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Within the quantum phase representation we derive Heisenberg limits, in closed form, for N00N
states and two other classes of states that can perform better in terms of local performance metrics
relevant for multiply-peaked distributions. One of these can also enhance the super-resolution factor
beyond that of a N00N state of the same power, at the expense of diminished fringe visibility. An
accurate phase estimation algorithm, which can be applied to the minimally resourced apparatus of
a standard interferometer, is shown to be resilient to the presence of additive white-Gaussian noise
(AWGN). In the limit of no AWGN the algorithm achieves over nine digits of accuracy for the case
of a four-photon N00N state — orders of magnitude below its Heisenberg limit.

PACS numbers: 42.50.St, 42.50.Dv, 42.50.Ex, 42.50.Lc

I. INTRODUCTION

Quantum phase estimation plays an important role in
quantum computing and quantum sensing applications.
With regard to quantum computing, phase estimation is
often implemented via the inverse of the Quantum Dis-
crete Fourier Transform (QDFT). Phase estimation via
QDFT is an integral step in many quantum algorithms,
including the assessment of periodicity in Shor’s algo-
rithm, etc. [1, 2]. Quantum computing is typically re-
alized as quantum circuits implementing algorithms on
individual qubits [3], however, these can also be realized
as quantum multiparticle interferometers [4, 5] along the
lines of Feynman’s original ideas [6]. A mapping between
quantum circuits, interferometers, and spectrometers [7],
coupled with linear optics realizations [8], leads naturally
to a quantum sensing perspective that is realizable via
beam splitters, phase shifters and photodetectors.

Therein, in addition to the acheivement of phase mea-
surement accuracies below the shot-noise limit [9], the
quantum interference effects in electromagnetic fields
have led to super-resolving phase measurements [10, 11]
(a.k.a. super-resolution), which also circumvents the
Rayleigh diffraction limit in lithography [12] and imag-
ing [13]. In essence, N photons of a field at wavelength
λ are utilized to perform “quantum sensing” with an ef-
fective wavelength of λ/N , while still utilizing sources,
detectors and propagation properties associated with an
actual wavelength λ. In the standard methods, the im-
provement factor N has been limited to date [14, 15,
16]. This limitation arose primarily because in order to
observe these higher-order fringes, the standard schemes
relied on coincidence detection methods. Thus, the mea-
surement apparatus increases in complexity with N . It
was thought that coincidence detection schemes of order
N were required since the super-resolving fringes vanish
in the output of a first-order interferometer. Fortunately,
however, a method of extracting this higher-order phase

information from a standard [17] interferometer has been
found [18]. In this method (termed the phase function
fitting algorithm, PFFA) the apparatus complexity is in-
dependent of the super-resolving improvement factor N .
Herein, we examine the robustness of the PFFA to addi-
tive white-Gaussian noise (AWGN) — after first glean-
ing insights, and deriving N00N (and other state) limits
within the quantum phase [19], [20] representation.

The quantum phase representation that is complemen-
tary to the measurement of the difference of photon num-
bers between two harmonic oscillators is useful for visu-
alizing and calculating the phase information associated
with a quantum state — although its apparatus has yet
to be realized. Herein it is used to derive Heisenberg lim-
its (without bounds or approximation) for three classes
of states; and to show how an entanglement of N00N
states with the vacuum state can surpass the N00N state
in terms of two local performance measures appropriate
for multiple-peaked distributions. Both measures, the
HWHM and the square-root of the bin-variance, scale as
∼ 1/N (where N is the average photon number) for all
three classes of states — which are Heisenberg limited in
that sense. They differ however in the coefficient which
multiplies 1/N and one of these can go to zero, but only
at the expense of reduced fringe visibility.

The simplest phase estimation apparatus that we know
how to realize is a standard quantum interferometer.
Therein quantum resources are diminished by exploit-
ing the multiphoton interferences inherent within the
probability amplitudes of the quantum electromagnetic
field itself. The quantum theory of an interferometer
is based on the observation by Yurke et al. [21] that
it is mathematically isomorphic to rotating a quantum
state by an unknown angle and estimating that angle
from the projection of the rotated state onto the z-
component angular momentum eigenkets. This stems
from Schwinger’s observation that the algebra of two un-
coupled harmonic oscillators can reproduce the algebra
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of angular momentum [22]. In terms of eigenvalues we
have m = (nu − nd)/2 for the eigenvalue associated with

Ĵz and j = (nu + nd)/2 for the eigenvalue associated

with Ĵ2 ≡ Ĵ2
x + Ĵ2

y + Ĵ2
z , where nu and nd are the pho-

ton number eigenvalues of the two oscillators. The in-
terferometers statistics are Pm = |Ψm(Φ)|2 which is a
probability distribution in discrete m space, under rela-
tive interferometer-arm phase shift Φ and the underlying
wavefunctions are Ψm(Φ) ≡ 〈m|D̂x(Φ)|ψ〉 where D̂x(Φ)
is the analogous rotation about the x-axis by Φ, the un-
known signal we wish to estimate.

The general theory of quantum angle measurement
(complementary to the measurement of a single compo-
nent of angular momentum) is described in [20], [23] but
for states of unique j for all m (as for all states considered
herein) the angle or relative-phase measurement, taken
at a “snapshot” in absolute time, reduces to what one
would naturally expect for complementary quantities: a
Fourier transform between wavefunctions. Although this
can only be formally justified on a product space of two
oscillators — with dimension large enough to give a com-
plete description of the quantum measurement (in terms
of sets of commuting observables or equivalently: a col-
lapsible wavefunction) for the states considered herein we
can simply take a Fourier transform of the complemen-
tary wavefunction ψj,m ≡ 〈j,m|ψ〉, the magnitude square
of which yeilds the quantum phase distribution, viz.,

ψ(φ) =
∑
j

j∑
m=−j

ψj,me
imφ and P (φ) =

|ψ(φ)|2

2π
. (1)

II. QUANTUM PHASE REPRESENTATION OF
THREE CLASSES OF STATES

Although its apparatus has yet to be realized, the
phase (or angle) representation is useful for visualizing
and calculating the phase information associated with a
quantum state. Herein we use it to derive Heisenberg lim-
its (without bounds or approximation) for three classes
of states — the latter two of which can be written in the
following form (times a normalization constant)

|ψ〉 = r2(|2jmax〉u|0〉d + |0〉u|2jmax〉d)+
r1(|jmax〉u|0〉d + |0〉u|jmax〉d) + |0〉u|0〉d.

The first of the three classes considered are the N00N
states; the second class (termed sub-states) are an entan-
glement of a N00N state of j = jmax/2, with an equally
likely superposition of a N00N state of j = jmax and the
vacuum state (r2 = 1/

√
2); and the third class (termed

N00N-vac states) are comprised of an entanglement of
a N00N state with the vacuum state (r1 = 0). In all
cases the cost function is the expected number of photons
used, N = 2 〈j〉, and our metrics are local performance
measures appropriate for multiple-peaked distributions
(half-width-half-max, and bin-variance) as well as fringe

visibility and other aspects of the probability distribu-
tion function (PDF) of the quantum phase measurement
P (φ), including the number of peaks and their height.

The Fourier transform of the number-ket expansion
coefficients of the N00N state readily yields P (φ) =
(1/π) Cos2(jmaxφ) which has N = 2jmax peaks (of height
1/π) separated by perfect nulls (hence the fringe visibility
V ≡ (max−min)/(max + min) is always unity for N00N
states in the phase representation, independent of jmax)
and we observe the super-resolving aspect of obtaining N
identical peaks or fringes, in contrast to a single-peaked
PDF which would arise in the case of a coherent state.
As a consequence of the Fourier transform the periodic-
ity (here the number of peaks, which is also the num-
ber of identical bins) is set by the minimal separation
of values of m for which we have non-zero number-ket
expansion coefficients (one for the coherent state, 2jmax

for the N00N state). The variance on a 2π interval of
this multiple-peaked PDF is clearly not a useful perfor-
mance measure, so we consider bin-variance: defined to
be the variance of the PDF over one of these identical
bins, renormalized to the bin width (for N00N states that
is a 2π/N interval) and centered on that bin (to avoid
branch-cut effects). For example, in the case of a N00N
state, the bin-variance would be∫ π/N

−π/N
dφ (N/π) φ2 Cos2(Nφ/2). (2)

Inherent to the utility of this metric (and to the use of
super-resolution in general) is the assumption that we can
correctly assess the bin to which any particular estimate
corresponds — otherwise we make a bin error (the prob-
ability of which will be influenced by fringe visibility and
how one tracks a dynamically varying unknown phase).
We similarly consider the local (defined on one bin) half-
width at half-max, HWHM, and obtain the N00N state
results

HWHM =
π

2N
, bin-variance =

π2/3− 2

N2
. (3)

The square-root of the bin-variance and HWHM both
scale as 1/N in terms of our cost function. Indeed all
three classes of states considered herein follow a 1/N
scaling but the difference in the coefficient multiplying
1/N varies widely and can even go to zero at the cost
of diminished fringe visibility. Other differences, gleaned
from the PDFs, will impact upon the probability of bin
error in a practical system; but the fact that the other two
classes of states can yield coefficients better than those
in equation (3) indicates that state optimization remains
a field open for investigation (e.g., the N00N state is not
optimal, even in the above two metrics). The fact that
the N00N states are also not optimal for interferometry
is well known [24, 25] and the relationshp between the
quantum phase measurement and the SU(2) interferom-
eter statistics is delineated in [18] and [26].

Within the second class of states the strategy is to uti-
lize a sub-harmonic to, in effect, delete alternate bins and
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FIG. 1. (color online). N00N (blue solid) and r1 = 1 sub-state
(red dashed) Quantum Phase PDFs for N = 8.

sharpen the PDF within the remaining bins. Details of
a bin dropping protocol in [27] show that the probability
of a dropped bin achieves its minimal value of less than
3.164% at r1 = 1. Fig. 1 compares the quantum phase
distribution of an N = 8 sub-state (r1 = 1, jmax = 8)
to that of a N00N state of N = 8 (jmax = 4). The bin
variance on the retained bin and the HWHM [27, 28] are
readily derived in the phase representation and are al-
ways smaller than the N00N state limit of (1). Note in
passing that the enhanced peaks of the sub-states also
permit more rapid acquisition of useful phase estimates
during the collection of the histograms which evolve into
these PDFs (so these higher peaks can be useful for track-
ing a dynamic unknown phase).

The third class of states considered herein have r1 = 0,
and r2 is a free parameter. These are entanglements of
a N00N state (of j = 2jmax → jmax) with the vacuum
state, termed N00N-vac states. To clarify the physics we
let r2 = 1/

√
2n and initially consider n to be an element

of the set of integers. For n = 1 the N00N-vac state is
equivalent to a sub-state of r1 = 0. The number of bins
for this class of states is jmax (the minimal distance in m
of the N00N state component is 2jmax; but that distance
is reduced to jmax via inclusion of the vacuum state) and
there is no motivation for any bin dropping protocol.

The strategy for the N00N-vac states is to make jmax

large (to reap the benefits of super-resolution) but at the
same time reduce the probability of actually being found
in the N00N state component, by also increasing n, since
then we can simultaneously constrain N ≡ 2 〈j〉, which
is 2 〈j〉 = 2jmax/(n+1) for these states. We find that the
probability amplitude of the vacuum state can strongly
interfere with the probability amplitude of the N00N
state component even when the probability of actually
being in that component is greatly diminished; and that
the only fundamental tradeoff in this scheme is a slowly
diminished fringe visibility as V = (2

√
2
√
n)/(2+n) [29].

In designing states for the algorithm of the next section
the peaks are more important than the nulls. It can be
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FIG. 2. (color online). N00N (red solid) and N00N-vac state
(blue dashed) Quantum Phase PDFs for N = 4 (and n = 8).

shown that as we increase n the peaks of the N00N-vac
PDFs come down and become equal to those of the N00N
states when n = 8 (independent of jmax) as illustrated
for N = 4 in Fig. 2. As we continue to increase n
the super-resolving enhancement aspect (i.e., the num-
ber of fringes or bins at a fixed N) continues to increase

while the visibility diminishes, until at n = 2(17 + 12
√

2)
≈ 67.9411 the min = max/2 and beyond this value of n
the HWHM metric has no meaning. For n less than this
value, the formula for HWHM [30] is better than 17.87
times smaller than the N00N state limit at n = 67. Simi-
larly, the coefficient (multiplying N−2) in the formula for
the bin-variance of the N00N-vac states:

2(3− 24
√

2
√
n+ 2π2 + 2nπ2)

3(n+ 1)3
, (4)

is smaller than the N00N state limit (and is monotoni-
cally decreasing in n) for all n ≥ 1. Bin-variance main-
tains its meaning, even when min > max/2, and its cor-
responding coefficient goes to zero as n → ∞. With
V > 1/3 at n = 67 the bin-variance coefficient is better
than 569.9 times smaller than the N00N state limit.

III. THE PHASE FUNCTION FITTING
ALGORITHM

The phase function fitting algorithm [18] consists of
the following protocol. Under a given, but unknown,
value of Φ one measures the interferometer’s statistics
and retains the 2j+1 probabilities for each possible value
of m: Pm = |Ψm(Φ)|2. To incorporate knowledge of
the allowable quantum results one then calculates the
interferometer’s statistics for some dummy variable x:
fm(x) = |Ψm(x)|2 (for the four-photon N00N state of our
simulations herein, those are 2j + 1 = 5 different func-
tions). One then performs an LMS (Least Mean Square
error) fit of these 2j+ 1 functions to the measured 2j+ 1
numbers to perform an optimal estimation of parameter
x, thereby yielding our estimate of Φ.
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In so doing, our simulations yield surprisingly good re-
sults: over 9 digits of phase accuracy, for a N00N state
input of j = 2, when Φ ranges over a bin-width, here an
interval of π/4 [31]. At first this might seem to be either:
an impossibly good result (over nine digits of accuracy
from only four photons would be orders of magnitude be-
low the Heisenberg limit of 1/4); or a ridiculously trivial
result (certainly similar extractions of information might
be made from the ideally collected statistics of other mea-
surements). There is no contradiction here, instead it
teaches that:

1) local performance measures are important charac-
terizations of measurement statistics, but they do not
uniquely identify what can be achieved when further pro-
cessing (an algorithm) is applied; and

2) most significantly for phase estimation, it specifically
demonstrates that the super-resolving information has
not vanished from the measurement performed in a quan-
tum interferometer. These higher-order fringes only van-
ished in the standard (first-order) way of extracting in-
formation from the interferometer statistics. Since the
higher-order information is uniquely extractable (over
a non-trivial range) this information has not been de-
stroyed in the measurement process. This significantly
opens the door to the possibility of minimally resourced
quantum interference sensors in which the quantum re-
sources are dramatically reduced via classical signal pro-
cessing that incorporates knowledge of the allowable
quantum results.

This is not an impossible result, from 1) above, and in
the static limit [18] there is always a sense in which an in-
finite number of photons is implied [32]; nor is it a trivial
result because it cannot be applied to arbitrary quantum
measurements. If for example, our apparatus consisted of
a first-order interferometer (in which we subtract and av-
erage the two photodetector currents) the desired phase
information vanishes entirely and no further processing
can extract it. If instead we multiply those two currents
(second-order coincidence detection) or do a parity mea-
surement [33] then other limits are obtained. Note in
passing that the PFFA does not require any presently
unachievable amount of number resolving in the pho-
todetectors. Indeed, in the four-photon (j = 2) example
presented these need only discern between 0, 1, 2, 3, or
4 counts (photodetection events within the observation
time T ).

The utility of any parameter estimation algorithm will
lie in its ability to perform well under non-ideal condi-
tions for the collection of measurement statics. To that
end we herein test the algorithm’s resilience to addi-
tive white-Gaussian noise (AWGN) in which five statis-
tically independent AWGN processes are added to each
of the the probabilities of the 5 different values of m,
{+2,+1, 0,−1,−2} for a N00N state input of j = 2 with
Φ fixed. After each addition of the five independent noise
samples, the PFFA is executed and its phase estimation
error is calculated. Each dot in Fig. 3 represents the
average error obtained from 40,000 such executions; and
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FIG. 3. (color online). Average PFFA error (dots) and av-
erage of the absolute value of the PFFA error (line); versus
AWGN noise power.

four such dots are presented for each value of noise power
σ2 to demonstrate the variation in the average error. The
estimate is unbiased so there is some cancellation due to
polarity in that average, which is useful in some appli-
cations. In other applications the absolute value of the
error is more relevant and these are connected by the line
in Fig. 3 (averaged over only 2,000 executions as these
did not vary appreciably from run to run).

IV. A COMPARISON TO BAYESIAN
TECHNIQUES

It is important to note that the PFFA gives exceptional
accuracy even in a single execution. Unlike a Bayesian
protocol [34, 35] the PFFA does not improve its estimates
in successive applications of the algorithm; and the 2,000
executions mentioned above were only for the sake of al-
lowing the five statistically independent AWGN processes
to combine in a sufficiently large number of ways so that
we better test the algorithm’s resilience to the presence
of noise in its measurement statistics.

A Bayesian analysis [36] proceeds as follows: after an
n-dimensional sample of data, m, one then updates a
previous estimate of the PDF P (Φ); to P (Φ|m) in order
to better estimate the parameter Φ via Bayes’ theorem:

P (Φ|m) = P (Φ)P (m|Φ)/P (m)

= P (Φ)P (m|Φ)/

∫ π

−π
dΦ P (Φ)P (m|Φ) (5)

where, in our case, P (m|Φ) = Pm(Φ) are the interferome-
ters’ measurement statistics and the denominator ensures
normalization of the updated PDF P (Φ|m). In contrast,
when in the static limit (where Φ is fixed but unknown,
as the above Bayesian strategy also assumes) in the nor-
mal application of the PFFA one would simply wait for
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the histograms to sufficiently converge to Pm(Φ) before
executing the algorithm, once.

Nevertheless, as a step towards the more challenging
problem of tracking a dynamic phase shift, it is of interest
to compare the performance of the PFFA to that of a
Bayesian protocol on a finite set of data collected within
the static limit. For simplicity we will use a two-photon
N00N state. The measurement statistics are therefore:

Pm=±1/2(Φ) = (1/2) Cos2(Φ); Pm=0(Φ) = Sin2(Φ).
(6)

From successive applications of (5) and an apriori as-
sumption of P (Φ) = 1/(2π); after n measurements (or
one n-dimensional sample) the Bayesian would therefore
obtain

P (Φ|m) = c Cos2(N+)(Φ) Sin2(N0)(Φ) Cos2(N−)(Φ) (7)

where N+ is the number of counts for which m = +1/2;
N0 is the number of counts for which m = 0; N− is
the number of counts for which m = −1/2; and c is the
normalization constant.

The rapidity with which trigonometric functions raised
to a power, p ∼ O(102), can approach delta-functions
is quite astounding — even more so when p ∼ O(103).
On the other hand this can make the functions in (7)
a bit cumbersome, such that in our simulations we had
to abandon numerical integration of (7) as a means of
obtaining c (which was ∼ O(10−246) for a run at n =
1000) in favor of integrating (7) in closed-form; resulting
in hypergeometric functions (which accurately calculated
c ∼ O(10−481) for a run at n = 2000). Likewise, although
numerical schemes to obtain the peak of (7) sometimes
failed to converge; we were able to accurately calculate
〈Φ〉 numerically. Thus, 〈Φ〉 will be used as the means for
extracting an estimate from (7) and these are calculated
on [0, π/2] for a true value of Φ = π/3 in our simulations
(as any algorithm will have to know which bin it should
use for this four-peaked N00N state).

The PFFA will use the three simple functions in (6)
and perform an LMS fit of these to the same finite set of
simulated counts via: Pm=1/2 = N+/n; Pm=0 = N0/n;
and Pm=−1/2 = N−/n. The “which bin” information is
supplied to the PFFA in the form of an initial estimate of
Φ = +1, although any initial value on the open interval
(0, π/2) will converge to the same result.

Sufficient detail on the actual counts used will be pro-
vided so that the interested reader can readily verify our
results. The simulation of any random process brings up
some interesting issues of its own and means of doing so
in a way in which one can control the spectrum (or equiv-
alently the autocorrelation function) as well as the PDF
have been suggested [18]. Herein, we will simply concern
ourselves with the PDF and for a true value of Φ = π/3
we have from (6) that we hope to generate sequences
which will converge in mean to the measurement statis-
tics of {1/8, 6/8, 1/8}. One way of generating the three
counts is to process two Bernoulli trials; which we found
to give the same conclusions as the method used for our

500 1000 1500 2000
n

0.006

0.008

0.010

0.012

ÈerrorÈ

FIG. 4. (color online). Bayesian error (red upper dots) and
PFFA error (blue lower dots) versus sample size n.

presented results, which is to generate a discrete uniform
distribution of eight integers and take six of these to rep-
resent the event m = 0; and the other two to represent
the events m = −1/2 and m = +1/2.

A discussion of the first two runs of only n = 200
samples each will illustrate some of the issues involved.
The outcome of run 1 was N+ = 28, N− = 24 and
N0 = 148 which led to a Bayesian estimate error of
eb ' .0121565 and a PFFA error of ep ' .011472. The
outcome of run 2 however was N+ = 27, N− = 23 and
N0 = 150 which (by itself) would yield eb ' .000722269
and ep ' 2.60236 10−13. Notice, in run 2 “we got
lucky” in that N0/n = 6/8 so that we hit one of our
targeted measurement statistics exactly — this helped
the Bayesian estimate but it helped the PFFA even more
so. If we plotted the results of run 2 first in Fig. 4 it could
very misleadingly appear that the PFFA holds an advan-
tage for a small number of samples and this brings up
some important issues. An experimentalist would never
know that they “got lucky” and would continue to take
more data in hopes that our estimates will improve in
accuracy, in accordance with the Central Limit Theorem
or the Weak Law of Large Numbers, etc., [36]. More-
over, run 2 did not occur first, it occurred second. Our
experimentalist would report the estimates from run 1
for the first n=200 samples (the accuracies of which are
as in Fig. 4) then adding the counts from run 2 (to those
of run 1) we obtain eb ' .00610597 and ep ' .00575451;
which correspond to the second set of points presented
in Fig. 4 (for a total of n = 400 samples).

The accuracies improved because of run 2. Likewise,
things can get worse, as they did by incorporating run
3 of N+ = 28, N− = 25 and N0 = 147 for the points
at n = 600; after which we increased the sample size to
400 in run 4 (improving the accuracies of both algorithms
at n = 1000). In run 5 we increased the sample size to
1000, which changed the total counts to N+ = 130+113,
N− = 122 + 116 and N0 = 748 + 771 = 1591 (reduc-
ing the accuracies of both algorithms at n = 2000). Of
course 2000 samples is not statistically large but at this
point we can make some observations. We see that,
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within the static limit, both algorithms can perform with
similar accuracies for such small sample sizes. Secondly,
even for states of relatively simple measurement statis-
tics, as in (6), the burden on the classical signal process-
ing aspects is increasing with sample size for the Bayesian
analyst. In contrast, the PFFA operator could argue that
if we are indeed in the static limit, then we can simply
take as much time as is needed to acquire accurate mea-
surement statistics since power is the relevant cost func-
tion (not energy). Thus, for future work, we suggest a
comparison of the performance of the two methods in
the tracking of a dynamic phase (but such an ambitious
analysis is beyond the scope of the present paper).

V. CONCLUDING REMARKS

Within the quantum phase representation we have de-
rived Heisenberg limits in closed form for three classes of
states in terms of two local performance metrics: HWHM
and bin-variance. All three classes of states are Heisen-
berg limited in that the HWHM and the square-root
of the bin-variance scale as 1/N (where N is the ex-
pected number of photons) but the coefficients multi-
plying 1/N can vary. Two of these (termed sub-states
and N00N-vac states) are demonstrated to perform bet-
ter than the other class — the N00N states, in both met-
rics, as well as exhibit properties useful for tracking a
dynamic phase. The N00N-vac states entangle the vac-
uum state with a N00N state, of relative probability equal

to n. For fixed N , these enhance the super-resolution
(number of fringes or bins) by a factor of (n+ 1)/2; and
for large n they diminish the bin-variance as 1/n2 rel-
ative to the N00N state results at a diminished fringe
visibility which scales only as 1/

√
n. These higher-order

(super-resolving) fringes vanish from the output signal
of a first-order interferometer (in which one averages the
difference of the two photodetector currents) so coinci-
dence detection schemes of order N have been utilized.
We discussed an algorithm which can extract this higher-
order information from the apparatus of a standard inter-
ferometer (of complexity independent of N) by process-
ing the information in a way that incorporates knowl-
edge of the allowable quantum results. The algorithm
provides over nine digits of phase estimation accuracy
from a four-photon N00N state (over an unknown signal
range of π/4) within a standard interferometer; and is
shown herein to be fairly robust in the presence of addi-
tive white-Gaussian noise in the measurement statistics.
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