator in Bohr mag-
netons (µ0), and the decay rates ω are expressed in cm−1.

We determine the lifetimes, listed in the last column
of Table V, as τ = 1/Wtot with Wtot ≡

∑
kWk, where

Wk are the individual decay rates. The branching ratios,
Bk, are determined as Bk = Wk/Wtot.

To estimate uncertainty of theoretical values, we cal-
culate the following decay rates:

W0 ≡W (6s6p 3P o
1 → 6s2 1S0),

W1 ≡W (6s6p 3P o
1 → 5d6s 3D1),

W2 ≡W (6s6p 3P o
1 → 5d6s 3D2),

W3 ≡W (6s6p 3P o
1 → 5d6s 1D2), (20)

using three different methods: (1) CI+MBPT+RPA, (2)
CI+all-order+RPA, and (3) CI+all-order+AC approx-
imations. These results are given in Table VI. The
spread of the values calculated in these approximations
(1-3) gives an estimate of the uncertainties in the final
results. Comparing the results obtained in the CI+all-
order+RPA (2) and CI+all-order+AC (3) approxima-
tions, we find that the corrections beyond RPA play a
very insignificant role and we take the results presented
in columns labeled (3) as final.

C. Hyperfine quenching of a state with J = 0

Hyperfine quenching rate of a state with total angular
momentum J = 0 is given by

W (γJ = 0→ γ′J ′) =
4α3ω3

3

1

(2J + 1)(2I + 1)

×
∑
k

〈I||N (k)||I〉2

3(2k + 1)
|Sk|2 , (21)



9

TABLE V. The energies (in cm−1) are counted from the ground 6s2 1S0 state. 5th column gives type of transition. The reduced
MEs of E1 and E2 operators (in a.u.) and M1 operator (in µ0) are presented in 6th column. The individual decay rates, Wk (in
s−1), branching ratios (Bk), and lifetimes (τ) are listed in columns 7-9. These quantities are evaluated in the CI+all-order+AC
approximation. The numbers in brackets represent powers of 10.

Upper level Lower level Trans-n ME Wk Bk τ
Term Energy Term Energy s−1

Transitions from the even-parity states

6s5d 3D1 11796 6s2 1S0 0 M1 0.0006 5.14[-6] 1.00 1.95[+5] (s)

6s5d 3D2 12435 6s2 1S0 0 E2 2.509 4.19[-2] 0.88 20.9 (s)
6s5d 3D1 11796 E2 4.523 4.88[-8] 0.00

11796 M1 2.055 5.94[-3] 0.12

6s5d 3D3 14199 6s5d 3D1 11796 E2 1.601 3.29[-6] 0.00 10.8 (s)
6s5d 3D2 12435 E2 4.969 6.74[-6] 0.00

12435 M1 2.094 9.27[-2] 1.00

6s5d 1D2 17333 6s2 1S0 0 E2 10.63 3.96 0.92 0.23 (s)
6s5d 3D1 11796 E2 1.018 1.21[-4] 0.00

11796 M1 0.524 2.51[-1] 0.06
6s5d 3D2 12435 E2 1.319 1.10[-4] 0.00

12435 M1 0.218 3.01[-2] 0.01
6s5d 3D3 14199 E2 1.327 1.19[-5] 0.00

14199 M1 0.531 4.68[-2] 0.01

Transitions from the odd-parity states

6s6p 3P o
0 27264 5d6s 3D1 11796 E1 1.480 1.64[+7] 1.00 61.0 (ns)

6s6p 3P o
1 28503 6s2 1S0 0 E1 0.820 1.05[+7] 0.38 35.7 (ns)

5d6s 3D1 11796 E1 1.287 5.22[+6] 0.19
5d6s 3D2 12435 E1 2.084 1.22[+7] 0.43
5d6s 1D2 17333 E1 0.329 1.00[+5] < 0.01

6s6p 3P o
2 32453 5d6s 3D1 11796 E1 0.351 4.40[+5] 0.02 35.8 (ns)

5d6s 3D2 12435 E1 1.220 4.84[+6] 0.17
5d6s 3D3 14199 E1 3.015 2.24[+7] 0.80
5d6s 1D2 17333 E1 0.445 2.77[+5] 0.01

6s6p 1P o
1 38224 6s2 1S0 0 E1 3.518 4.67[+8] 0.95 20.8 (ns)

5d6s 3D2 12435 E1 0.814 7.67[+6] 0.02
5d6s 1D2 17333 E1 0.994 6.08[+6] 0.01

TABLE VI. The decay rates Wk determined by Eq. (20) (in s−1) and branching ratios, obtained in (1) CI+MBPT+RPA, (2)
CI+all-order+RPA, and (3) CI+all-order+AC approximations, are listed. The experimental values from section III A are given
in the last column. The numbers in brackets represent powers of 10.

Probabilities Branching ratios

(1) (2) (3) (1) (2) (3) Experim.

W0 1.24[+7] 1.07[+7] 1.05[+7] B0 0.408 0.375 0.376 0.392
W1 5.33[+6] 5.33[+6] 5.22[+6] B1 0.176 0.186 0.186 0.186
W2 1.25[+7] 1.25[+7] 1.22[+7] B2 0.413 0.435 0.434 0.418
W3 9.59[+4] 1.02[+5] 1.00[+5] B3 0.00316 0.00357 0.00357 0.00436

where ω is the (γJ = 0→ γ′J ′) transition frequency and

Sk ≡
√

3

2k + 1

∑
γn

〈γ′J ′||D||γnJn〉〈γnJn||T (k)||γJ = 0〉
En − EγJ

+
∑

γmJm 6=γ′J′

〈γ′J ′||T (k)||γ
m
J

m
〉〈γ

m
J

m
||D||γJ = 0〉

Em − Eγ′J′
, (22)

where Q, µ, and T (k) are defined in Appendix A. The
175Lu+ ion has the nuclear spin I = 7/2. Its nuclear
magnetic moment µ, expressed in nuclear magnetons µN ,
is µ/µN = 2.2323(11) [28] and the nuclear quadrupole
moment Q = 3.49(2) barn [29].

In Table VII we list absolute values of the reduced ma-
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trix elements of T (1) and T (2) operators. To illustrate the
role of different corrections, we carried out 3 calculations
and found the MEs in (1) CI+MBPT+RPA, (2) CI+all-
order+RPA, and (3) CI+all-order+AC approximations.
Respective values are listed in the table in columns la-
beled “(1)”, “(2)”, and “(3)”.

In contrast with the MEs of the electric-dipole oper-
ator, the corrections beyond RPA (σ, SR, and normal-
ization) are large for the matrix elements of T (1) and
T (2) operators. They contribute to large MEs at the
level of 10% and even more to smaller MEs. In partic-
ular, it was essential to account for the structural ra-
diation (SR) corrections for calculating the MEs of the
T (2) operator between DJ states. The SR contributions
are ∼ 20% to 〈5d6s 3D1||T (2)||5d6s 3D2,3〉 and 40% to

〈5d6s 3D1||T (2)||5d6s 1D2〉.
We note that while the RPA corrections were calcu-

lated to all orders, the corrections beyond RPA were
obtained only in the 2nd order of MBPT, which usu-
ally overestimates respective contribution. For this rea-
son our final (recommended) values are based on the re-
sults obtained in the CI+all-order+RPA approximation
while the assigned uncertainties are determined as the
differences between the CI+all-order+RPA and CI+all-
order+AC values.

TABLE VII. The absolute values of MEs of the T (1) and
T (2) operators (in MHz) obtained in (1) CI+MBPT+RPA,
(2) CI+all-order+RPA, and (3) CI+all-order+AC approxi-
mations are presented in columns labeled “(1)”, ”(2)”, and
“(3)”, correspondingly. The final values and assigned uncer-
tainties (in parentheses) are given in last column.

ME (1) (2) (3) Final

〈6s6p 3P o
1||T (1)||6s6p 3P o

0〉 12427 11964 10833 11960(1000)

〈6s6p 1P o
1||T (1)||6s6p 3P o

0〉 4324 4352 3965 4350(400)

〈5d6s 3D1||T (1)||5d6s 3D2〉 19465 18682 16780 18680(1900)

〈6s6p 3P o
2||T (2)||6s6p 3P o

0〉 1789 1780 1672 1780(110)

〈5d6s 3D1||T (2)||5d6s 3D3〉 200 198 250 200(50)

〈5d6s 3D1||T (1)||5d6s 1D2〉 10718 10618 9750 10620(870)

〈5d6s 3D1||T (2)||5d6s 1D2〉 76 70 116 70(45)

We determined the hyperfine quenching rates for the
6s6p 3P o

0 state. We present the results obtained in
(1) CI+MBPT+RPA, (2) CI+all-order+RPA, and (3)
CI+all-order+AC approximations in Table VIII. The
probability of the main E1 (6s6p 3P o

0 - 5d6s 3D1) transi-
tion, W (0), is given in the 1st line. The quenching rates
of the 6s6p 3P o

0 - 6s2 1S0, 5d6s 3D2,3, 5d6s 1D2 transi-
tions, calculated using Eqs. (21) and (22), are listed in
lines 2-5, correspondingly. We sum all listed hyperfine
quenching rates and present in last line of the table the
branching ratio of this sum to W (0).

As we discussed above we consider the results ob-
tained at the CI+all-order+RPA stage as the final (rec-

ommended) values as the calculations of other corrections
beyond RPA is unreliable for the matrix elements of of
the T (k) operators. The uncertainties were estimated as
the largest difference between the CI+all-order+RPA re-
sults and the CI+MBPT+RPA and CI+all-order+AC
values.

TABLE VIII. The 6s6p 3P o
0−5d6s 3D1 transition probability,

W (0), is given in first line (in s−1). The quenching rates of
the 6s6p 3P o

0 − 6s2 1S0, 5d6s 3D2,3, 5d6s 1D2 transitions, ob-
tained in (1) CI+MBPT+RPA, (2) CI+all-order+RPA, and
(3) CI+all-order+AC approximations, are listed (in s−1) on
lines 2-5, correspondingly. The branching ratios (BR) of the

hyperfine quenching rates to W (0) are presented in last line.
The uncertainties are given in parentheses. The numbers in
brackets represent powers of 10.

(1) (2) (3) Final

3P o
0 − 3D1 1.69[+7] 1.68[+7] 1.64[+7] 1.68(4)[+7]

3P o
0 − 1S0 3.55 2.96 2.38 2.96(59)

3P o
0 − 3D2 3.26 2.96 2.31 2.96(65)

3P o
0 − 3D3 0.0011 0.0010 0.0008 0.0010(2)

3P o
0 − 1D2 0.051 0.050 0.041 0.050(9)

BR 4.05[-7] 3.55[-7] 2.88[-7] 3.55(65)[-7]

V. DISCUSSION

We have measured several key properties of 175Lu+

that are relevant to practical clock operation with this
ion. Hyperfine induced mixing results in a small decay
rate out the detection channel which is dominated by
decay into the 1S0 and 3D2 levels. This rate provides
a fundamental limit to the detection error rate given by
w/(Wq) which is the probability the ion is pumped dark
with zero photons detected. For our current collection
efficiency this gives a limit of 1.0× 10−4. The measured
decay rate does not impose any limitations on cooling as
most decays are to 1S0 and 3D2 which can be quickly
repumped.

During clock operation occupation of the 1D2 level
would mostly occur due to repumping to 3D1. This oc-
curs with a probability of approximately 2%. In typi-
cal clock operation, occupation is split between ground
and excited state. So, on average, 1% of the cycles will
be compromised provided the cycle time is large enough
for the ion to decay from 1D2 with reasonable probabil-
ity before the next cycle begins. Occupation of the 3D3

would result in significant dead-time. However, based on
the analysis here, these events are infrequent, happen-
ing only once every 104 clock cycles. In a multi-ion clock
[15] these considerations would only result in a very small
number fluctuations such that additional repump lasers
would not be necessary.

Calculation of polarizabilities given in section IV A
indicate that the differential scalar polarizability, ∆α,
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for the 1S0 to 3D1 may not be as reported in [16] and
this would have immediate consequences for the proposal
given in [15]. It is therefore essential to obtain an ex-
perimental value for this quantity. We have given cal-
culations of ∆α at a number of wavelengths that are
readily accessible to us. Measurement of ∆α at these
wavelengths would serve as a useful benchmark for the
calculations given here.

Intuitively we can expect ∆α to be more negative for
the 1S0 to 3D2 transition and we have also given associ-
ated calculations for this case as well. Measurements and
calculations here demonstrate a suitable lifetime for clock
operation. Although this transition would be more tech-
nically difficult to implement, systematic shifts would be
significantly lower than for the 1S0 to 3D2 case. Contri-
butions from the 3D1 and 3D3 levels have opposite sign
resulting in a partial cancellation of the residual magnetic
field shift for the average frequency. Furthermore, due to
the reduced lifetime relative to the 3D1 level, much less
intensity is needed to drive the 1S0 to 3D2 transition re-
sulting in a substantial reduction in the AC stark shift
from the probe beam itself.
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Appendix A: The Hyperfine Interaction

The hyperfine structure (HFS) coupling due to nuclear
multipole moments may be represented as a scalar prod-
uct of two tensors of rank k,

Hhfs =
∑
k

Hhfs,k =
∑
k

(
N(k) ·T(k)

)
,

where N(k) and T(k) act in the space of nuclear and elec-
tronic coordinates, respectively. Using this expression we
write the Hhfs matrix element as

〈γ′IJ ′;FMF |Hhfs|γIJ ;FMF 〉 = (−1)I+J
′+F

×
∑
k

〈I||N (k)||I〉〈γ′J ′||T (k)||γJ〉
{
I I k
J J ′ F

}
,

where I is the nuclear spin, J is the total angular momen-
tum of the electrons, F = J + I, MF is the projection of

the total momentum F to quantization axis, and γ en-
capsulates all other atomic quantum numbers.

Below, we restrict the treatment of Hhfs to the first
two terms in the sum over k, i.e., we consider only the
interaction of magnetic dipole and electric quadrupole
nuclear moments with the electrons. Thus,

Hhfs ≈ N(1) ·T(1) + N(2) ·T(2).
It is convenient to express the matrix elements
〈I||N (1)||I〉 and 〈I||N (2)||I〉 through the nuclear mag-
netic dipole moment µ and nuclear electric quadrupole
moment Q, respectively. They are defined as follows

µ = 〈IMI = I|µz|IMI = I〉 =

(
I 1 I
−I 0 I

)
〈I||µ||I〉

=

√
I

(2I + 1)(I + 1)
〈I||µ||I〉,

Q = 2〈IMI = I|Q(2)
0 |IMI = I〉 = 2

(
I 2 I
−I 0 I

)
〈I||Q||I〉

= 2

√
I(2I − 1)

(2I + 3)(2I + 1)(I + 1)
〈I||Q||I〉.

Defining N(1) and N
(2)
q in dimensionless form as

N(1) = µ/µN ,

N (2)
q = Q(2)

q /[1 barn],

where µN is the nuclear magneton (µN = |e|~
2mpc

, with mp

being the proton mass), and the reduced matrix elements
are given by

〈I||N (1)||I〉 =

√
(2I + 1)(I + 1)

I

µ

µN
,

〈I||N (2)||I〉 =
1

2

√
(2I + 3)(2I + 1)(I + 1)

I(2I − 1)

[
Q

1barn

]
.

We define one-particle electronic tensors (in a.u.) as

T (1)
q = −

iα
√

2
(
γ0γ ·C(0)

1q (r̂)
)

r2
µN ,

T (2)
q = −C

(2)
q (r̂)

r3
× [1 barn] .

Here α is the fine-structure constant, C
(0)
1q is a normalized

spherical harmonic, γ0 and γ are the Dirac matrices, and

C
(2)
q is a normalized spherical function.
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