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When considering the effect of quantum noise (QN) in a phase-insensitive linear amplifier or attenuator, it 

is customary to use the single channel Caves model (SC-CM). While this model is valid in simple situations 

such as the presence of a beam splitter, it is not necessarily valid when a system with many degrees of freedom 

is involved. In order to address this issue, we consider in this paper various atomic transitions corresponding to 

amplification or attenuation, using the master equation (ME) based approach to model the QN and comparing 

the results with the SC-CM. For a four-level system that consists of a transition producing a broad gain peak 

and a transition producing an absorption dip, which results in perfect transparency at the center, we observe a 

catastrophic breakdown of the SC-CM. We also show that for a general two-level atomic system, the SC-CM 

does not apply, except in the limiting case when only either amplification or attenuation exists. A special case 

where the two models predict the same result is a Λ-type three level EIT (Electromagnetically Induced 

Transparency) system, in which the QN at zero detuning vanishes while the system is in the dark state.  We also 

study an optically-pumped five-level Gain EIT (GEIT) system which has a perfect transparency dip 

superimposed on a gain profile, and yields the negative dispersion suitable for use in enhancing the sensitivity-

bandwidth product of an interferometric gravitational wave detector.  In this case, we find that, for some set of 

parameters, the QN is vanishingly small at the center of the dip, and the SC-CM agrees closely with the ME 

model.  However, we also find that for some other set of parameters, the SC-SM model disagrees strongly with 

the ME model. All these cases illustrate a wide range of variations in the degree of disagreement between the 

predictions of the SC-CM and the ME approach.   

PACS numbers: 42.50.-p, 42.50.Lc, 32.80.-t, 04.80.Nn 

 

I. INTRODUCTION 
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The calculation of quantum noise (QN) is important for determining the fundamental limitations of 

various systems of interest in precision metrology. The quantum noise in a linear amplifier or attenuator 

can generally be determined by the canonical commutation relation, as given by the so-called single 

channel Caves model (SC-CM) [1, 2]. The fundamental quantum limitation in a phase-insensitive linear 

amplifier has also been studied in terms of the average fidelity, which is experimentally testable [3].  

Recently, we have proposed a gravitational wave detector that incorporates the white light cavity 

(WLC) [4, 5, 6, 7, 8, 9, 10] effect by adding a negative dispersion medium (NDM) in the signal recycling 

cavity in the advanced LIGO (aLIGO) [11, 12, 13, 14] design, which we call WLC-SR [15]. To calculate 

the QN for the detector, we need to consider the QN due to the NDM. While the SC-CM predicts the level 

of QN for a given amplification or absorption factor, for an NDM realized using multiple atomic transitions, 

it is not a priori obvious whether the SC-CM is valid. In fact, it is easy to envision a case where the 

conclusion of the SC-CM runs counter to intuitive expectations. Consider, for example, a case where the 

medium consists of atoms of two different species. It is possible to prepare these two species in a way so 

that the probe will experience a relatively broad gain spectrum from one species, and a narrower absorption 

spectrum from the other. By tuning parameters, such as the ratio of densities of the two species, it is 

possible to produce a net gain spectrum, which vanishes at a particular probe detuning, due to cancelation 

of non-zero gain from one species and the matching absorption from the other. At this detuning, the SC-

CM predicts no QN. However, since each species has a significant population in the excited state at this 

condition, it seems obvious that there should be a considerable amount of quantum noise due to 

spontaneous emission from these atoms. In order to resolve this apparent inconsistency, it is necessary to 

determine the noise using a more fundamental approach, namely the Markovian master equation (ME) [16] 

that describes the interaction between the atom, the semi-classical pump field, and the quantized probe 

mode. Here, we apply this approach to determine the QN for various types of phase-insensitive linear 

amplifiers or attenuators realized using atomic systems. We show the SC-CM predicts significantly 

different results compared to the ME model in some cases, and identical results for some special cases. We 

do not find a general rule that can be applied to determine when the application of the SC-CM is expected 

to be a good approximation of the more exact result.  As such, we conclude that one must always make use 

of the ME approach when dealing with resonant or near-resonant atomic systems. The technique presented 
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in this paper would be useful in the treatment of quantum processes in linear phase-sensitive and insensitive 

optical systems and would enable accurate evaluation of the QN in many systems of interest in precision 

metrology. 

The rest of the paper is organized as follows. In Sec. II, we introduce the ME approach for calculating 

the QN in atomic systems. In Sec. III, we show the QN results in a two-level atomic system calculated 

using the ME, and then compare the results to the SC-CM. In Sec. IV, we apply the ME approach to a four-

level atomic system, which produces a negative dispersion. In Sec. V, we show that in a Λ-type EIT 

(Electromagnetically Induced Transparency [17, 18, 19, 20, 21, 22]) system, the results computed using the 

ME agree with the SC-CM, showing vanishing QN at zero detuning of the probe. Finally, in Sec. VI, we 

describe a scheme called Gain-EIT (GEIT) that has the desired properties for enhancing the sensitivity-

bandwidth product of the WLC-SR scheme [15], and analyze its QN. In Appendix 1, we show the details 

steps for the ME approach for a two-level atomic system discussed in Sec. III. In Appendix 2, we compare 

the susceptibilities of four different systems as determined by the ME model with the corresponding results 

obtained from semi-classical calculations, showing excellent agreement in each case. 

 

 

II. GENERAL OUTLINE OF THE MASTER EQUATION APPROACH 

We consider first a general situation where a collection of non-interacting atoms is subjected to 

resonant or near-resonant optical fields. These fields consist of two parts: a pump field which is strong 

enough so that it can be described semi-classically, and a single-mode probe field which is vanishingly 

small in intensity, and is described quantum mechanically. (In some cases, the effect of the pump field may 

be modeled simply as a pumping rate from one state to another.) In addition, the atoms interact with a 

thermal reservoir of photons. For optical excitations, one can assume the temperature of the reservoir to be 

essentially zero, so that the mean photon number in the thermal reservoir is zero. Under this condition, the 

effect of the thermal reservoir can be evaluated using the Weisskopf-Wigner theory of spontaneous 

emission [16]. The resulting evolution of the atomic system due to the interaction with the reservoir only 

can be modeled semi-classically by adding source, decay and dephasing terms in the equation of motion for 

the (reduced) density matrix of the atoms. As such, the effect of the interaction with the reservoir modes 



 4

does not need to be taken into account explicitly. If we define  as the density operator of the atom-field 

system, its evolution can be expressed as 

   (1) 

where  represents the source, decay and dephasing terms resulting from the interaction with the 

reservoir, and the Hamiltonian  is a sum of the atomic Hamiltonian , the field Hamiltonian  

(excluding the reservoir), and the atom-field interaction Hamiltonian  (again, excluding the interaction 

with the reservoir).  

As we have shown in Ref. 23, the decay and dephasing of the reduced density operator for atoms can 

be accounted for by adding imaginary terms to the diagonal elements of , corresponding to half the 

decay rate of the corresponding atomic state. Even though here we are dealing with the atom-field density 

operator, this can still be done, since  acts only on the atomic degree of freedom. For example, if an 

atomic state α  has a net decay rate of γ α , then the diagonal term of the atomic Hamiltonian for this state, 

, is changed to . When the net Hamiltonian is commuted with the density operator, this 

has the effect of adding a term such as , where n  and ′n  are the quantum states of the 

probe field. In addition, if a state β  has a net decay rate of γ β , then this change adds a term such as 

, as well as a dephasing term such as . Thus the quantum 

state of the probe field remains unaffected by the decay and dephasing caused by spontaneous emission. 

The source terms, accounting for the entry into certain states after they decay from higher energy states, can 

be added explicitly [23]. For example, if atoms from level α  decays to level β  at the rate of γ αβ , then 

the source term would be of the form , where n  and ′n  indicate the quantum states of 

the probe field. Thus the quantum state of the probe field remains conserved during the redistribution of 

population due to spontaneous emission.  

Furthermore, we make the rotating wave approximation, and then transform the system into an 

interaction picture. Denoting the interaction-picture density operator as ρa− f , and the interaction-picture 

Hamiltonian with complex diagonal elements as , we can now write 
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   (2) 

where &ρa− f ,Source  represents the source terms. We can thus derive the equation of motion for the reduced 

density operator of the field %ρ ≡ Tratom ρa− f( )  following two steps: first, solve Eq. (2) for 

ραn,β ′n ≡ α ,n ρa− f β, ′n , where α  and β  are atomic states, and n  and ′n  are quantum states of the 

probe field; second, plug the solution into Eq. (2) and trace over all the atomic states to derive the equation 

of motion for the field density operator %ρ . If  were Hermitian, we would write 

   (3) 

However, since  here is not Hermitian due to the addition of the complex terms, this becomes 

   (4) 

Then we can derive the equation of motion for various moments of the annihilation ( a ) and creation 

( a†) operator of the field a†man  by using the following relation: 

 d
dt

a†man = Trfield a†man %&ρ( ). (5) 

Using Eq. (5), we can derive the QN, the details of which are described later.  

 

III. TWO-LEVEL ATOMIC SYSTEM 

As a first example, let us consider the interaction of a closed two-level atom excited by a quantized 

probe with frequency υ , as shown schematically in Fig. 1(a). The resonance frequency of the transition 

from the lower level b  to the upper level a  is ω = ω a − ωb ; the rate at which the atom is excited to a  

from b  is γ op ; the rate of decay from a  to b  is γ a . The optical pumping from b  to a  can in 

principle be achieved by coupling b  to an auxiliary level c  with a semi-classical laser field, from which 

it could decay to an auxiliary level d  and then to a , as shown in Fig. 1(b). However, the net effect can 

be described by an incoherent pumping rate of γ op .  
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Fig. 1 (a) Two-level atomic system; (b) Schematic illustration of the optical pumping γ
op

 from level b  to a .  

Let us denote the annihilation and creation operator of the field by a  and a†. The Hamiltonian after 

rotating wave transformation and adding the complex terms is then  

   (6) 

where  is the coupling constant for the transition a → b ,   is the electric-dipole moment 

and . Note here that, for simplicity, we assume that the atoms are sitting inside a 

unidirectional ring cavity and V  is the volume of the cavity mode. Therefore the equation of motion can be 

written as: 

   (7) 

The explicit set of equations for the density matrix elements are shown in Appendix 1 as Eq. (A10)-(A13). 

It contains an infinite number of equations since the value of {n, ′n }  extends from zero to infinity, as 

illustrated in Fig. 2, where the couplings between the matrix elements are indicated by the curves with 

arrows. We can see that all the couplings are within a given manifold (column), except for the couplings 

shown by the slanted and dashed lines, which couples elements in different manifolds. Here, we have 

indexed, arbitrarily, each manifold by the unprimed number of photons accompanying atom in the a  

state. We will follow this indexing convention throughout this paper. 
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Fig. 2 Illustration of atom-field density matrix elements and their coupling.  

Using the relation that ρan,a ′n + ρbn,b ′n = %ρn ′n  and ρan+1,a ′n +1 + ρbn+1,b ′n +1 = %ρn+1, ′n +1 , we can decouple 

different manifolds. Then the couplings between different manifolds are removed, and we get a closed 

system ρan,a ′n ,  ρan,b ′n +1,  ρbn+1,a ′n ,  ρbn+1,b ′n +1  (enclosed by a dashed box in Fig. 3) within the infinite set of 

density matrix elements, described by Eqs. (A11), (A12), (A14) and (A15) in Appendix 1, and coupled to 

source terms %ρn ′n ,  %ρn+1, ′n +1 , where we recall that %ρ  is the reduced density operator for the field only. The 

solution of these equations in the linear regime where g  is very small (shown in Appendix 1) are plugged 

into the equation of motion for the reduced density matrix of the field as in Eq. (4), which can be written as 

   (8) 

In the following subsections we discuss the results under resonant and non-resonant conditions. 

 
Fig. 3 Illustration of atom-field density matrix elements and their coupling after removing the coupling between different manifolds.  
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A. Resonant case 

In the resonant case Δ = 0 , we have 

   (9) 

where . Eq. (9) can also be written as 

   (10) 

To prove the equivalence, we show that since a n = n n −1 ,a† n = n +1 n +1 , we get: 

 n aa† %ρ ′n = n +1( ) %ρn ′n , n a† %ρa ′n = n ′n %ρn−1, ′n −1, n %ρaa† ′n = ′n +1( ) %ρn ′n ,  (11) 

 n a†a %ρ ′n = n %ρn ′n , n a %ρa† ′n = n +1( ) ′n +1( ) %ρn+1, ′n +1, n %ρa†a ′n = ′n %ρn ′n . (12) 

We can derive the equations of motion for various moments of a  and a†  from Eq. (10) using Eq. (5): 

   (13) 

   (14) 

   (15) 

Therefore the moments of a  and a†  as a function of time are determined as follows: 

 a t = Gres a 0
  (16) 

   (17) 

 a2
t
= Gres a2

0
  (18) 

where . If we define two quadratures as Xθ  and Xθ+π /2 , with 

 Xθ = 1
2

a†eiθ + ae− iθ( ), (19) 

it can be shown that  

 Xθ t
= Gres Xθ 0

,  (20) 

 .  (21) 



 9

If we write the evolution of the system as: 

 at = Gres a0 + X1F1
† + X2F2 , (22) 

 , . (23) 

where a0  is the input, at  is the output, F1
†  and F2   are vacuum modes, and [Fi ,Fj

† ] = δ ij  (i, j = 1,2), then it 

will give us a power gain of Gres  and the same noise as that in Eq. (21). The commutation relation that 

[ak ,ak
†] = 1,ak = a0,at  will also be preserved.  

We next compare these results to the Caves model. Let us first recall briefly the SC-CM [1, 2]. For a 

phase-insensitive linear amplifier, the SC-CM can be written as  

 at = Ga0 + G −1F†,G > 1. (24)  

This is illustrated in Fig. 4(a), where the amplifier is modeled as a beam combiner with two inputs and an 

output. Here, G  is the power gain, and F†  is the vacuum mode, which is responsible for the added noise. 

Note here that the commutation relation for the output is preserved since [F,F†] = 1. We can get 

 Xθ t
= G Xθ 0

,   (25) 

 ΔXθ
2

t
= G ΔXθ

2
0

+ 1
4

G −1( ).  (26) 

On the other hand, for a phase-insensitive linear attenuator, the SC-CM can be written as  

 at = Ga0 + 1− GF,G < 1, (27) 

where G  is the power attenuation, and the vacuum mode is written as F  in order to preserve the 

commutation relation. This is illustrated in Fig. 4(b). Therefore, we get Eq. (25) and  

 ΔXθ
2

t
= G ΔXθ

2
0

+ 1
4

1− G( ).  (28) 
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Fig. 4 Illustration of the SC-CM for (a) a phase-insensitive linear amplifier and (b) a phase-insensitive linear attenuator.  

It can be seen that in the two-level atomic system the evolution of the mean value for the quadratures 

using the ME approach agrees with the result of the SC-CM, while the results for evolution of the variance 

differ. However, in the limiting case with pure amplification where γ op ≠ 0  and γ a = 0 , we have 

 and , then , X1 = Gres −1  and X2 = 0 , thus arriving at the 

same results as in Eqs. (24)-(26).  Similarly, in the limiting case with pure attenuation where γ a ≠ 0  and 

γ op = 0 , we have  and , then , X2 = 1− Gres  and X1 = 0 , 

therefore we arrive at the same results as in Eqs. (27)-(28).  In summary, a general two-level atomic system 

cannot be described by the SC-CM. For a two-level system, the SC-CM applies only when pure 

amplification or attenuation exists. 

Since the single-channel Caves model does not agree with the ME model in a general two-level system, 

we may attempt to build a two-channel Caves model. Extending the beam combiner approach for the SC-

CM model, we now use two beam combiners.  As shown in Fig. 5 (a), the left beam combiner introduces an 

amplification ( G1 ) while the right one introduces an attenuation ( G2 ), and there is also an input vacuum 

noise for each beam combiner: F1
†  and F2 . The output of the left and the right beam combiners are 

determined by  

 %at = G1a0 + G1 −1F1
†,  (29) 

 at = G2 %at + 1− G2 F2 ,  (30) 

For the output of each beam combiner, the commutation relation is preserved. In order to get the correct 

gain factor and the correct amount of noise for the quadratures of the field as shown in Eqs. (20) and (21), 

we can choose the attenuation factor for the second channel and the amplification factor for the first 

channel respectively as  and G1 = Gres / G2 .  

However, there are two problems with this model. First, in order for a two-channel Caves model to be 

a useful construct, one must be able to infer the values of G1  and G2  via mere inspection of the system. As 

we see here, this is not at all the case. One must construct the ME model first in order to determine what 
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G1  and G2  have to be. Second, and more importantly, even the two-channel Caves model where G1  and 

G2  are determined from the ME gives the correct value of QN only when the probe is propagating from left 

to right. To see this, consider the situation where the probe propagates from right to left, as illustrated in 

Fig. 5 (b). In this case, the outgoing field ′at  will not be the same as at : the amplitude of the net gain for 

the two stages is again Gres , but the additional noise is 

  (31) 

which is different from that in Eq. (21). Therefore, it is not possible to construct a two-channel Caves 

model represented in terms of effective beam combiners.  

 

Fig. 5 (a) Illustration of two-channel Caves model; (a) Illustration of oppositely propagating fields in the two-channel Caves model. 

 

B. Non-resonant case 

When the field is off resonance with the two-level atom ( Δ ≠ 0 ), the equation of motion for the field is  

   (32) 

where  

  (33) 

Eq. (32) can be written in the form: 

   (34) 

Note that the values of  and  are different compared to Eq. (10). Furthermore, there is an additional 

term , resulting in a phase shift in the output, as will be shown later. When Δ = 0 , we 
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have  and , and the results reduces to the same as those in Sec. III A. We have 

shown in Sec. A of Appendix 2 that the susceptibility of this system determined by the ME model agrees 

with the result following the semi-classical approach. 

We can now derive the equations of motion for moments of a  and a†: 

   (35) 

   (36) 

   (37) 

Solving these we can get the results: 

 a t = G a 0
 , (38) 

  , (39) 

 a2
t

= G a2
0
 , (40) 

where . Then it can be shown that 

 Xθ t
= G Xθ 0

,   (41) 

 . (42) 

Here we use the symbol  to denote  

  (43) 

Note that in addition to the gain or loss coefficient , the quadratures also undergo a phase shift 

. As in the resonant case, this result differs significantly from that of the SC-CM. Similarly, only in the 

limiting cases of pure amplification or attenuation, it is possible to construct an SC-CM model, with the 

exception that the amplitude gain or attenuation factor contains a phase shift coefficient.  
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IV. FOUR-LEVEL ATOMIC SYSTEM 

Consider next the interaction of a field with frequency υ  and a four-level atomic system, as shown 

schematically in Fig. 6. Briefly, it consists of two transitions, one of which would produce a broad gain 

spectrum, while the other would yield a narrow dip in the gain spectrum. As such, such a system can 

function as an NDM. 

 

Fig. 6 Four-level atomic system 

The Hamiltonian for the atom-field system in the interaction picture after addition of complex terms is: 

   (44) 

where Δa = υ − ω a − ωb( ) ≡ Δ , Δc = υ − ω c − ω d( ) ≡ Δ + δ . The matrix elements are  

 (45) 

  (46) 

The equations of motion for the density matrix are then derived from Eq. (2): 

   (47a) 

    (69b) 

    (69c) 

    (69d) 
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   (69e) 

   (69f) 

   (69g) 

   (69h) 

   (69i) 

   (69j) 

   (69k) 

   (69l) 

   (69m) 

   (69n) 

   (69o) 

   (69p) 

where γ αβ = ( ′γ α + ′γ β ) / 2,α ,β = a,b,c,d  with ′γ a = γ a , ′γ b = γ op + γ bd , ′γ c = γ c  and ′γ d = γ db . It can be seen 

that Eqs. (47a), (69f) and (69p) contain terms ρbn,b ′n , ρan+1,a ′n +1 and ρcn+1,c ′n +1 , which fall outside of the n-

manifold of density matrix elements (following the indexing notation we introduced earlier). Note that one 

of these ( ρbn,b ′n ) belongs to the (n-1)-manifold, while the other two ( ρan+1,a ′n +1 and ρcn+1,c ′n +1 ) both belong to 

the (n+1)-manifold. Using the constraint that ρan,a ′n + ρbn,b ′n + ρcn,c ′n + ρdn,d ′n = %ρn ′n  cannot totally remove the 

coupling between different manifolds, unlike the case in Sec. III. We make use of the steady state solutions 

of the atomic system (when the probe field is zero) such as 
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 ρaa
0( ) =

γ opγ db

γ opγ db + γ a (γ bd + γ db )
, ρbb

0( ) = γ aγ db

γ opγ db + γ a (γ bd +γ db )
, ρcc

0( ) = 0, ρdd
0( ) = γ aγ b0

γ opγ db +γ a (γ bd + γ db )
,   (48) 

to make the approximation that 

  (49) 

which is valid for very weak fields. Using the same argument, we can approximate that 

 , (50) 

 . (51) 

The use of these approximations is validated in Sec. B in Appendix 2 by showing that the susceptibilities 

calculated using the ME model with these approximations agree with the semi-classical results. Solving the 

set of equations with the same method as used in Eqs. (A16)-(A19) in Appendix 1, we get the matrix 

elements in the linear regime as 

 ρan,b ′n +1 =
igγ db ′n +1γ op %ρn ′n − n +1γ a %ρn+1, ′n +1( )

γ ab + iΔ( ) γ a(γ bd + γ db ) + γ opγ db⎡⎣ ⎤⎦
, ρbn+1,a ′n =

−igγ db n +1γ op %ρn ′n − ′n +1γ a %ρn+1, ′n +1( )
γ ab − iΔ( ) γ a(γ bd + γ db ) + γ opγ db⎡⎣ ⎤⎦

,  (52) 

 ρcn,d ′n +1 = −
ig n +1γ aγ bd %ρn+1, ′n +1

γ cd + i Δ + δ( )⎡⎣ ⎤⎦ γ a(γ bd + γ db ) + γ opγ db⎡⎣ ⎤⎦
, ρdn+1,c ′n =

ig ′n +1γ aγ bd %ρn+1, ′n +1

γ cd − i Δ +δ( )⎡⎣ ⎤⎦ γ a (γ bd + γ db ) + γ opγ db⎡⎣ ⎤⎦
.(53) 

Tracing over the atomic states in Eq. (2), we get 

   (54) 

which is essentially the same as  

   (55) 

Plugging in the solutions in Eq. (52)-(53), we derive that 

   (56) 

where  

  (57) 
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  (58) 

  (59) 

Alternatively, as shown in Sec. III.A, Eq. (56) can be written as 

   (60) 

We can then derive the equations of motion for a†man : 

   (61) 

   (62) 

   (63) 

whose solutions are 

 a t = G a 0
  (64) 

   (65) 

 a2
t

= G a2
0
  (66) 

where . As a result, 

 Xθ t
= G Xθ 0

  (67) 

   (68) 

In Fig. 7, we plot  and , which is proportional to the gain and phase shift, respectively, 

as a function of Δ . Fig. 7 (a) shows a dip at Δ = −δ  in the broad gain profile, and it can be seen from Fig. 

7(b) that the system entails a negative dispersion around Δ = −δ . The additional QN term in Eq. (68) 

differs from that in Eq. (26) predicted by the SC-CM. Therefore, the SC-CM does not apply to the four-

level atomic system in describing the QN. This disagreement is catastrophic, since the SC-CM prediction 

can in no way be thought of as an approximation of the actual result. 
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Fig. 7 Plot of ε  and  as a function Δ / (2π )  in the four-level system in Fig. 6. 

Let us consider the noise at the dip ( Δ = −δ ). Denote T  as the interaction time through the medium, 

and the corresponding gain as GT = exp(2εT ) . At Δ = −δ , there is perfect transparency ( GT = 1), so that

ε = 0. However, for the additional noise term in the variance as seen in Eq. (68), although (GT −1) goes to 

zero, the denominator ε  also goes to zero. Therefore the total noise is not zero as predicted by the SC-CM, 

but a finite and large number, which can be determined by considering the limit ε → 0 : 

   (69) 

As a result, this four-level atomic system is not suitable for our WLC-SR scheme [15], which requires very 

low QN.  In Sec. VI, we will describe a five-level atomic system that has a negative dispersion suitable for 

use in the WLC-SR scheme, and much lower QN than that of the four-level system.    
V. ELECTROMAGNETICALLY INDUCED TRANSPARENCY (EIT) 

In the preceding section, we considered a system where the QN is found to be non-vanishing even 

when the mean net gain or absorption is zero. However, this is not necessarily true for all systems. As an 

example of an exception, we consider next a system where the SC-CM and the ME model agree and thus 

the QN vanishes when the mean absorption is zero. It is also our inspiration for the Gain-EIT system in Sec. 

VI. This system is illustrated schematically in Fig. 8. This is known as the Λ-type EIT system, where a 

probe field excites atoms from level b  to level a , and a coherent pump field excites atom from c  to 
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a . We treat the probe field quantum mechanically. Assume that the pump field is at resonance with the 

a − c  transition and that the decay rates from the level a  to levels b  and c  are the same, i.e. 

Γab = Γac = γ / 2 . Then the Hamiltonian after the transformation to the interaction picture and addition of 

complex terms can be written as: 

   (70) 

Here Δ = υ − ω a −ωb( ) and Ω p  is the Rabi frequency of the pump field. 

 

Fig. 8 Three-level, Λ-type EIT configuration. 

It can be shown that , and 

, while the other elements are zero. The equations of motion for the density 

matrix elements can be derived from Eq. (2): 

   (71) 

   (72) 

   (73) 

   (74) 

   (75) 
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   (76) 

   (77) 

   (78) 

   (79) 

Just as in the case considered in the previous section, we again see that the relation 

ρan,a ′n + ρbn,b ′n + ρcn,c ′n = %ρn, ′n  is not enough to decouple the neighboring manifolds. As such, we use the 

same type of approximations used earlier in deriving Eqs. (49)-(51). Specifically, we use the steady state 

solution when the probe field is absent: 

 ρaa
0( ) = 0, ρbb

0( ) = 1, ρcc
0( ) = 0.   (80) 

The validity of the approximations is shown in Sec. C of Appendix 2. Using this result we can now write 

 ρan+1,a ′n +1 = %ρn+1, ′n +1 − ρbn+1,b ′n +1 − ρcn+1,c ′n +1 ≈ %ρn+1, ′n +1 − ρbn+1,b ′n +1  (81) 

Then we can solve the set of equations within each manifold, and plug the result into  

  (82) 

This yields: 

   (83) 

where 

  (84) 

These quantities are plotted as functions of Δ  in Fig. 9. Eq. (83) can also be written in the form of 

   (85) 

The evolution of moments of a  and a†  are determined by: 

   (86) 
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   (87) 

   (88) 

the solutions of which are: 

 a t = G a 0
, (89) 

 a†a
t

= G0 a†a
0
, (90) 

 a2
t

= G a2
0
, (91) 

 
 Fig. 9. Plot of (a)  and (b)  as a function of Δ / (2π ) in the case of Λ-type EIT scheme. 

where . As a result, 

 Xθ t
= G Xθ 0

  (92) 

   (93) 

As shown in Eqs. (92) and (93), the results of the ME in the EIT system agree with those from the SC-

CM with an additional phase shift. At zero detuning ( Δ = 0 ), we have both  and , so that 

G0 = 1 and the additional noise in the variance of the quadrature is zero. We expect that in steady state the 

system is in the dark state with no excitation in the level a  at zero detuning: 

 D = 1
Ω p

2 + Ωs
2

Ω p b − Ωs c( ),  (94) 
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where Ω p  is the Rabi frequency of the pump field, and Ωs  is the Rabi frequency of the probe field. Since 

this is a pure state, the expected value of the elements of the density matrix can be written down by 

inspection: 
 ρaa = 0, ρab = ρab

* = 0, ρac = ρca
* = 0,  (95) 

 ρbb =
Ωp

2

Ω p
2 + Ωs

2 , ρcc = Ωs
2

Ω p
2 + Ωs

2 , ρbc = ρcb = −
Ω pΩs

Ωp
2 + Ωs

2 .  (96) 

From the solution of the semi-classical equation of motion for the density matrix computed as Eq. (A47)

−(A52) in Appendix 2, the above relations are validated for zero detuning. Therefore the system is indeed 

in the dark state as in Eq. (94). This explains why the additional noise is zero at zero detuning as shown in 

Eq. (93), since there are no atoms in the intermediate state c . 

 

 

VI. FIVE-LEVEL GEIT SYSTEM 

In Sec. IV, we showed that the NDM realized by a four-level atomic system combining a gain profile 

with an absorption dip is not suitable for the WLC-SR, since the QN is significant even when the net gain is 

zero. On the other hand, we showed in Sec. V that an EIT system can produce a condition where the QN is 

zero while the absorption is also zero. However, the dispersion at this condition is positive, thus making the 

EIT system unsuitable for the WLC-SR scheme. Here, we propose a system that produces an EIT dip 

superimposed on a broad gain profile. At the center of the dip, the noise of the system is very small, while 

the dispersion is negative. We choose to call this a Gain EIT (GEIT) system.  

The GEIT system consists of a five-level, M-type configuration where the transitions 1 - 4 , 2 -

4  and 3 - 5  are coupled by the pump fields Ω1, Ω2  and Ω4 , respectively, while the transition 2 -

5  is coupled by the probe field Ω3 , as shown schematically in Fig. 10(a). Similar five-level system has 

been studied in Ref. 24 and 25, although under different conditions.  State 4  decays to states 1  and 2  

at rates Γ41  and Γ42  respectively. Similarly, state 5  decays to states 2  and 3  at rates Γ52  and Γ53  

respectively. Furthermore, we assume that atoms in state 2  decay rapidly to states 1  and 3 , at rates 

Γ21  and Γ23, respectively. In practice, these decay rates can be generated via optical pumping, by coupling 
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2  to other intermediate states that decay to 1  and 3 . These decay rates produce a Raman-type 

population inversion between states 1  and 2  and between states 3  and 2 . As such, Ω3  will 

experience Raman gain in the presence of Ω4 . Similarly, Ω2  will experience Raman gain in the presence 

of Ω1 . However, when both legs ( 1 - 4 - 2  and 3 - 5 - 2 ) are two photon resonant, the Raman 

transition amplitude from 1  to 2  can cancel the Raman transition amplitude from 3  to 2  under 

certain circumstances, for example, when the system is in a dark state consisting of a properly weighted 

linear superposition of states 1  and 3 . 

To see the behavior of the system at the center of the dip more transparently, it is instructive to 

consider a reduced system produced via adiabatic elimination of states 4  and 5  (this approximation is 

for illustration only, and will not be made in the ME analysis as well as the semi-classical analysis to 

follow in this section). The system is then reduced to a configuration similar to the Λ-type EIT system, as 

shown in Fig. 10(b). To be concrete, we define δ a ≡ δ1 + δ 2( ) / 2 , Δa ≡ δ1 − δ 2( ) , δb ≡ δ 3 +δ 4( ) / 2  and 

Δb ≡ δ 3 − δ 4( ) . Then, the effective Rabi frequencies for the two legs of the reduced Λ system are 

Ωa ≈ Ω1Ω2 / (2δ a )  and Ωb ≈ Ω3Ω4 / (2δb )  [26]. We assume that Δa  is chosen to balance the differential 

light shift experienced by level 1  ( Ω1
2 / (4δ1)) and 2  ( Ω2

2 / (4δ 2 ) + Ω3
2 / (4δ 3) ), so that the left leg of 

the reduced transition is resonant. For the other leg, we define Δ = Δb − Δb0 , where Δ = 0  corresponds to 

the condition where the value of Δb  balances the differential light shift experienced by level 3  

( Ω4
2 / (4δ 4 ) ) and 2  ( Ω2

2 / (4δ 2 ) + Ω3
2 / (4δ 3) ). Then, Δ  represents a net two photon detuning for the 

reduced Λ system. 

Under this approximation, for Δ = 0 , the system is in a dark state  

 D = Ωb 3 − Ωa 1( ) / Ωa
2 + Ωb

2 . (97) 

Denote the amplitude of state 2 as c2 . Then for a small interval of time Δt , the net change in the amplitude 

δ c2 Δt( )
net

 is determined by: 

 δ c2 Δt( )
net

= δ c2 Δt( )
channel a

+δ c2 Δt( )
channel b

,  (98) 



 23

where the contribution from the excitation of level 1  and that of level 2  are, respectively, 

  δ c2 Δt( )
channel a

= i Ωa

2
Δt ⋅c3,  (99) 

 δ c2 Δt( )
channel b

= i Ωb

2
Δt ⋅c1.  (100) 

Since c3 = Ωb / Ωa
2 + Ωb

2  and c1 = −Ωa / Ωa
2 + Ωb

2 , the net result is that δ c2 Δt( )
net

= 0 , which means that 

there is no transition to the level 2 , and therefore no gain for the probe Ω3 . Since this results holds for a 

small value of Δt , it holds for any value of t, which can be built up by adding small steps of Δt . However, 

in the nonresonant case ( Δ ≠ 0 ), this cancellation process is not perfect anymore, allowing for 3 → 2  

excitation. Since the population of atoms in level 3  is larger than that in level 2 , we have gain for the 

probe for Δ ≠ 0 .  

 

 Fig. 10 Schematic illustration of five-level GEIT system. 

We consider first a case where the parameters are Ω1 = γ , Ω2 = 10γ , Ω3 = 10γ , Ω4 = γ , 

δ1 ≈ δ 2 ≈ δ 3 ≈ δ 4 ≈ 103γ , and Γ41 = Γ42 = Γ52 = Γ53 = Γ21 = Γ23 = γ / 2 . Taking into account light shifts 

when designing the detunings of the fields, the semi-classical result for the complex susceptibility χ  is 

plotted in Fig. 11, which indeed exhibits a transmission profile with a dip on top of a broader gain and a 

negative dispersion. This result is obtained by solving the semi-classical density matrix equation of 

evolution for the complete five-level system. 
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Fig. 11 Plot of (a) imaginary and (b) real part of the complex susceptibility as a function of detuning for the GEIT system from semi-

classical calculation. Here γ / (2π ) = 6MHz , Γ
41

= Γ
42

= Γ
52

= Γ
53

= Γ
21

= Γ
23

= γ / 2 , δ
1
≈ δ

2
≈ δ

3
≈ δ

4
≈ 103γ , Ω

1
= Ω

4
= γ ,

Ω
2

= Ω
3

= 10γ . 

As noted above, the reduction of a three-level system (such as the 1 − 4 − 2  leg of the M-system) 

to a two-level system involves adiabatic elimination of the intermediate state, which is an approximation. 

As such, we find that the steady state solution for the M-system at the center of the dip differs slightly from 

what is expected for a pure dark state consisting of states 1  and 3  only. For example, the populations of 

states 4 , 5  and 2  are not completely vanishing. However, for the parameters used in producing the 

plot of Fig. 11, we find that ρ44 ≈ ρ55 ≈ 1.25 ×10−7  and ρ22 ≈ 3.7 ×10−7 , which are very close to zero. We 

also find that ρ13 ≈ −0.4950  as shown in Fig. 12, which is very close to the value −0.5  expected for the 

dark state. 

 

Fig. 12 Plot of ρ
13  versus Δ / 2π  for the GEIT system. The parameters are the same as those used in Fig. 11.  
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However, the set of parameters used in this example is not suitable for the WLC-SR. Since the 

gravitational wave signal is very weak in the WLC-SR, the probe field Ω3  is vanishingly small. For such a 

small value of Ω3 , the approximation involved in eliminating states 4  and 5  adiabatically may not 

necessarily hold, and the steady state solution at the center of the dip may not necessarily correspond to the 

dark state given by Eq. (97). Nonetheless, it is possible to find a combination of parameters that produce 

the negative dispersion necessary for the WLC-SR scheme, while producing very low noise at the center of 

the dip in the gain profile. As an example, we consider next a case where Ω1 = γ , Ω2 = 102γ , Ω3 = 10−6γ , 

Ω4 = 10−1γ , while the other parameters are the same as those in Fig. 11. The corresponding complex 

susceptibility is plotted in Fig. 13. As shown in Table 1, the steady state of the system in this case is not 

close to the dark state defined in Eq. (97). Nonetheless, almost all the population is in level 3 ; therefore, 

the QN in this case is expected to be very small, as confirmed next. 

 
Fig. 13 Plot of (a) imaginary and (b) real part of the complex susceptibility as a function of detuning for the GEIT system from semi-

classical calculation. Here γ / (2π ) = 6MHz , Γ
41

= Γ
42

= Γ
52

= Γ
53

= Γ
21

= Γ
23

= γ / 2 , δ
1
≈ δ

2
≈ δ

3
≈ δ

4
≈ 103γ , Ω

1
= γ ,

Ω
2

= 102γ , Ω
3

= 10−6γ  and Ω
4

= 10−1γ . 

Table 1 Comparison of the values of ρ11 , ρ33  and ρ13  based on the steady state solution of the density matrix equations and those 

based on an ideal dark state for the GEIT system using the same parameters used in Fig. 13.  

 Ideal Dark State Value Density Matrix Equation 
ρ11  5.0561×10−7   1.0000 ×10−18  
ρ33  1.0000  1.0000  

ρ13  −9.9990 ×10−10  −5.0000 ×10−19   
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To apply the ME method to the GEIT system, we start with the equations of motions for the atom-field 

density operator as in Eq. (2), by treating the pump fields semi-classically and treating only the probe field 

quantum mechanically. The Hamiltonian for the atom-field system in the interaction picture after adding 

the complex terms is: 

   (101) 

The equation of motion for the density matrix elements can now be derived from Eq. (2), in the same way 

as we derived Eqs. (71)-(79), for example. Since the number of equations in this case is rather large (25), 

we choose to show below only two of the equations that illustrate the fact that elements from adjacent 

manifolds are coupled, just as in previous cases: 

   (102) 

   (103) 

In Eq. (102), ρ5n+1,5 ′n +1  belongs to the (n+1) manifold, while in Eq. (103), ρ2n,2 ′n  belongs to the (n-1) 

manifold.  Similar to the approximation we used earlier, we rewrite these terms as:  

 ρ5n+1,5 ′n +1 ≈ (1− ρ11
(0) − ρ33

(0) − ρ44
(0) ) %ρn+1, ′n +1 − ρ2n+1,2 ′n +1,  (104) 

 ρ2n,2 ′n ≈ (1− ρ11
(0) − ρ44

(0) − ρ55
(0) ) %ρn ′n − ρ3n,3 ′n . (105) 

Due to the complexity of the system, we cannot get an analytical solution to the 25 equations for the 

elements of the n-th manifold. The numerical result is similar to the form of Eq. (9) in Sec. III.A. We have 

shown in Sec. D of Appendix 2 that the susceptibilities calculated using the ME model and the semi-

classical model essentially agree. For the center detuning Δ = 0 , we have , 

. From Eq. (21), we can calculate the noise in this case, 

   (106) 

where . If the SC-CM model were used, the noise would be 
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 ΔXθ
2

SC−CM ,noise
= 1

4
eGain −1( ),   (107) 

as expected from Eq. (26). If we define  

 η = ΔXθ
2

ME ,noise
/ ΔXθ

2
SC−CM ,noise

−1,   (108) 

we find in this case η ≈ 1.75%, which means that the noise from the GEIT system is 1.75% larger than that 

from the SC-CM. This difference is not due to numerical errors. In Fig. 14, we show the values of η  at 

detunings different from zero. We can see that the noise calculated from the ME and from the SC-CM 

model agree better than for zero detuning. Thus, the SC-CM model is essentially valid for this choice of 

parameters of the GEIT system. In Ref. 15, we have used both the SC-CM and the ME approach to 

determine the QN-limited enhancement in the sensitivity-bandwidth product. For the case where 

η = 1.75%, the corresponding difference in the sensitivity of the WLC-SR scheme is 0.2%. The factor of 

enhancement for this case is 16.55 [15]. In Ref. 15, we also showed a different set of parameters ( Ω1 = γ , 

Ω2 = 102γ , Ω3 = 10−6γ , Ω4 = 10−1γ , δ1 ≈ δ 2 ≈ δ 3 ≈ δ 4 ≈ 103γ , Γ41 = Γ42 = Γ52 = Γ53 = γ / 2 , and 

Γ21 = Γ23 ≈ 2.02 ×10−3γ ) that produces an even higher factor (17.66) of enhancement. In Fig. 15, we show 

the values of η  in this case. We find that the prediction of the SC-CM differs significantly from that of the 

ME model, especially at the center detuning where η  is on the order of 106 . Thus one must use the ME 

approach to calculate the QN. Comparing the two cases above, we find that the population in the upper 

level 4  differs by a factor of 102  while that in level 5  remains about the same. Therefore, we conclude 

that the ME model and the SC-CM become more significantly different as the excitation in level 4  

increases. 
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Fig. 14 Plot of η  as a function of detuning Δ / (2π ) when γ / (2π ) = 6MHz , Γ
41

= Γ
42

= Γ
52

= Γ
53

= Γ
21

= Γ
23

= γ / 2 , 
δ

1
≈ δ

2
≈ δ

3
≈ δ

4
≈ 103γ , Ω

1
= γ , Ω

2
= 102γ , Ω

3
= 10−6γ  and Ω

4
= 10−1γ . (a) Data points at detunings Δ / (2π ) = 0 , ±9 × 102 , 

±1.8 × 103, ±3.6 × 103, ±7.2 × 103, ±1.08 × 104 , ±2.16 × 104  and ±4.32 × 104 Hz  are shown in asterisks; (b) Zoom in and plot 

the part of positive detunings only, which is shown in the dashed box in (a). The difference as high as 10−2  is not due to numerical 

errors. 

 

Fig. 15 Plot of η  as a function of detuning Δ / (2π ) when γ / (2π ) = 6MHz , Γ
41

= Γ
42

= Γ
52

= Γ
53

= γ / 2 , 
Γ

21
= Γ

23
≈ 2.02 × 10−3γ , δ

1
≈ δ

2
≈ δ

3
≈ δ

4
≈ 103γ , Ω

1
= γ , Ω

2
= 102γ , Ω

3
= 10−6γ  and Ω

4
= 10−1γ . 

 

VII.  CONCLUSION 

We have used the master equation (ME) approach to derive explicitly the quantum noise (QN) for a 

field interacting with four different kinds of resonant or near-resonant atomic systems, and compared the 

results with those predicted by the single channel Caves model (SC-CM) [1, 2].  In developing this model, 

we find that, for all systems other than a simple two level transition, it is necessary to make a steady state 

approximation for the evolution of the density matrix for the combined system of atoms and the quantized 

probe field, in order to decouple different manifolds corresponding to different numbers of photons.  This 

approximation enables us to determine explicitly the reduced density matrix equation of motion for the 

quantized probe field. We verify the validity of this approximation by showing that the atomic 

susceptibility yielded by the ME model agrees very well with the same derived via semi-classical analysis.  

While comparing the QN calculated by the ME model with the prediction of the SC-CM, we find that in 

some cases, there are significantly differences. Specifically, we have shown that in a four-level system with 

an absorption dip on top of a broad gain peak and perfect transparency at the center, the net QN at the 



 29

center has a large, finite value, in sharp contrast with the SC-CM, which predicts zero QN at the center. 

This catastrophic breakdown of the Caves model implies that it is incorrect to assume the SC-CM to be a 

close approximation of the more exact result. We find that the SC-CM model result varies significantly 

from the ME result even for a two-level system under most conditions. We also show a special case where 

the result of the ME model is in agreement with that of the SC-CM. This case is a Λ-type EIT system, for 

which the QN at the center detuning is zero while the system is in the dark state. Finally, we describe a gain 

EIT (GEIT) system, which has a negative dispersion and a similar transmission profile but much lower QN 

around the center compared to the four-level atomic system mentioned above.  In this case, we find that, for 

some set of parameters, the QN as predicted by the SC-CM agrees closely with the ME model.  However, 

we also find that for some other set of parameters, the SC-CM model disagrees strongly with the ME 

model.  In general, the QN predicted by the SC-CM is less than or equal to that predicted by the ME model.   

However, we do not find a general rule that can be applied to determine when the application of the SC-

CM is expected to be a good approximation of the more exact result.  Therefore, one must always make use 

of the ME approach when dealing with resonant or near-resonant atomic systems. The technique presented 

in this paper would enable accurate evaluation of the QN in many systems of interest in precision 

metrology. 

 

 

ACKNOWLEDGEMENTS 

This work was supported by DARPA through the slow light program under grant FA9550-07-C-0030, 

by AFOSR under grant FA9550-10-1-0228 and grant FA9550-09-1-0652. 

 

APPENDIX 1 

Here we show the detail steps of the master equation approach for the two-level atomic system. The 

Hamiltonian for the atom-field system, under the rotating wave approximation, can be written as 

   (A1) 

We then use a rotating wave transformation to the interaction picture where the state vector is transformed 

as 
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   (A2) 

with 

  (A3) 

  (A4) 

where Δ = υ − ω . As a result the Hamiltonian after rotating wave transformation is then  

   (A5) 

and the density operator becomes . The equation of motion given by Eq. (1) then becomes 

   (A6) 

As described in Sec. II, we add complex terms in the atomic Hamiltonian to take into account the 

decay and dephasing of the atom, and we then have the Hamiltonian: 

   (A7) 

Therefore the equation of motion can be written as: 

   (A8) 

It can be shown that the matrix elements of the Hamiltonian  are: 

  (A9) 

and zero otherwise. The equations of motion for the density matrix ραn,β ′n = α ,n ρatom− field β, ′n  can be 

derived from Eq. (A8), i.e. 

   (A10) 

   (A11) 

   (A12) 

   (A13) 



 31

where γ ab = (γ a + γ op ) / 2 . When Δ = 0 , these equations are essentially the same as Eqs. (11.1.5a)-

(11.1.5g) in Ref. 16, when the differences in the various pumping and decay rates are taken into account.  

Using the relation that ρan,a ′n + ρbn,b ′n = %ρn ′n  and ρan+1,a ′n +1 + ρbn+1,b ′n +1 = %ρn+1, ′n +1 , we rewrite Eqs. (A10)-

(A13) as follows: 

   (A14) 

   (A15) 

The set of equations can be solved by rewriting it in the matrix form [16] 

 &R = −MR + A,   (A16) 

where  

   (A17) 

 R = ρan,a ′n ,  ρan,b ′n +1,  ρbn+1,a ′n ,  ρbn+1,b ′n +1( )T
, A = γ op %ρn ′n ,  0,  0,  γ a %ρn+1, ′n +1( )T

.  (A18) 

In the adiabatic limit, we assume that R  varies slowly compared to M . In this limit, we can set , to 

get [Ref. 16, Chapter 11] 

 R = M −1A.  (A19) 

The results for the density matrix elements are 

 ρan,b ′n +1 = ig
2γ ab Δ + iγ ab( ) ′n +1γ op %ρn ′n − n +1γ a %ρn+1, ′n +1( ) − ig2 ′n − n( ) ′n +1γ op %ρn ′n + n +1γ a %ρn+1, ′n +1( )

g4 n − ′n( )2 + 4g2 n + ′n + 2( )γ ab
2 + 4γ ab

2 γ ab
2 + Δ2( ) , (A20) 

 ρbn+1,a ′n = ig
2γ ab Δ − iγ ab( ) n +1γ op %ρn ′n − ′n +1γ a %ρn+1, ′n +1( ) − ig2 n − ′n( ) n +1γ op %ρn ′n + ′n +1γ a %ρn+1, ′n +1( )

g4 n − ′n( )2 + 4g2 n + ′n + 2( )γ ab
2 + 4γ ab

2 γ ab
2 + Δ2( ) . (A21) 

In the linear regime where g  is very small, the results above can be simplified as: 

 ρbn+1,a ′n =
−ig n +1γ op %ρn ′n − ′n +1γ a %ρn+1, ′n +1( )

2γ ab γ ab − iΔ( ) . (A22) 
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Using 

   (A23) 

we then get the equation of motion for the reduced density matrix of the field given by 

   (A24) 

It is easy to see that the complex parts of  cancels out, so that this can be expressed as: 

   (A25) 

For Δ = 0 , these equations are essentially the same as Eq. (11.1.3d) in Ref. 16, when differences in 

notations and various pumping and decay rates are taken into account.  

 

APPENDIX 2 

In Appendix 2, we show the derivations of susceptibilities for the atomic systems we discussed above 

following both the ME model and the semi-classical approach, and compare the results. 

A. Two-level atomic system  

Solving the semi-classical equations of motion for the density matrix of the atom, we can get  

 ρab =
Ω γ a − γ op( )

4γ ab
2 + 4Δ2 + 2Ω2

Δ
γ ab

− i
Ω γ a − γ op( )

4γ ab
2 + 4Δ2 + 2Ω2 .   (A26) 

Then  

   (A27) 

where  is the electric-dipole transition matrix element, and  is the Rabi frequency. 

Therefore, 

  

   (A28) 

 ′χ = − Δ
γ ab

′′χ .  (A29) 
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For simplicity, we now limit our discussion to the pure attenuation case where γ a = γ  and
 

γ op = 0 . 

Therefore, 

   (A30) 

 ′χ = − 2Δ
γ

′′χ .  (A31) 

Since we limit our quantum results to the linear regime where Ω → 0, we make the same approximation 

here. Then the total gain for a field traveling a distance L  is 

   (A32) 

Notice that , where , while , with , i.e.

. Therefore g = Ω / 2, and we get: 

 GSC = −nV 2g2γ
γ 2 + 4Δ2

L
c

.  (A33) 

The total phase shift the field experiences is then  

 θSC = 1
2

4π ′χ kL = 2Δ
γ

GSC   (A34) 

On the other hand, from the ME results in Eq. (33), we can get  

  (A35) 

Therefore, the total gain and phase shift are 

 GME = −NatomBt = −nV 2g2γ
γ 2 + 4Δ2

L
c

  (A36) 

   (A37) 

which are the same as the semi-classical results in Eqs. (A33) and (A34). Thus we have shown that the 

results of the gain and phase shift that the field experiences in a two-level atomic system computed using 

the ME method and the semi-classical approach agree with each other.  

 



 34

B. Four-level atomic system 

We now compare the susceptibilities of the system considered in Sec. IV with the semi-classical results. 

Denote the Rabi frequency of the field as Ω . Solving the density matrix equations, we can get 

 ρab =
Ω γ a − γ op( ) Δ − iγ ab( )
2 2γ a + γ op( ) γ ab

2 + Δ2( ) , ρcd =
Ωγ a Δ + δ − iγ cd( )

2 2γ a + γ op( ) γ cd
2 + Δ + δ( )2⎡

⎣
⎤
⎦

,  (A38) 

in the linear regime where Ω  is very small. Then 
 

   (A39) 

where the imaginary and real parts of susceptibility are: 

  (A40) 

  (A41) 

Then the total gain for a field traveling a distance L  is 

   (A42) 

Using the relation that g = Ωs / 2 , we can write 

 GSC = nVg2 γ ab γ op − γ a( )
γ ab

2 + Δ2( ) 2γ a +γ op( ) − γ cdγ a

γ cd
2 + Δ +δ( )2⎡

⎣
⎤
⎦ 2γ a + γ op( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

L
c

.  (A43) 

Similarly, the total phase shift is   

 θSC = 1
2

4π ′χ kL = nVg2 γ op − γ a( )Δ

2γ a + γ op( ) γ ab
2 + Δ2( ) −

γ a Δ + δ( )
2γ a + γ op( ) γ cd

2 + Δ + δ( )2⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

L
c

,   (A44) 

On the other hand, from the ME results in Eq. (58) and (59), we have the total gain and phase shift, 

respectively, as 

   (A45) 
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   (A46) 

both of which agree with the semi-classical results in Eqs. (A42) and (A43). This validates the 

approximations we employed in deriving Eqs. (49)-(51). 

 

C. Λ-type EIT system 

We denote the Rabi frequency of the pump field as Ω p  and the Rabi frequency of the probe field as 

Ωs . We now solve the semi-classical equations of motion for the density matrix to get the result for a 

general value of the detuning Δ : 

 ρaa =
8Ωs

2Ωp
2 Δ2

16Δ4Ωp
2 + 4γ 2Δ2 Ω p

2 + Ωs
2( ) + Ω p

2 + Ωs
2( )3

− 8Δ2Ω p
2 Ω p

2 − 2Ωs
2( )

,   (A47) 

 ρbb =
8Ω p

2 4γ 2Δ2 +16Δ4 + Ω p
2 + Ωs

2( )2
− 4Δ2 2Ωp

2 − Ωs
2( )⎡

⎣⎢
⎤
⎦⎥

16Δ4Ωp
2 + 4γ 2Δ2 Ωp

2 + Ωs
2( ) + Ωp

2 + Ωs
2( )3

− 8Δ2Ω p
2 Ωp

2 − 2Ωs
2( )

,   (A48) 

 ρcc =
Ωs

2 4γ 2Δ2 + 4Δ2Ωp
2 + Ωp

2 + Ωs
2( )2⎡

⎣⎢
⎤
⎦⎥

16Δ4Ωp
2 + 4γ 2Δ2 Ωp

2 + Ωs
2( ) + Ω p

2 + Ωs
2( )3

− 8Δ2Ωp
2 Ωp

2 − 2Ωs
2( )

,   (A49) 

 ρab = ρba
* =

2ΔΩp
2Ωs −2iγΔ + 4Δ2 − Ω p

2 − Ωs
2( )

16Δ4Ωp
2 + 4γ 2Δ2 Ω p

2 + Ωs
2( ) + Ω p

2 + Ωs
2( )3

− 8Δ2Ωp
2 Ω p

2 − 2Ωs
2( )

,   (A50) 

 ρac = ρca
* =

2ΔΩ pΩs
2 −2iγΔ + Ωp

2 + Ωs
2( )

16Δ4Ω p
2 + 4γ 2Δ2 Ω p

2 + Ωs
2( ) + Ωp

2 + Ωs
2( )3

− 8Δ2Ωp
2 Ω p

2 − 2Ωs
2( )

,   (A51) 

 ρbc = ρcb
* =

Ω pΩs −4Δ2Ωp
2 − 2iγΔ Ωp

2 + Ωs
2( ) + Ωp

2 + Ωs
2( )2⎡

⎣⎢
⎤
⎦⎥

16Δ4Ωp
2 + 4γ 2Δ2 Ω p

2 + Ωs
2( ) + Ωp

2 + Ωs
2( )3

− 8Δ2Ωp
2 Ω p

2 − 2Ωs
2( )

.  (A52) 

Using Eq. (A50) in the limit Ωp >> Ωs , we can calculate the real and imaginary parts of the 

susceptibility: 

   (A53) 
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 ′χ = −
4Δ2 − Ωp

2

2γΔ
′′χ .  (A54) 

Then the total gain for a field traveling a distance L is 

   (A55) 

Using the relation that g = Ωs / 2 , we can write 

 GSC = −nV g2Δ2γ / 2

γ 2Δ2 / 4 + Δ2 − Ω p
2 / 4( )2

L
c

.   (A56) 

The total phase shift the field experiences is then  

 θSC = 1
2

′χ kL =
4Δ2 − Ω p

2

2γΔ
GSC   (A57) 

On the other hand, from the ME results in Eq. (84), we can get  

  (A58) 

Therefore, the total gain and phase shift are 

 GME = −NatomBt = −nV g2Δ2γ / 2

γ 2Δ2 / 4 + Δ2 − Ω p
2 / 4( )2

L
c

  (A59) 

   (A60) 

which agree with the semi-classical results in Eqs. (A56) and (A57) . Again, this justifies the 

approximations made in arriving at Eq. (81). 

 

 

D. Five-level GEIT system 

In the five-level GEIT system, we get a numerical solution following the ME approach as shown in 

Sec. VI. Using the relationship between the ME result and the semi-classical susceptibility as shown in the 

previous sections, we can convert the ME results for different detunings to the values of the complex 

susceptibility. In Fig. A1, we show the real and imaginary parts of the susceptibilities calculated using the 

ME model and the semi-classical approach. The agreement of the two models is essentially exact, and the 
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residual fractional difference, being of the order of 10−9 , is most likely due to inherent inaccuracies of 

numerical computation. 

 

Fig. A1 Left column shows plots of imaginary (a) and real (c) part of the susceptibilities as a function of detuning Δ / (2π ) using the 

ME model. Right column shows plots of imaginary (b) and real (d) part of the susceptibilities using the semi-classical approach. The 

agreement of the two models is essentially exact, and the residual fractional difference, being of the order of 10−9 , is most likely due 

to inherent inaccuracies of numerical computation. 

 

 

 

 

 

 

 

 



 38

 

 

 

References                                                         
1. C. M. Caves, Phys. Rev. D 26, 1817 (1982). 
2. Y. Yamamoto and H. A. Haus, Rev. Mod. Phys. 58, 1001 (1986). 
3. R.Namiki, Phys. Rev. A 83, 040302 (2011) 
4. R. H. Rinkleff and A. Wicht, Phys. Scr. T118 85-88 (2005). 
5. A. Wicht, R. H. Rinkleff, L. S. Molella and K. Danzmann, Phys. Rev. A 66 063815 (2002). 
6. A. Rocco, A. Wicht, R. H. Rinkleff and K. Danzmann, Phys. Rev. A 66 053804 (2002). 
7. A. Wicht, M. Muller, R. H. Rinkleff, A. Rocco and K. Danzmann, Opt. Commun. 179 107–15 (2000). 
8. G. S. Pati, M. Salit, K. Salit, M. S. Shahriar, Phys. Rev. Lett. 99, 133601 (2007). 
9. A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Miiller and R. H. Rinkleff, Opt. Commun. 134 431–9 (1997). 
10. H. N. Yum, M. Salit, G. S. Pati, S. Tseng, P. R. Hemmer, and M. S. Shahriar, Opt. Express 16, 20448-20456 (2008). 
11. J. Mizuno, K.A. Strain, P.G. Nelson, J.M. Chen, R. Schilling, A. Rudiger, W. Winkler and K. Danzmann, Phys. Lett. A 175, 273-
276 (1993). 
12. K. A. Strain et al, Appl. Opt. 42, 1244 (2003). 
13. R. Abbott et al, “AdvLIGO Interferometer Sensing and Control Conceptual Design LIGO”, LIGO-note T070247-01 (2008). 
14. A. Buonanno and Y. Chen, Phys. Rev. D 64,042006 (2001). 
15. M. Zhou, Z. Zhou, S. M. Shahriar, Phys. Rev. D. 92, 082002 (2015). 
16. M.O. Scully, M.S. Zubairy, Quantum optics (Cambridge University Press, 1997). 
17. Q. Sun, M.S. Shahriar, and M.S. Zubairy, Phys. Rev. A 78, 013805 (2008). 
18. B. S. Ham, M.S. Shahriar, and P.R. Hemmer, J. Opt. Soc. Am. B 16, 801-804 (1999). 
19. B. S. Ham, M.S. Shahriar, M.K. Kim, and P.R. Hemmer, Opt. Lett 22, 1849-1851 (1997). 
20. T. T. Grove, E. Rousseau, X.W. Xia, D.S. Hsiung, M.S. Shahriar, and P.R. Hemmer, Opt. Lett 22, 1677-1679 (1997). 
21. B.S. Ham, P.R. Hemmer, and M.S. Shahriar, Opt. Comm 144, 227-230 (1997). 
22. B.S. Ham, M.S. Shahriar, and P.R. Hemmer, Opt. Lett 22, 1138-1140 (1997). 
23. M. S. Shahriar, Ye Wang, Subramanian Krishnamurthy, Y. Tu, G.S. Pati, and S. Tseng, Journal of Modern Optics 61 No. 4, 351-
367 (2014). 
24. G. Grigoryan, V. Chaltykyan, E. Gazazyan, O. Tikhova, and V. Paturyan, Phys. Rev. A 91, 023802 (2015). 
25. G. P. Miroshnichenko, I. Yu. Popov, and A. I. Trifanov, Optics and Spectroscopy, 2010, Vol. 109, No. 3, pp. 413–419. 
26. S. M. Shahriar, P. R. Hemmer, D. P. Katz, A. Lee and M. G. Prentiss, Phys. Rev. A. 55, 2272 (1997). 


