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We propose a scheme to generate macroscopic Schrödinger’s cat states in a quantum harmonic oscillator

(electromagnetic field or mechanical resonator) coupled to a quantum bit (two-level system) via a conditional

displacement mechanism. By driving the qubit monochromatically, the oscillation of the qubit state modifies

the effective frequency of the driving force acting on the oscillator, and a resonant or near-resonant driving on

the oscillator can be achieved. The displacement of the oscillator is then significantly enhanced due to the small

detuning of the driving force and can exceed that of the zero-point fluctuation. This effect can be used to prepare

quantum superpositions of macroscopically distinct coherent states in the oscillator. We present detailed studies

on this state generation scheme in both the closed- and open-system cases. This approach can be implemented

in various experimental platforms, such as cavity- or circuit-QED systems, electromechanical systems, and

spin-cantilever systems.

PACS numbers: 42.50.Dv, 42.50.Pq, 03.65.Yz

I. INTRODUCTION

Quantum superposition principle [1], one of the corner-

stones of quantum theory, has attracted heavy attention from

both theorists and experimentalists since its discovery. People

have put intensive efforts in studying the generation of quan-

tum superposition states. Such states play an important role

in the study of the foundations of quantum theory [2], giv-

ing insights into the questions of quantum-classical boundary

and quantum decoherence [3]. Quantum superposition has

been observed in numerous physical systems [4, 5], includ-

ing electronic [6–8], photonic [9–17], and atomic degrees of

freedom [18, 19]. Nevertheless, it remains a big challenge

to create superpositions of macroscopically distinct coherent

states in nanomechanical systems [20–26], in part due to the

difficulty in generating coherent states with macroscopically

distinct amplitudes in the phase space in such systems.

The conditional displacement mechanism is an important

method for generating the Schrödinger cat states [18]. In this

method, the magnitude of the coherent states is determined

by the ratio of the conditional coupling strength over the fre-

quency of the oscillator. Consider a coupled qubit-oscillator

system described by the HamiltonianH = ωra
†a + g0σz(a +

a†) [cf. Eq. (1) for the notations]. Corresponding to the

two eigenstates of σz, the interaction g0σz(a + a†) between

the qubit and the oscillator produces displacements with the

same maximum magnitude 2g0/ωr but opposite direction in

the phase space of the oscillator. The conditional dynamics

in this system can then be used to create superposed coherent

states in the oscillator [27, 28]. In current experiments, the

coupling strength g0 is much smaller than the frequency ωr

of the oscillator. Even in qubit-oscillator systems with ultra-

strong coupling [29, 30], g0/ωr (its value is usually ≥ 0.1) is
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still smaller than 1. Therefore, the displacement of the oscil-

lator will be shadowed by its zero-point fluctuation, and one

cannot see clear evidence of quantum superposition.

To date, many approaches have been proposed to create su-

perposed coherent states in various setups [31–46]. In particu-

lar, several approaches have been proposed to enhance the dis-

placement of mechanical resonators so that macroscopically

distinct superposed coherent states can be observed. For ex-

ample, one of us (Tian) [47] proposed a scheme to increase

the mechanical displacement in a nanomechanical system by

introducing a series of π pulses to flip the state of a supercon-

ducting qubit. By flipping the qubit state at properly selected

times, the total mechanical displacement can be accumulated

and be significantly amplified. In [48, 49], the authors have

proposed to enhance the mechanical displacement of a can-

tilever in a spin-cantilever system by applying an XY4 pulse

sequence to the spin. In addition, in [50], one of us (Liao)

proposed a scheme to enhance the mechanical displacement

of a single photon by introducing cavity frequency modula-

tion in an optomechanical system with the “membrane-in-the-

middle” configuration.

In this paper, we propose an efficient approach for creating

quantum superpositions of large-amplitude coherent states in

a qubit-oscillator system by applying a monochromatic driv-

ing to the qubit. Under appropriate conditions, this system

can be described by an approximate Hamiltonian that depicts

a conditionally driven quantum harmonic oscillator. In this

Hamiltonian, the effective detuning can be tuned to be much

smaller than the magnitude of the driving. Consequently, the

displacement of the oscillator can be enhanced significantly

to be larger than the zero-point motion. It is thus promising

to observe macroscopically distinct superpositions of coherent

states in such systems. One advantage of this method is that

it does not require accurate control of the exact wave form of

the driving pulses, as only a sinusoidal driving on the qubit is

used.

The rest of this paper is organized as follows. In Sec. II,

we introduce the qubit-oscillator system and derive an ap-
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FIG. 1. Schematic of a coupled qubit-oscillator system. The qubit

with an energy separation ωq is coupled to a quantum harmonic os-

cillator (represented by a harmonic trap) with a resonance frequency

ωr via a conditional displacement interaction g0σz(a+a†). Along the

x-direction in the Bloch sphere, the qubit is driven by a monochro-

matic field with a frequency ω0 and a magnitude ξω0. The decay rate

and the thermal excitation occupation number of the qubit (oscilla-

tor) are denoted by γq (κr) and n̄q (n̄r), respectively.

proximate Hamiltonian of this system under driving. In

Sec. III, we study the generation of macroscopically distinct

Schrödinger’s cat states with this approximate Hamiltonian

and verify the validity of the rotating-wave approximation.

We also study the quantum entanglement between the qubit

and the oscillator. Moreover, we investigate the Wigner func-

tion and the probability distribution of the rotated quadrature

operator to study the quantum interference and coherence in

the generated states. In Sec. IV, we discuss the open-system

case for this state generation scheme. We study the influ-

ence of the dissipations on the fidelity, the probability, the

Wigner function, and the probability distribution of the ro-

tated quadrature operator. In Sec. V, we show that the cur-

rent method can be extended to various other forms of qubit-

oscillator coupling. Finally, we present discussions in Sec. VI

and conclusions in Sec. VII.

II. SYSTEM AND HAMILTONIAN

The coupled qubit-oscillator system (Fig. 1) is described by

the Hamiltonian (~ = 1)

H(t) =
ωq

2
σz + ξω0 cos(ω0t)σx +ωra

†a+ g0σz

(

a + a†
)

, (1)

where a (a†) is the annihilation (creation) operator of the

quantum harmonic oscillator (electromagnetic field or me-

chanical resonator) with frequency ωr. The quantum bit

(two-level system) is described by the Pauli operators σx =

|0〉qq〈1| + |1〉qq〈0|, σy = i(|1〉qq〈0| − |0〉qq〈1|), and σz =

|0〉qq〈0| − |1〉qq〈1|, where |0〉q and |1〉q are, respectively, the ex-

cited state and the ground state, with an energy separation ωq.

The qubit is driven by a monochromatic field with a dimen-

sionless driving amplitude ξ and a frequency ω0. The g0 term

is the conditional displacement interaction between the qubit

and the oscillator. This Hamiltonian can be realized in var-

ious experimental platforms, such as cavity- or circuit-QED

systems [51], electromechanical systems [23, 52], and spin-

oscillator systems [48, 53].

To study the impact of the qubit driving on the dynamics of

the system, we perform the following transformation

V(t) = exp
{

−i
[

ξ sin(ω0t)σx + ωrta
†a

]}

(2)

on this coupled system. In the rotating frame defined by V(t),

the transformed Hamiltonian becomes

H̃(t) = V†(t)H(t)V(t) − iV†(t)V̇(t)

=
ωq

2

[

cos[2ξ sin(ω0t)]σz + sin[2ξ sin(ω0t)]σy

]

+g0

[

cos[2ξ sin(ω0t)]σz + sin[2ξ sin(ω0t)]σy

]

×
(

ae−iωr t
+ a†eiωr t

)

. (3)

Under the Jacobi-Anger expansions

cos[2ξ sin(ω0t)] =J0(2ξ) + 2

∞
∑

n=1

J2n(2ξ) cos(2nω0t), (4a)

sin[2ξ sin(ω0t)] =2

∞
∑

n=1

J2n−1(2ξ) sin[(2n − 1)ω0t], (4b)

with Jm(x) being the Bessel function of the first kind and m

being an integer, the Hamiltonian H̃(t) can be expanded into

H̃(t) =
ωq

2
J0(2ξ)σz +

∞
∑

n=1

ωq

[

J2n(2ξ) cos(2nω0t)σz

+J2n−1(2ξ) sin[(2n − 1)ω0t]σy

]

+g0J0(2ξ)σz

(

ae−iωr t
+ a†eiωr t

)

+

∞
∑

n=1

g0

[

J2n(2ξ)σz

(

ae−i(ωr−2nω0)t
+ H.c.

)

+J2n(2ξ)σz

(

ae−i(ωr+2nω0)t
+ H.c.

)

−iJ2n−1(2ξ)σy

(

ae−i[ωr−(2n−1)ω0]t − H.c.
)

+iJ2n−1(2ξ)σy

(

ae−i[ωr+(2n−1)ω0]t − H.c.
)]

. (5)

This Hamiltonian contains oscillating terms that differ by fre-

quencies of mω0 with m being an integer. We consider the case

ωr ≫ g0 > g0J0(2ξ) and choose a driving frequency ω0 that

satisfies ω0 ≫ g0 > g0J2n(2ξ), g0J2n−1(2ξ). Furthermore, it

also ensures that there is a near-resonant term (corresponding

to a characteristic number n0) in the form of gσz(ae−iδt
+a†eiδt)

[cf. Eq. (8)] in the fourth line of Eq. (5). Here δ is an effective

driving detuning and g is the normalized coupling coefficient

with

δ = ωr − 2n0ω0, g = g0J2n0
(2ξ). (6)

For a given ω0, the parameter n0 should be chosen such that

the corresponding J2n0
(2ξ) term is the nearest-resonant term,

i.e., n0 = Round[ωr/(2ω0)], where Round[x] is a function for

getting the nearest integer of x.

When the characteristic number n0 is chosen, we can tune

ω0 such that δ can be comparable or even smaller than

the coupling coefficient g; whereas all other g0 terms are
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fast-oscillating terms that can be omitted under the rotating-

wave approximation (RWA). Moreover, by assuming ω0 ≫
ωq J2n(2ξ)/2, ωqJ2n−1(2ξ)/2, only the term ωq J0(2ξ)σz/2 in

all ωq terms needs to be preserved. This term will introduce

an additional phase factor to the state of the qubit, but it will

not affect the dynamics of the oscillator. Hereafter we assume

ωq = 0 for simplicity of discussion. Hence under the condi-

tion

|δ|, g0 ≪ ω0, ωr , (7)

the high-frequency oscillating terms in Eq. (5) can be ne-

glected by applying the RWA, and we obtain the approximate

Hamiltonian

H̃RWA(t) = gσz

(

ae−iδt
+ a†eiδt

)

. (8)

This Hamiltonian describes a quantum harmonic oscillator

that is conditionally displaced by the states of the qubit. When

the qubit is prepared in the eigenstates |0〉q and |1〉q of the σz

operator (σz|0〉q = |0〉q and σz|1〉q = −|1〉q), the displacement

forces acting on the oscillator are in the opposite directions.

Therefore, corresponding to the qubit’s states |0〉q and |1〉q, if

the oscillator is initially prepared in its ground state, its states

at time t would be coherent states with the same magnitude

but opposite phase in the phase space [as shown in the sec-

ond line of Eq. (10)]. From Eq. (6) we see that the magnitude

of g can be maximized by optimizing the value of ξ so that

J2n0
(2ξ) is at its peak values. In the following simulations,

we choose n0 = 1 and ξ = 1.5271 which corresponds to the

first peak value of J2(2ξ). We choose a small δ by adjusting

ω0, which strongly enhances the displacement of the oscilla-

tor. For generation of macroscopically distinct coherent state

components [32], i.e., |α|max > 1 (cf. Eq. 14), the detuning

should satisfy the condition δ < 2g (Hereafter, we assume

δ > 0). By preparing the qubit in a superposition of its two

eigenstates, this conditional dynamics can be used to create

macroscopic superpositions of large amplitude coherent states

in the oscillator.

III. GENERATION OF SCHRODINGER’S CAT STATES

In this section, we study the dynamics of the coupled sys-

tem described in Sec. II. We also discuss the validity of the

RWA condition (7) by examining the fidelity between an ap-

proximate state and the exact state, which evolve under the

approximate Hamiltonian (8) and the full Hamiltonian (1), re-

spectively. Moreover, the quantum interference and coherence

effects in the generated cat states will be studied.

A. Analytical solution under the RWA

Denoting the state of the system in the original

(Schrödinger) representation as |ψ(t)〉 and the state in the ro-

tating representation defined by V(t) as |φ(t)〉, then we have

the relations |ψ(t)〉 = V(t)|φ(t)〉 and |ψ(0)〉 = |φ(0)〉. Using the

Magnus expansion, the unitary evolution operator associated

with the Hamiltonian H̃RWA(t) can be expressed as (see the

Appendix)

U(t) = exp [iθ(t)] exp
{

σz

[

η(t)a† − η∗(t)a
]}

, (9)

where θ(t) = (g/δ)2[δt − sin(δt)] is a global phase factor and

η(t) = (g/δ)(1 − eiδt) is the displacement amplitude of the os-

cillator. We consider an initial state |φ(0)〉 = |+〉q|0〉r of the

system, where |+〉q = (|0〉q + |1〉q)/
√

2 is the eigenstate of σx

with eigenvalue +1, and |0〉r is the ground state of the har-

monic oscillator. By utilizing the unitary evolution operator

U(t), the state of the system at time t can be obtained as

|φ(t)〉 = U(t)|φ(0)〉

=
eiθ(t)

√
2

(

|0〉q|η(t)〉r + |1〉q| − η(t)〉r
)

=
eiθ(t)

2

[

|+〉q (|η(t)〉r + | − η(t)〉r)

+|−〉q (|η(t)〉r − | − η(t)〉r)
]

, (10)

where |η(t)〉r and | − η(t)〉r are coherent states of the harmonic

oscillator, with the same amplitude but opposite phase in the

phase space. Using the transformation V(t), the corresponding

state in the original representation can be expressed as

|ψ(t)〉 = eiθ(t)

2

[

N−1
+

(t)e−iξ sin(ω0t)|+〉q|α+(t)〉r

+N−1
− (t)eiξ sin(ω0t)|−〉q|α−(t)〉r

]

, (11)

where we introduced the even and odd coherent states (the

Schrödinger cat states) [54],

|α±(t)〉r = N±(t)(|α(t)〉r ± | − α(t)〉r), (12)

with normalization constants

N±(t) =
[

2
(

1 ± e−2|α(t)|2
)]−1/2

, (13)

and coherent state amplitude

α(t) =
g

δ

(

1 − eiδt
)

e−iωr t. (14)

For the state |ψ(t)〉, the average excitation number in the oscil-

lator is

〈ψ(t)|a†a|ψ(t)〉 = 4g2

δ2
sin2

(

δt

2

)

, (15)

which is the absolute square |α(t)|2 of the coherent state am-

plitude. Equation (14) shows that the maximum displacement

amplitude is |α|max = 2g/δ, and it can be obtained at the

times t = (2m + 1)π/δ for natural numbers m. By choos-

ing a small δ value, we can create macroscopically distinct

Schrödinger’s cat states with |α| > 1. When δ = 0, the os-

cillator is driven resonantly and the displacement amplitude

becomes αres(t) = −igt exp(−iωrt), which increases linearly

in time. The damping of the oscillator and the finite duration

of the evolution will prevent the system from diverging into

instability.
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FIG. 2. Time dependence of the entanglement of the state |ψ(t)〉 in

Eq. (11): the von Neumann entropy S (t) (red short-dashed curve)

and the logarithmic negativity N(t) (black solid curve). The used

parameters are: n0 = 1, ξ = 1.5271, and δ = g.

To generate the Schrödinger cat states (12), we perform a

qubit measurement on the state |ψ(t)〉. When the σx operator

of the qubit is detected (i.e., in the bases of |±〉q), the oscilla-

tor will collapse into the Schrödinger cat states |α±(t)〉r. The

probabilities of the states |α±(t)〉r are

P±(t) =
1

2

(

1 ± e−2|α(t)|2
)

, (16)

which are determined by g and δ, but independent of ωr.

B. Entanglement between the qubit and the oscillator

The state |ψ(t)〉 in Eq. (11) is an entangled state of the

coupled qubit-oscillator system. For this bipartite pure state,

the degree of entanglement can be characterized with the von

Neumann entanglement entropy [55]

S = −Tr
[

ρq log2 ρq

]

= −Tr
[

ρr log2 ρr

]

, (17)

where ρq (ρr) is the reduced density matrix of the qubit (oscil-

lator). Using Eq. (11), we obtain the density matrix ρq as

ρq(t) =
1

4N2
+(t)
|+〉q q〈+| +

1

4N2
−(t)
|−〉q q〈−|. (18)

The von Neumann entropy is then

S (t) =
1

4N2
+(t)

log2

[

4N2
+
(t)

]

+
1

4N2
−(t)

log2

[

4N2
−(t)

]

,

(19)

whereN±(t) are given by Eq. (13).

It should be pointed out that the von Neumann entropy can-

not be used to quantify the bipartite entanglement of mixed

states. To consistently describe the bipartite entanglement in

both the closed- and open-system cases, we introduce the log-

arithmic negativity [56, 57], which is defined by

N = log2 ‖ρTr‖1, (20)

where Tr denotes the partial transpose of the density matrix ρ

of the system with respect to the oscillator, and the trace norm

‖ρTr‖1 is defined by

‖ρTr‖1 = Tr

[

√

(ρTr )†ρTr

]

. (21)

Using Eq. (11), the logarithmic negativity of the density ma-

trix ρ can be obtained as

N(t) = log2
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. (22)

In Fig. 2, we plot the von Neumann entropy S (t) and the

logarithmic negativity N(t) as functions of time t. We can

see that the entanglement is a periodic function of time t with

the same period as the coherent amplitude |α(t)|. At times

t = 2mπ/δ for natural numbers m, the coherent amplitude

α(t) = 0. As a result, the qubit and the oscillator decou-

ple and the entanglement disappears. In the middle dura-

tion of a period, the von Neumann entropy S (t) and the log-

arithmic negativity N(t) reach the maximum. In these dura-

tions, the coherent amplitude |α(t)| is large enough such that

exp[−2|α(t)|2] ≈ 0 [i.e., N±(t) ≈ 1/
√

2], then the state |ψ(t)〉
can be approximated by a Bell-like state defined with the or-

thogonal basis states |±〉q and |α±(t)〉r. In the middle duration

of a period, the two measures agree well.

C. Numerical solution with the full Hamiltonian

We now calculate the state of this system by solving the

full Hamiltonian (1) numerically. In a closed system without

decoherence from the qubit and the harmonic oscillator, a pure

state of the system has the general form

|Ψ(t)〉 =
∞
∑

m=0

[

Am(t)|0〉q|m〉r + Bm(t)|1〉q|m〉r
]

, (23)

where |m〉r are the Fock states of the oscillator. Following the

Schrödinger equation under the Hamiltonian H(t), the equa-

tions of motion for the probability amplitudes Am(t) and Bm(t)

(for natural numbers m) can be derived as

Ȧm(t) = − iξω0 cos(ω0t)Bm(t) − imωrAm(t)

− ig0

[√
m + 1Am+1(t) +

√
mAm−1(t)

]

, (24a)

Ḃm(t) = − iξω0 cos(ω0t)Am(t) − imωrBm(t)

+ ig0

[√
m + 1Bm+1(t) +

√
mBm−1(t)

]

. (24b)

For the initial state |+〉q|0〉r, we have A0(0) = B0(0) =

1/
√

2, Am>0(0) = 0, and Bm>0(0) = 0. By numerically solving

Eqs. (24a) and (24b) with these initial conditions, the evolu-

tion of the probability amplitudes can be obtained. In realistic

simulations, we need to truncate the Hilbert space of the os-

cillator such that the equations of motion (24a) and (24b) to

be closed. The truncation dimension nd should be chosen to

ensure the normalization of the state (23). In our simulations,
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we consider the case of δ = g, which leads to the maximum

coherent amplitude |α|max = 2. Then we choose the truncation

dimension as nd = 14 in the closed-system case. This value

should be increased in the open-system case because the os-

cillator will be excited by the heat baths.

After a measurement of the qubit σx operator [with eigen-

states |±〉q = (|0〉q ± |1〉q)/
√

2], the oscillator can be prepared

in states

|Ψ±(t)〉r =
1

√

2p±(t)

∞
∑

m=0

[Am(t) ± Bm(t)] |m〉r, (25)

where

p±(t) =
1

2

∞
∑

m=0

|Am(t) ± Bm(t)|2 (26)

are the probabilities of the states |Ψ±(t)〉r, respectively.

D. Fidelities of approximate solution in a closed system

The validity of the RWA performed in obtaining the Hamil-

tonian H̃RWA(t) can be evaluated by comparing the analytical

solution in Sec. III A and the numerical solution in Sec. III C.

First, we consider the average excitation number 〈na(t)〉 of the

oscillator. For the state |Ψ(t)〉, we derive

〈na(t)〉 = 〈Ψ(t)|a†a|Ψ(t)〉

=

∞
∑

m=0

[

m
(

|Am(t)|2 + |Bm(t)|2
)]

. (27)

In Fig. 3(a), we plot the time dependence of the average

excitation number 〈na(t)〉 given by Eq. (27) at selected val-

ues of the oscillator frequency ωr . These numerical results

are compared with the analytical result given by Eq. (15),

which is independent of ωr. For ωr/g0 = 200, the numer-

ical result strongly overlaps with the analytical result. We

can see from the inset of this figure that the numerical re-

sults agree better with the analytical result for larger values

of ωr/g0. In these curves, the peak values of 〈na(t)〉 are lo-

cated at g0ts = πg0/δ ≈ 6.45 with our parameters. This can

be well explained by Eq. (15): at times t = (2m + 1)π/δ for

natural numbers m, the displacement of the oscillator reaches

its maximum value of |α|max = 2g/δ.

We also examine the fidelity f (t) = |〈Ψ(t)|ψ(t)〉|2 between

the states |Ψ(t)〉 and |ψ(t)〉. Using Eqs. (11) and (23), this fi-

delity can be obtained as

f (t) =
1

2
e−|α(t)|2

∣

∣

∣

∣

∣

∣

∣

∞
∑

m=0

{

[A∗m(t) cos[ξ sin(ω0t)]

−iB∗m(t) sin[ξ sin(ω0t)]] + (−1)m[B∗m(t) cos[ξ sin(ω0t)]

−iA∗m(t) sin[ξ sin(ω0t)]]
} αm(t)
√

m!

∣

∣

∣

∣

∣

∣

2

(28)

in terms of the coefficients Am(t) and Bm(t). In Fig. 3(b), we

plot f (t) with the same values of oscillator frequency as those
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in the oscillator at various values of the oscillator frequency ωr.

From bottom to top, the curves correspond to: ωr/g0 = 30 (black),

ωr/g0 = 50 (red), ωr/g0 = 200 (blue), and the analytical solution

from Eq. (15) (purple), respectively. (b) The fidelity f (t) between

the states |Ψ(t)〉 and |ψ(t)〉 versus the time t at the same values of ωr

as those in panel (a). (c) The fidelity f (ts) at time ts = π/δ versus the

oscillator frequency ωr . Other parameters are n0 = 1 and ξ = 1.5271.

We set the detuning to be δ = g.

in Fig. 3(a). The fidelity exhibits fast oscillations caused by

the high-frequency oscillating phase factors exp(±iωrt) and

exp(±inω0t) (ωr, ω0 ≫ g0). For a larger ωr, f (t) oscillates

faster, but with a smaller oscillation amplitude. For ωr/g0 =

200, f (t) ≈ 1 with a negligible oscillating amplitude, which

indicates the validity of the RWA. In Fig. 3(c) we plot the

fidelity f (ts) as a function of ωr at time ts = π/δ, where ts

corresponds to the location of the peak value in Fig. 3(a). Here

f (ts) shows small oscillation (see inset), but with an envelope

that increases gradually to reach the value 1. This behavior

agrees with the above discussions.

Now we consider the fidelities between the generated

states |Ψ±(t)〉 in Eq. (25) and the target states |α±(t)〉r (the

Schrödinger cat states) of the oscillator after a measurement

on the σx operator of the qubit is conducted. Using Eqs. (12)
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FIG. 4. The fidelities f±(t) between the states |Ψ±(t)〉 and their corre-

sponding target states |α±(t)〉r versus the time t. The selected values

of ωr are the same as those in Fig 3. Other parameters are n0 = 1,

ξ = 1.5271, and δ = g.

and (25), the fidelities f±(t) = | r〈Ψ±(t)|α±(t)〉r |2 can be ob-

tained as

f+(t) =
2N2
+
(t)e−|α(t)|2

p+(t)

∣

∣

∣

∣

∣

∣

∣

∞
∑

l=0

[A∗2l(t) + B∗2l(t)]
α2l(t)
√

(2l)!

∣

∣

∣

∣

∣

∣

∣

2

, (29a)

f−(t) =
2N2
−(t)e−|α(t)|2

p−(t)

∣

∣

∣

∣

∣

∣

∣

∞
∑

l=0

[A∗2l+1(t) − B∗2l+1(t)]
α2l+1(t)
√

(2l + 1)!

∣

∣

∣

∣

∣

∣

∣

2

.

(29b)

In Fig. 4, we plot the fidelities f±(t) as functions of the time.

Our result shows that the fidelities increase gradually with the

increase of ωr . One interesting effect is that around the time

t = 2π/δ ≈ 12.9, the fidelity f−(t) experiences a sudden de-

crease. This phenomenon can be explained by analyzing the

state of the oscillator at this time. When t → 2π/δ, we have

α(t) → 0, then the state of the system approaches to |+〉q|0〉r
and the target states become

|α+(2π/δ)〉r → |0〉r, |α−(2π/δ)〉r → |1〉r. (30)

Therefore, when t → 2π/δ, the fidelity f−(2π/δ) → 0 if the

RWA condition (7) is well satisfied. In fact, the probability for

detection of the state |−〉q at this time is also zero, as shown

by Eq. (16).

In the upper three panels in Fig. 5, we plot the measurement

probabilities p±(t) of the qubit states defined in Eq. (26) at se-

lected values of ωr. These probabilities are compared with the

analytical results P±(t) given by Eq. (16) (the lowest panel).

Figure 5 shows that the probabilities from the numerical sim-

ulation of the full Hamiltonian H(t) exhibit fast oscillations
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FIG. 5. The probabilities p±(t) of the qubit states (the upper three

panels) given by Eq. (26) versus the time t at the same values of ωr

as those in Fig. 3. The analytical results P±(t) (the lowest panel) are

given by Eq. (16). Other parameters are n0 = 1, ξ = 1.5271, and

δ = g.

around the approximate values from the RWA results. With

the increase of ωr/g0, the oscillation becomes faster but its

magnitude decreases gradually. The numerical results at large

ωr/g0 agree well with the RWA result. At time ts = π/δ for a

maximum oscillator displacement, the qubit will be detected

in the states |±〉q with approximately equal probability of 1/2.

E. The Wigner function and the probability distribution of the

rotated quadrature operator

The quantum interference and coherence effects in the gen-

erated cat states can be revealed by studying the Wigner func-

tion [58] and the probability distribution of the rotated quadra-

ture operator [59]. For the harmonic oscillator described by a

density matrix ρr, the Wigner function is defined by [58]

W(β) =
2

π
Tr

[

D†(β)ρrD(β)(−1)a†a
]

, (31)

where D(β) = exp(βa† − β∗a) is a displacement operator. For

the states |Ψ±(t)〉r given in Eq. (25), the Wigner functions can

be obtained as

W (±)(β) =
1

πp±(t)

∞
∑

l,m,n=0

[Am(t) ± Bm(t)][A∗n(t) ± B∗n(t)]

×(−1)l
r〈l|D†(β)|m〉r r〈n|D(β)|l〉r. (32)

Here the probabilities p±(t) are given by Eq. (26), and the ma-

trix elements of the displacement operator in the Fock space
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FIG. 6. (a, c) The Wigner functions W(±)(β) and (b, d) the probability

distributions P(±)[X(θ0)] of the rotated quadrature operator X̂(θ0) for

the oscillator’s states |Ψ±(ts)〉r . Other parameters are ωr/g0 = 200,

n0 = 1, ξ = 1.5271, and δ = g.

can be calculated by [60]

r〈m|D(β)|n〉r =























√

m!
n!

e−|β|
2/2(−β∗)n−mLn−m

m (|β|2), n > m,
√

n!
m!

e−|β|
2/2(β)m−nLm−n

n (|β|2), m > n,
(33)

where Lm
n (x) are the associated Laguerre polynomials.

For the rotated quadrature operator

X̂(θ) =
1
√

2
(ae−iθ

+ a†eiθ), (34)

we denote the eigenstate as |X(θ)〉r: X̂(θ)|X(θ)〉r = X(θ)|X(θ)〉r,
then, for a density matrix ρr of the oscillator, the probability

distribution of the rotated quadrature operator X̂(θ) is defined

by [59]

P[X(θ)] = r〈X(θ)|ρr|X(θ)〉r. (35)

For the states |Ψ±(t)〉r, we can obtain the probability distribu-

tions of the rotated quadrature operator as

P(±)[X(θ)] = r〈X(θ)|Ψ±(t)〉r r〈Ψ±(t)|X(θ)〉r

=
1

2p±(t)

∣

∣

∣

∣

∣

∣

∣

∞
∑

m=0

[Am(t) ± Bm(t)] r〈X(θ)|m〉r

∣

∣

∣

∣

∣

∣

∣

2

.(36)

Here the inner product of the number state |m〉r with the eigen-

state |X(θ)〉r of the rotated quadrature operator can be calcu-

lated with this relation

r〈X(θ)|m〉r =
Hm[X(θ)]
√
π1/22mm!

e−X2(θ)/2e−iθm, (37)

where Hm[x] are the Hermite polynomials.

In Fig. 6, we plot the Wigner functions W (±)(β) and the

probability distributions P(±)[X(θ0)] of the rotated quadrature

operator X̂(θ0) for the states |Ψ±(ts)〉r, where ts = π/δ is the

qubit detection time. Based on the analytical results, we know

that the coherent amplitude is α(ts) = −1.9005 + 0.6228i

[|α(ts)| = 2 and arg[α(ts)] = 2.8249] at time ts = π/δ = 6.45

and under the used parameters. In Figs. 6(a) and 6(c), we can

see that the positions of the two main peaks in the Wigner

functions are located at ±α(ts) in the phase space, which rep-

resent the two coherent states |±α(ts)〉r. Moreover, the Wigner

functions exhibit clear oscillating pattern in the region be-

tween these two peaks (along the line that is perpendicular

to the link between the two peaks). This oscillating fea-

ture is a distinct evidence of quantum interference and coher-

ence. The quantum features can also be seen by considering

the probability distribution of the rotated quadrature opera-

tor. We choose a rotated quadrature operator with the angle

θ0 = arg[α(ts)] − π/2 = 1.2541, which means that the quadra-

ture direction is perpendicular to the line that links the two

peaks. The interference is maximum along this direction be-

cause the two coherent states are projected onto the quadra-

ture such that they overlap exactly. In Figs. 6(b) and 6(d),

we plot P(±)[X(θ0)] of the states |Ψ±(ts)〉r. Oscillating features

can be seen clearly from these curves. It is interesting to point

out that the pattern of the probability distribution in Fig. 6(b)

and 6(d) is very similar to the curves in the cross section of

the Wigner function [in Fig. 6(a) and 6(c)] at the same rotat-

ing angle. The difference is that the probability distributions

are always positive; whereas the Wigner functions could be

negative.

IV. THE OPEN-SYSTEM CASE

In this section, we will study how the dissipations of the

system affect the fidelity and probability of the generated

states. We will also discuss the influence of the dissipations

on the Wigner function and the probability distribution of the

rotated quadrature operator.

A. Quantum master equation and solution

Under environmental fluctuations, the evolution of the sys-

tem is governed by the quantum master equation:

ρ̇ = i[ρ,H(t)] + γqn̄qD[σ+]ρ + γq(n̄q + 1)D[σ−]ρ

+κrn̄rD[a†]ρ + κr(n̄r + 1)D[a]ρ, (38)

whereD[o]ρ = oρo† − (o†oρ + ρo†o)/2 is the standard Lind-

blad superoperator that describes the dampings of the qubit

and the oscillator. The parameters γq (κr) and n̄q (n̄r) are the

damping rate and the thermal excitation number for the qubit

(oscillator) bath, respectively. To solve this master equation,

we expand the state of the oscillator in the Fock space. Then



8

0 5 10 15 20 25 30

0.5

0

1

0 5 10 15 20 25 30

0.5

0

1

0 5 10 15 20 25 30

0.5

0

1

0 5 10 15 20 25 30

0.5

0

1

0.1

0.05

Lo
ga

rit
hm

ic
 n

eg
at

iv
ity

 N
(t)

g0t

q/g0 = 0.01(a)

5

3

g0t

nq = 1
(c)

0.005

0.01

g0t

r/g0 = 0.001(b)

5

3

g0t

nr = 1

(d)

FIG. 7. The logarithmic negativity N(t) of the density matrix ρ(t)

versus the time t in various cases. (a) κr/g0 = 0.001, n̄r = 0, n̄q = 0,

and γq/g0 = 0.01, 0.05, and 0.1; (b) γq/g0 = 0.01, n̄q = 0, n̄r = 0, and

κr/g0 = 0.001, 0.005, and 0.01; (c) κr/g0 = 0.001, n̄r = 0, γq/g0 =

0.01, and nq = 1, 3, and 5; (d) γq/g0 = 0.01, n̄q = 0, κr/g0 = 0.001,

and n̄r = 1, 3, and 5. Other parameters are ωr/g0 = 200, n0 = 1,

ξ = 1.5271, and δ = g.

the density matrix of the total system can be expressed as

ρ(t) =

∞
∑

m,n=0

[ρ1,m,1,n(t)|1〉q|m〉r q〈1|r〈n|

+ρ1,m,0,n(t)|1〉q|m〉r q〈0|r〈n|
+ρ0,m,1,n(t)|0〉q|m〉r q〈1|r〈n|
+ρ0,m,0,n(t)|0〉q|m〉r q〈0|r〈n|]. (39)

For an initial state |+〉q|0〉r, the nonzero density matrix ele-

ments are ρ0,0,0,0(0) = ρ0,0,1,0(0) = ρ1,0,0,0(0) = ρ1,0,1,0(0) =

1/2. By numerically solving the master equation (38) under

the initial condition, the time evolution of the density matrix

ρ(t) can be obtained.

B. Entanglement between the qubit and the oscillator

In the open-system case, the entanglement of the density

matrix ρ(t) can be quantified by calculating the logarithmic

negativity. In terms of Eqs. (20), (38), and (39), the logarith-

mic negativity of the state ρ(t) can be obtained numerically.

In Fig. 7, we plot the logarithmic negativity N(t) as a func-

tion of time t when the dissipation parameters of the system

take various values. Here panels (a) and (c) are plotted for

various values of γq and n̄q, while panels (b) and (d) show the

curves corresponding to different values of κr and n̄r. Sim-

ilar to the pure-state case in Fig. 2, at the decoupling times

tm = 2mπ/δ for natural numbers m, the qubit and the oscillator

decouple and the logarithmic negativity becomes zero. In the

middle durations between neighboring decoupling times, the
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FIG. 8. The fidelities F±(t) and the probabilities P±(t) as functions of

time t at (a, b) n̄q = 0 and γq/g0 = 0.01, 0.05, and 0.1; (c, d) γq/g0 =

0.01 and n̄q = 1, 5, and 8. Other parameters are ωr/g0 = 200, n0 = 1,

ξ = 1.5271, δ = g, κr/g0 = 0.001, and n̄r = 0. The insets are the

fidelities F±(ts) and the probabilities P±(ts) at ts = π/δ versus γq and

n̄q.

logarithmic negativity decreases with time. When the values

around the decoupling times are ignored, then the logarith-

mic negativity in these middle durations exhibits a tendency

to smoothly decrease. For larger values of decay rates and

thermal excitation numbers, the logarithmic negativity decays

faster.

C. Fidelity and probability of the cat states

As explained in Sec. III, in order to create quantum super-

positions in the oscillator, we need to perform a projective

measurement on the qubit. For a density matrix ρ(t), when the

qubit is detected in states |±〉q, the reduced density matrices of

the oscillator are

ρ(±)
r (t) =

1

2P±(t)

∞
∑

m,n=0

Λ
(±)
m,n(t)|m〉rr〈n|, (40)

where we introduced the variables

Λ
(±)
m,n(t) = ρ1,m,1,n(t) + ρ0,m,0,n(t)

±[ρ1,m,0,n(t) + ρ0,m,1,n(t)], (41)

and the probabilities for detecting the qubit states |±〉q

P±(t) =
1

2

∞
∑

m=0

Λ
(±)
m,m(t). (42)

We can evaluate the efficiency of the state generation by cal-

culating the fidelities F±(t) = r〈α±(t)|ρ(±)
r (t)|α±(t)〉r between
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FIG. 9. The fidelities F±(t) and the probabilities P±(t) as functions

of time t at (a, b) n̄r = 0 and κr/g0 = 0.001, 0.005, and 0.01; (c, d)

κr/g0 = 0.001 and n̄r = 1, 5, and 8. Other parameters are ωr/g0 =

200, n0 = 1, ξ = 1.5271, δ = g, γq/g0 = 0.01, and n̄q = 0. The insets

are the fidelities F±(ts) and the probabilities P±(ts) at ts = π/δ versus

κr and n̄r .

the generated states ρ
(±)
r (t) and the target states |α±(t)〉r. The

fidelities have the form

F+(t) =
2N2
+
(t)e−|α(t)|2

P+(t)

∞
∑

l,l′=0

Λ
(+)

2l′ ,2l
(t)

[α∗(t)]2l′α2l(t)
√

(2l′)!(2l)!
, (43a)

F−(t) =
2N2
−(t)e

−|α(t)|2

P−(t)

∞
∑

l,l′=0

Λ
(−)

2l′+1,2l+1
(t)

[α∗(t)](2l′+1)α2l+1(t)
√

(2l′ + 1)!(2l + 1)!
.

(43b)

In Fig. 8, we display the time dependence of the fideli-

ties F±(t) and the probabilities P±(t) at selected values of

qubit decay rate γq and thermal excitation number n̄q. In

the intermediate duration of g0t ≈ 3 - 10 [corresponding to

|α(t)| > 1.3 and exp(−2|α(t)|2) < 0.034], the fidelities F+(t)

and F−(t) have approximately equal values, and the proba-

bilities P+(t) ≈ P−(t) ≈ 1/2. At a given time in this duration,

F±(t) decrease with the increase of γq and n̄q. This feature can

be seen more clearly at time ts = π/δ when the displacement

reaches its peak values. As shown in the insets of Figs. 8(a)

and 8(c), F±(ts) decrease rapidly with the increase of γq and

n̄q. On the contrary, the probability P+(ts) [P−(ts)] at the peak

only increases (decreases) very slowly with the increase of γq

and n̄q, under the normalization P+(ts)+P−(ts) = 1 [the insets

in panels (b) and (d)]. Around the times g0t = 0 and 12.91,

F+(t) and F−(t) have different values. Here F+(t → 0) = 1

because |α+(t → 0)〉r = |0〉r is exactly the initial state. The

value F−(t → 0) = 0 because |α−(t → 0)〉r = |1〉r. The

corresponding probability P−(0) = 0 in the ideal case. Ap-

proaching the time g0t = 12.91, the fidelity F+(t) [F−(t)] has

a tendency of increasing (decreasing). The probabilities P±(t)
have small deviation from the analytical results in Fig. 5, and

FIG. 10. The Wigner function W(+)(β) for the state ρ
(+)
r (ts) in various

cases. (a-c) κr/g0 = 0.02, n̄r = 0, n̄q = 0, and γq/g0 = 0.01, 0.1,

0.5; (d-f) κr/g0 = 0.02, n̄r = 0, γq/g0 = 0.1, and n̄q = 1, 4, 6; (g-

i) γq/g0 = 0.1, n̄q = 0, n̄r = 0, and κr/g0 = 0.01, 0.05, 0.1; (j-l)

γq/g0 = 0.1, n̄q = 0, κr/g0 = 0.02, and n̄r = 1, 3, 5. Other parameters

are ωr/g0 = 200, n0 = 1, ξ = 1.5271, and δ = g.

the deviation increases with γq and n̄q.

In Fig. 9 we plot the fidelities F±(t) and the probabilities

P±(t) at various values of the oscillator decay rate κr and the

thermal excitation number n̄r, as well as the fidelities F±(ts)

and the probabilities P±(ts) at the peak position ts. We can see

similar behavior as that in Fig. 8. During the time period with

|α(t)| > 1, the fidelities F+(t) and F−(t) have approximately

equal values, and they decrease with the increase of κr and n̄r.

The probabilities P+(t) and P−(t) are approximately equal to

1/2. The probabilities and fidelities at time ts are also similar

to those in Fig. 8.

D. The Wigner function and the probability distribution of the

rotated quadrature operators

In the open-system case, the dissipation of the system will

attenuate the macroscopic quantum coherence in the gener-

ated cat states. For the density matrices (40) of the oscillator,
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the Wigner functions can be obtained as

W (±)(β) =
1

πP±(t)

∞
∑

l,m,n=0

(−1)l
Λ

(±)
m,n(t) r

×〈l|D†(β)|m〉r r〈n|D(β)|l〉r, (44)

where the matrix elements of the displacement operator are

calculated with Eq. (33).

In Fig. 10 we plot the Wigner function W (+)(β) of the den-

sity matrix ρ
(+)
r (ts) when the decay rates and the thermal ex-

citation numbers take various values. Here we only show the

Wigner function W (+)(β) for concision because W (−)(β) has

similar parameter dependence. We can see from Fig. 10 that,

with the increase of the decay rate γq (κr) and the thermal exci-

tation number n̄q (n̄r) of the qubit (oscillator), the interference

pattern (the region between these two peaks) in the Wigner

function attenuates gradually, which means that the dissipa-

tions of the qubit and the oscillator will hurt the macroscopic

quantum coherence.

We also investigate how the dissipations of the system affect

the probability distributions of the rotated quadrature opera-

tor. For states (40), the probability distributions of the rotated

quadrature operator X̂(θ) can be obtained as

P(±)[X(θ)] =
e−X2(θ)

2P±(t)

∞
∑

m,n=0

Λ
(±)
m,n(t)

√
π2m+nm!n!

×Hm[X(θ)]Hn[X(θ)]eiθ(n−m). (45)

In Fig. 11, we plot the probability distribution P(+)[X(θ0)] for

the state ρ
(+)
r (ts) at selected values of the decay rate γq (κr) and

the thermal excitation number n̄q (n̄r) of the qubit (oscillator).

It can be seen that with the increase of the four parameters, the

oscillation amplitude of the probability distribution decreases

gradually. This means that the dissipations of the qubit and the

oscillator attenuate the quantum interference and coherence in

these cat states. We also studied the influence of the system’s

dissipations on the probability distribution P(−)[X(θ0)] for the

state ρ
(−)
r (ts), similar parameter dependence can be seen in this

case.

V. OTHER TYPES OF QUBIT-OSCILLATOR COUPLING

Our approach can be applied to various other types of qubit-

oscillator coupling. One example is a qubit-oscillator system

with the Hamiltonian,

H1(t) = ξω0 cos(ω0t)σz + ωra
†a + g0σx

(

a + a†
)

. (46)

In this model, the displacement of the oscillator can be am-

plified by the driving on the qubit ξω0 cos(ω0t)σz, which can

be easily proved with the same procedure as that in Sec. II

by replacing σz in the transformation [Eq. (2)] with σx and

assuming ωq = 0.

Another example is a Jaynes-Cummings type of coupling

described by the Hamiltonian,

H2(t) =
ωq

2
σz + ξω0 cos(ω0t)σx + ωra

†a

+g0

(

σ+a + σ−a†
)

. (47)
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FIG. 11. The probability distribution P(+)[X(θ0)] of the rotated

quadrature operator X̂(θ0) for the state ρ
(+)
r (ts) in various cases: (a)

κr/g0 = 0.001, n̄r = 0, n̄q = 0, and γq/g0 = 0.01, 0.1, 0.2, 0.5; (b)

γq/g0 = 0.1, n̄q = 0, n̄r = 0, and κr/g0 = 0.001, 0.01, 0.02, 0.05;

(c) κr/g0 = 0.001, n̄r = 0, γq/g0 = 0.01, and n̄q = 1, 4, 8, 12;

(d) γq/g0 = 0.1, n̄q = 0, κr/g0 = 0.01, and n̄r = 1, 2, 3, 5. Other

parameters are ωr/g0 = 200, n0 = 1, ξ = 1.5271, and δ = g.

Here the qubit is driven by a σx field with frequency ω0. We

can use the transformation V(t) given in Eq. (2). In the rotating

frame defined by V(t), the Hamiltonian becomes

H̃2(t) = V†(t)H2(t)V(t) − iV†(t)V̇(t)

=
ωq

2

{

cos[2ξ sin(ω0t)]σz + sin[2ξ sin(ω0t)]σy

}

+i
g0

2
cos[2ξ sin(ω0t)]σy

(

ae−iωr t − a†eiωr t
)

−i
g0

2
sin[2ξ sin(ω0t)]σz

(

ae−iωr t − a†eiωr t
)

+
g0

2
σx

(

ae−iωrt + a†eiωr t
)

. (48)

In terms of the Jacobi-Anger expansions in Eq. (4), we can

decompose H̃2(t) into different frequency components. Under

the condition,

ωq/2 ≪ ω0, δ′ ≤ g′, g0 ≪ ω0, ωr, (49)

where δ′ = ωr − (2n0 − 1)ω0 and g′ = g0J2n0−1(2ξ)/2, we

obtain an approximate Hamiltonian

H̃
(2)

RWA
(t) ≈

ωq

2
J0(2ξ)σz − g′σz

(

ae−iδ′t
+ a†eiδ′t

)

(50)

by applying the RWA. In this case, the maximum displace-

ment of the oscillator is 2g′/δ′, which is significantly en-

hanced by choosing a small δ′. Based on this Hamiltonian,

one can prove the generation of macroscopic Schrödinger’s

cat states in the oscillator using the same procedure as that in

Sec. III.
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VI. DISCUSSIONS

To implement the above scheme, one needs appropriate

procedures for initial state preparation, qubit state detection,

and quantum tomography of the oscillator state. The super-

position state of the qubit can be easily prepared by applying

pulses to rotate the qubit state. By driving the qubit with a

π/2 pulse, the qubit can evolve from the states |0〉q and |1〉q
to the states |±〉q. The ground state of the oscillator can be

prepared with ground state cooling techniques that have been

realized in several experiments [61, 62]. Various approaches

to measureing the qubit have been developed and have been

demonstrated in experiments. The superposed states of the

oscillator can be measured with quantum state tomography

schemes [63] for electrical [64] or mechanical [65] resonators.

One potential experimental system to demonstrate the

proposed scheme is a superconducting qubit coupled to a

nanomechanical resonator [52]. For example, we can have

a transmon qubit coupled to a nanomechanical resonator ca-

pacitively. This system is described by Hamiltonian (1). Re-

alistic parameters of this system could be: ωr = 2π×58 MHz,

g0 ≈ 2π × 0.3 - 2.3 MHz, and κr ≈ 2π × 0.967 - 1.934 kHz.

Here the ratio ωr/g0 is in the range of 20 - 200. By varying

the gate voltage, we can have ωq = 0. The values of δ, ξ, and

n0 can be chosen to satisfy the RWA condition (7) by using

a well-designed magnetic flux threading through the SQUID

loop of the qubit. To observe macroscopic quantum coher-

ence, the influence of dissipation should be negligible during

the whole process of the state generation. When we choose

g0 ≈ 2π × 2.3 MHz, δ = g, and ξ = 1.5271, the state gener-

ation time is ts = π/δ ≈ 0.45 µs. In the nanomechanical sys-

tem, the decay rate of the resonator is much smaller than the

coupling strength with κr/g0 ≈ 10−3. With thermal phonon

number on the order of 10, the mechanical dissipation will

not strongly affect the quantum coherence. Meanwhile, the

life time of superconducting qubits in current technology can

reach 100 µs, far exceeding the duration of the state genera-

tion scheme [66]. These parameters show that it is promising

to observe macroscopic quantum coherence in the proposed

state-generation scheme.

VII. CONCLUSIONS

To conclude, we proposed a scheme to generate macro-

scopic Schrödinger’s cat states in a generic coupled qubit-

oscillator system. The scheme is realized by introducing a

monochromatic driving on the qubit that is coupled to the

oscillator by a conditional displacement interaction. Under

appropriate conditions, the driving on the qubit induces an

effective resonant or near-resonant force acting on the oscil-

lator, which can amplify the displacement of the oscillator

to exceed the amplitude of quantum fluctuations. We stud-

ied the state preparation process in detail in both the closed-

and open-system cases. We also studied the quantum inter-

ference and coherence in the generated states by calculating

the Wigner function and the probability distribution of the ro-

tated quadrature operator. Our results show that the proposed

method could be a realistic scheme to generate strong quan-

tum superposition in macroscopic systems.
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Appendix: Derivation of Eq. (9)

In this appendix, we present a detailed derivation of the

unitary evolution operator U(t) given in Eq. (9). For the

Hamiltonian H̃RWA(t) = gσz(ae−iδt
+ a†eiδt), the unitary evolu-

tion operator U(t) is determined by the equation i∂U(t)/∂t =

H̃RWA(t)U(t) subject to the initial condition U(0) = I, where I

is the identity matrix in the Hilbert space of the system. For-

mally, we can express the operator U(t) as

U(t) = T exp

{∫ t

0

[

−iH̃RWA(τ)
]

dτ

}

, (A.1)

where T is the time-ordering operator. According to the Mag-

nus theory, the operator U(t) can be expressed as

U(t) = exp[Λ(t)], Λ(t) =

∞
∑

k=1

Λk(t). (A.2)

Here the variables Λk(t) are defined by

Λ1(t) =

∫ t

0

[−iH̃RWA(t1)]dt1,

Λ2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2[−iH̃RWA(t1),−iH̃RWA(t2)],

Λ3(t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

×
(

[−iH̃RWA(t1), [−iH̃RWA(t2),−iH̃RWA(t3)]]

+[−iH̃RWA(t3), [−iH̃RWA(t2),−iH̃RWA(t1)]]
)

,

Λk>3(t) = . . . . (A.3)

Here [A, B] = AB − BA is the matrix commutator of A and B,

and the higher-order terms consist of the integral of the com-

mutators of Hamiltonians at different times. Since the com-

mutator of two Hamiltonians at different times is a c-number,

i.e.,
[

−iH̃RWA(t′),−iH̃RWA(t′′)
]

= 2ig2 sin
[

δ
(

t′ − t′′
)]

, (A.4)

the third- and higher-order terms in the Magnus expansion

vanish, Λk>2(t) = 0. Using the Hamiltonian H̃RWA(t), we ob-

tain

Λ1 (t) = σz

[

g

δ

(

1 − eiδt
)

a† − g

δ

(

1 − e−iδt
)

a

]

,

Λ2 (t) = i
g2

δ2
[δt − sin (δt)] . (A.5)

Then the operator U(t) can be expressed by Eq. (9).
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