
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological phases via engineered orbital hybridization in
noncentrosymmetric optical lattices

Bo Liu, Xiaopeng Li, and W. Vincent Liu
Phys. Rev. A 93, 033643 — Published 23 March 2016

DOI: 10.1103/PhysRevA.93.033643

http://dx.doi.org/10.1103/PhysRevA.93.033643


Topological phases via engineered orbital hybridization in noncentrosymmetric optical lattices

Bo Liu,1, 2 Xiaopeng Li,3 and W. Vincent Liu1, 2, ∗

1Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
2Wilczek Quantum Center, Zhejiang University of Technology, Hangzhou 310023, China

3Condensed Matter Theory Center and Joint Quantum Institute,

University of Maryland, College Park, MD 20742, USA

We propose a symmetry-based method of using noncentrosymmetric optical lattices to systematically control

topological non-trivial orbital hybridization. A crucial difference from the previous studies is the role of

inversion symmetry breaking, which is applied to induce an exotic orbital-changing hopping perpendicular to the

direction without inversion symmetry and opens a band gap, instead of reducing the codimension and producing

gapless points. The orbital mixing here is reminiscent of the spin-orbit physics based on hyperfine states but

differs in symmetry and origin. This non-trivial orbital hybridization produces a topological band structure.

Attractively interacting fermionic atoms loaded in such a lattice are found to show an orbital topological Fulde-

Ferrell superfluid state in the presence of onsite rotation. This state supports Majorana fermions on its edges.

Our mechanism should pave an alternative way to achieve orbital topological phases in optical lattices of non-

standard geometry.

I. INTRODUCTION

Symmetry plays an important role in solid state materials

and influences many of their properties in a profound

way. Recently, the noncentrosymmetric materials, i.e.,

crystal structure lacking a center of inversion, have attracted

considerable theoretical and experimental attention in various

fields of condensed matter physics [1]. In contrast to the

centrosymmetric case, the absence of inversion symmetry

leads to very rich physical phenomena, such as skyrmion

states [2–4], novel superconducting phases [5–8], as well as

magnetoelectric effect [9, 10]. In parallel to the developments

in solid state physics, optical lattices with highly tunable

geometry in the recent ultracold atom experiments [11]

provide new opportunities to study noncentrosymmetric

materials. For example, in 2D noncentrosymmetric optical

lattices with Rashba spin-orbit coupling, the possible

topological superconducting phases have been discussed [12].

Recent experimental progress in manipulating higher

orbital bands in optical lattices [13–17] provides

unprecedented opportunities to investigate quantum many-

body phases with orbital degrees of freedom. Studying higher

orbital physics in optical lattices is attracting considerable

interests due to their unique and intrinsic spatial nature [18].

An idea of using orbital hybridization to emulate spin-orbit

physics, or artificial gauge fields in general, has emerged in

recent theoretical studies [19–23], where various interesting

many-body states have been proposed. In the context of

periodically driven systems, orbital hybridization is shown

to be controllable by lattice shaking [24–26]. However how

to systematically control the orbital hybridization in static

optical lattices remains unclear and stands as an obstacle to

explore the rich phenomena in orbital hybridized many-body

ground states.

In this work, we propose a static noncentrosymmetric

optical lattice, where the orbital hybridization is

∗Electronic address: wvliu@pitt.edu

systematically controllable by manipulating symmetry

breaking. We find topological bands arise from the interplay

between higher orbitals and inversion symmetry breaking,

yet without requiring Raman-induced spin-orbit coupling

nor other artificial gauge field [27, 28]. Furthermore when

considering attractive fermionic atoms, say 6Li [29–32]

loaded into such a noncentrosymmetric optical lattice,

we find an orbital hybridized topological Fulde-Ferrell

superfluid state (tFF) in the presence of local orbital angular

momentum induced by onsite rotation [33]. The mechanism

of realization of this tFF superfluid state is crucially

different in symmetry (to be illustrated below) compared

to the previous studies based on hyperfine states [34–44].

Moreover, our symmetry-based method of controlling orbital

hybridization is in principle applicable to other optical lattice

setups as well [19–23, 45, 46], which could lead to more

interesting noncentrosymmetric many-body phases worth

future exploring.

II. EFFECTIVE MODEL

Let us consider a noncentrosymmetric optical lattice with

the potential

V (x, y) = −VX cos2(kLxx)− VY cos2(kLyy)

+ VȲ cos2(3kLyy + θ/2), (1)

where VX , VY , VȲ are the depth of optical lattices, kLx,

kLy are the wavevectors of laser fields and the corresponding

lattice constants are ax = π/kLx, ay = π/kLy along

the x and y directions, respectively. By the techniques

of designing the geometry of optical lattices developed in

the recent experimental advances [11], the configuration of

optical lattices considered here can be formed through three

retro-reflected laser beams as shown in Fig. 1(a). The

interference of two perpendicular beams X and Y gives rise

to a 2D square lattice. The third beam Ȳ creates an additional

standing wave pattern which breaks the inversion symmetry

along the y direction, for example, as shown in Fig. 1(b).
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FIG. 1: (a) Three retro-reflected laser beams create the lattice

potential in Eq. (1). X and Y interfere and produce a 2D

square lattice, while Ȳ creates an independent standing wave. (b)

Lattice potential along the y direction (dropping a constant) shows

the inversion symmetry breaking. (c) The single-particle energy

spectrum along kx axis in the unit of ERx for the lowest four bands

through plane wave expansion calculation. The inset shows the band

gap originated from the hybridization between the second and third

bands. (d) The hybridization gap as a function of VȲ . In (b), the

lattice parameters are chosen as VX/ERx = 4, VY /ERy = 40,

VȲ /ERy = 8 and θ = π/2, where the recoil energy is ERx =

~
2k2

Lx/2m and ERy = ~
2k2

Ly/2m. In (c) and (d), the parameters

are chosen as VȲ /ERy = 6, θ = π/5 and VX/ERx = 7, θ = π/20
respectively and other parameters are the same as in (b).

This noncentrosymmetric geometry plays a crucial role in

producing the non-trivial Bloch bands in our model, to be

illustrated below. Here we consider dynamically anisotropic

geometry of the lattice potential by using a larger lattice depth

in the y direction, i.e., VY ≫ VX , while holding the condition

VXk2Lx = VY k
2
Ly . As a result, the local rotational symmetry

of each site in the xy plane is preserved [45] and the lattice

constants simultaneously satisfy ay > ax. Since the system

has relatively stronger potential and larger spacing in the y
direction, the tunnelings in the y direction are much weaker

than that along the x direction. The band structure of such

a lattice system is solved numerically through plane wave

expansion. We find that the second and third bands cross in

the absence of VȲ . When θ 6= π (θ ⊂ (0, 2π)) and VȲ 6= 0,

we see the gap reopening due to inversion symmetry breaking

(e.g., Fig. 1(c)). This hybridized gap increases linearly with

enlarging VȲ when VȲ ≪ VY as shown in Fig. 1(d). Here we

assume the coupling strength between different bands induced

by VȲ is much smaller than the band gap. Therefore, we find

that the orbital hybridization only occurs between the second

and third bands. The band mixing can thus be turned on and

off by controlling the symmetry of the lattice geometry.
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FIG. 2: (a) The single-particle band structure calculated from the

tight binding model (Eq. (2)) in quasi-1D limit, when tx/ty = 8,

t/ty = 0.6. (b) Topological winding of Hamiltonian in Eq. (3)

across the Brillouin zone. (c) Energy spectrum of the Hamiltonian

(Eq. (2)) in quasi-1D limit with finite length (lattice sites N = 200),

when tx/ty = 8 and t/ty = 0.9. There are two zero-energy states

inside the gap which are located at the two outer edges of the system

respectively. Here n labels the energy level. (d) The effect of the

small transverse tunneling. The midgap bands show a finite curvature

along the y direction with open (and periodic) boundary conditions

in the x (y) directions when tx/ty = 8, t/ty = 0.1, t′y/ty = 0.02
and t′x/t

′

y = 0.1.

The essential physics of band mixing is captured by

the following multi-orbital tight binding model without

considering the full band structure theory,

H0 = tx
∑

r

C†
px
(r)Cpx

(r+ ~ex)− ty
∑

r

C†
py
(r)Cpy

(r+ ~ex)

+ t
∑

r

C†
px
(r)Cpy

(r+ ~ex)− t
∑

r

C†
py
(r)Cpx

(r+ ~ex)

− t′x
∑

r

C†
px
(r)Cpx

(r+ ~ey) + t′y
∑

r

C†
py
(r)Cpy

(r+ ~ey)

+ h.c.− µ
∑

r

[C†
px
(r)Cpx

(r) + C†
py
(r)Cpy

(r)], (2)

where Cν(r) is a fermionic annihilation operator for the

localized ν orbital (px or py) located at the lattice site r

and the chemical potential is denoted by µ. The tunnelings

(t′x, t
′
y) in the y direction are much weaker compared to that

(tx, ty) along the x direction, due to the relatively stronger

confinement in the y direction. The relative sign of the

hopping amplitude is fixed by the parity of px and py orbitals.

The key ingredient in our model is the hybridization between

px and py orbitals. It arises from the asymmetric shape

of the py orbital wavefunction induced by the inversion

symmetry breaking in the y direction. This asymmetry

leads to the orbital hybridization t
∑

r[C
†
px
(r)Cpy

(r + ~ex) −

C†
py
(r)Cpx

(r + ~ex)] + h.c. in Eq. (2), which plays a crucial
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role in producing topological non-trivial band structures. It

resembles spin-orbit coupling [47–49] when the px and py
orbitals are mapped to pseudo-spin-1/2 states. But unlike the

spin-orbit coupling, the orbital hybridization is geometrically

controllable through manipulating the inversion symmetry of

the optical lattice.

III. ORBITAL HYBRIDIZED TOPOLOGICAL BAND

STRUCTURES

We first focus on the quasi-one dimensional limit where

the transverse (y direction) tunnelings are negligible. At

half filling (one particle per lattice site), in the basis of

(C†
px
(k), C†

py
(k)), the Hamiltonian takes a suggestive form

H0(k) = h0(k)I + h(k) · σ, (3)

where h0(k) = (tx − ty) cos(kxax), hx(k) = 0, hy(k) =
−2t sin(kxax), hz(k) = (tx + ty) cos(kxax), and σx,y,z

are Pauli matrices. The energy spectrum reads E± =

h0(k)±
√

h2
y(k) + h2

z(k). As shown in Fig. 2(a), the system

is in an insulating state with a band gap determined by

the orbital hybridization t. It is a Z2 topological insulator

protected by time reversal and reflection symmetries [50].

Here, the reflection symmetry breaking is along the direction

(y-direction) perpendicular to the dynamical direction (x-

direction). In sharp contrast to the previous studies [51,

52], the inversion symmetry of the 1D system here is still

preserved. To visualize the topological properties of the band

structures, we show the vector h(k) winds an angle of 2π
when the momentum k varies from −π to π crossing the

entire Brillouin zone (BZ) in Fig. 2(b). It is also confirmed

from the calculation of winding number defined as W =
∮

dkx

4π ǫηη′ ĥ−1
η (kx)∂kx

ĥη with ĥ ≡ h
|h| and ǫyz = −ǫzy = 1.

When t 6= 0, the winding number is 1, which signifies a

topological band insulator state. The non-trivial topology of

this state also manifests through the existence of the edge

states. As shown in Fig. 2(c), there are two emergent zero-

energy modes located at the two outer edges of the system

respectively.

Next we will discuss the effect of the small transverse

(y direction) tunneling, which has been neglected above but

always exists in a realistic quasi-one dimensional system.

By considering small transverse tunneling, the zero-energy

modes of individual chain will morph into a midgap band,

with finite curvature in the transverse direction as shown in

Fig. 2(d). The topological band insulator state remains stable

at small value of transverse tunneling. For example, when

tx/ty = 8 and t/ty = 0.1, the topological state survives

until t′y/ty reaches 0.073 with t′x = 0.1t′y. However, beyond

this value, the band gap will close and the topological band

insulator state becomes unstable.
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FIG. 3: (a) Zero-temperature phase diagram as a function of the

polarization h̃ and orbital hybridization t with fixed µ̃. Other

parameters are tx/ty = 8, t′y/ty = 0.05, t′x/t
′

y = 0.1, U/ty =

−15, µ̃ = 0.4, and Ωz/ty = 0.3. (b) and (c) The quasi-particle

exaction gap Eg as a function of polarization h̃ when t/ty = 0.6
and t/ty = 0.8 respectively. The vertical lines mark the point where

the Z2 topological invariant changes.

IV. TOPOLOGICAL FULDE-FERRELL STATE AND

MAJORANA FERMIONS

In this section, we study attractive fermions in the

topological noncentrosymmetric optical lattice (Eq. (1)) with

onsite rotation [33] and show that a topological Fulde-Ferrell

superfluid state (tFF) with finite center-of-mass momentum

emerges. The interacting model to describe this fermionic

system is

H = H0 +Hint +HL +HZ . (4)

In this model, the interaction Hint =
U
∑

r C
†
px
(r)Cpx

(r)C†
py
(r)Cpy

(r) can be induced by

considering optical Feshbach resonance [53, 54], Bose-

Fermi mixtures [55] or dipolar atoms/molecules [56].

HL = iΩz

∑

r[C
†
px
(r)Cpy

(r) − C†
py
(r)Cpx

(r)] is the orbital

Zeeman energy induced by onsite rotation. Here we assume

that the energy of the orbital Zeeman term is much smaller

than the band gap. Therefore, its effect is considered within

the px and py orbitals only. The onsite rotation experiment

has been achieved in a triangular optical lattice [33], and the

techniques are expected applicable to other lattices as well.

Through a combination of electro-optic phase modulators of

the laser beams forming the lattice and the modulations of

potential depth, we propose a method to realize the onsite

rotation in the noncentrosymmetric optical lattice (Eq. (1))

(see details in Appendix C). HZ is the orbital splitting

h
∑

r[C
†
px
(r)Cpx

(r)−C†
py
(r)Cpy

(r)]. Through adjusting the

lattice depth or lattice spacing in the x and y directions, the

potential parameters can be tuned to be VXk2Lx = αVY k
2
Ly.

With α 6= 1, a finite orbital Zeeman splitting HZ between px
and py orbitals is obtained. In the presence of onsite rotation,

i.e., Ωz 6= 0, both time-reversal and reflection symmetries of

the system are broken, and the Fermi surface of the system
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becomes asymmetric along the x direction. The pairing with

the center-of-mass momentum Q and −Q are no longer

degenerate. The Fulde-Ferrell (FF) state with a plane wave

order parameter ∝ eiQ·r is more energetically favorable as

compared to the Larkin-Ovchinnikov state with a stripe order

∝ cos(Q · r). This mechanism is crucially different from the

system with Raman-induced spin-orbit coupling, where both

combined spin-space rotation and mirror symmetries need to

be broken [34–42].

Taking the superfluid pairing order parameter ∆(r) =
U〈Cpy

(r)Cpx
(r)〉 = ∆eiQ·r, the system is described by

the Bogoliubov-de-Gennes (BdG) Hamiltonian at mean field

level. Since the weak transverse hopping introduces a

small Fermi surface curvature, we expect the center-of-mass

momentum of pairing Q pointing along the x direction, say

Q = Q(1, 0), in order to maximize the phase space of pairing.

Through diagonalizing the BdG Hamiltonian, we obtain the

free energy of the system. The pairing order parameter ∆ and

the center-of-mass momentum of pairing Q are determined

from minimizing the free energy. The details are given in

the Appendix A. We find that when Ωz > 0 the center-of-

mass momentum of pairing along the x direction is selected

as a certain positive Q due to the deformation of the Fermi

surface. Since the px and py bands have different bandwidths,

we introduce two dimensionless quantities µ̃px
= µ−h

2tx
and

µ̃py
= µ+h

2ty
, which respectively control the average filling

of the two p bands. Correspondingly, we also introduce a

dimensionless chemical potential µ̃ =
µ̃px

+µ̃py

2 and orbital

polarization h̃ =
µ̃py

−µ̃px

2 . For fixed µ̃, the resulting phase

diagram as a function of h̃ and the orbital hybridization t is

shown in Fig. 3(a). There are two first order phase transitions

as the polarization h̃ is increased (except at t/ty ≈ 0.8).

The first one is a transition from a gapped FF superfluid to

a gapless FF superfluid state (with Bogoliubov quasi-particles

being gapless). The gap closing across the phase transition is

shown in Fig. 3(b). Further increasing the polarization, the

second one occurs between the gapless FF and tFF superfluid

states. When t/ty ≈ 0.8, there is only one phase transition

from FF to tFF superfluid states without passing through the

gapless FF superfluids, since we find in Fig. 3(c) that Eg will

firstly close and reopen immediately. We also find that a

finite polarization is required to stabilize the tFF superfluid

state. The critical polarization h̃c decreases as the orbital

hybridization t increases.

The transition from non-topological to topological FF states

here can be understood by observing the non-trivial Z2

topological invariant. The BdG Hamiltonian (See details

in Appendix A) maintains the particle-hole symmetry, i.e.,

ΞHBdG(k)Ξ
−1 = −H∗

BdG(−k), with Ξ =

(

0 I

I 0

)

, while

the time reversal and chiral symmetries are broken. Therefore,

the tFF superfluid state predicted here belongs to the D
symmetry class according to the general classification scheme

of topological superconductors [50]. This topological state is

thus characterized by a Z2 topological invariant [57, 58]. As

shown in Fig. 3(b) and (c), we find that the Z2 topological

invariant (see Appendix B for explanation) M = −1 in the
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FIG. 4: (a) Energy spectrum of the Hamiltonian in Eq. (4) under

the mean-field approximation with open (and periodic) boundary

conditions in the x (y) directions. There is a doubly degenerate flat

band composed of Majorana fermions when the transverse tunneling

is small. (b) The local density of states (LDOS) (see the main text).

The zero-energy peaks of the LDOS are located at the two edges of

the system respectively. (c) Energy spectra with kyay = 0. There are

two degenerate zero energy states. (d) and (e), The wavefunctions of

the two Majorana zero-energy modes as shown in (c), which satisfy

u0,px = v∗0,px at the right edge and u0,px = −v∗0,px at the left edge

(other components of these two wavefunctions, say u0,py and v0,py ,

also satisfy the same relations). These two states support two local

Majorana fermions at two outer edges of the system respectively.

Here we choose finite length along the x direction with lattice sites

N = 400 and h̃ = 0.7, t/ty = 0.6. Other parameters are the same

as in Fig. 3 and n denotes the energy level.

tFF superfluid state and M = 1 in the gapless FF superfluid

state. This gapless state is topologically trivial (see Appendix

D for details), which is different from the state found in the

previous studies [40–42].

To further demonstrate the topological nature of the tFF

superfluid phase, we will show Majorana fermions are

supported in this state. To see this, we consider a cylinder

geometry of the system, where the open (periodic) boundary

condition is chosen in the x(y) direction respectively. The

energy spectrum in Fig. 4(a) is labeled by the momentum ky .

As shown in Fig. 4(a), all the bulk modes are gapped and there

are two degenerate flat bands composed of Majorana fermions

located at the two outer edges of the system respectively.

As shown in Fig. 4(c), for a fixed ky , there are two zero-

energy states located at the two outer edges of the system.

The corresponding wavefunctions (u0,ν , v0,ν)
T satisfy the

relation u0,ν(x) = v∗0,ν(x) [u0,ν(x) = −v∗0,ν(x)] on the

right [left] edge (Fig. 4(d) and (e)). These eigenstates support

localized Majorana fermions at the edges of the system. These

Majorana fermions are signified through the local density of

states (LDOS) which can be measured by radio-frequency (rf)
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spectroscopy [59–61]. The LDOS is calculated as ρ(x,E) =
(1/2)

∑

n,ν

∫

dky[|un,ν |
2δ(E − ζn) + |vn,ν |

2δ(E + ζn)],

where (un,ν , vn,ν)
T is the eigenvector corresponding to the

eigenenergy ζn of the mean-field BdG Hamiltonian with

cylinder geometry. We find that the zero-energy Majorana

fermions manifest themselves by a peak in LDOS located

at the edges of the system, as shown in Fig. 4(b). This

spatially localized zero-energy peak in LDOS can be detected

using spatially resolved radio-frequency (rf) spectroscopy

technique [61], which would provide a concrete signature for

the experiment. We also study the effect of small transverse

tunneling on the stability of tFF superfluids (see details in

Appendix E).

V. CONCLUSION

We have developed a systematic approach to the

control of non-trivial orbital hybridization in a static

noncentrosymmetric optical lattice, which is shown to exhibit

unconventional topological properties. This approach is

rather generic to optical lattices than restricted to the setup

considered in this work. Its principle is readily generalizable

to higher dimensions with straightforward modifications,

potentially circumventing the challenges in Raman-induced

spin-orbit coupling scheme [47–49, 62, 63]. Moreover,

our proposal is still within the static system instead of

an inherently time-dependent Hamiltonian problem, e.g.,

shaking optical lattices [16, 64], whose understanding is still

quite open. The present approach thus complements with a

new window to investigate topological phases in cold gases.
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Appendix A: BdG equation in momentum space

Through introducing the superfluid pairing order parameter

∆(r) = U〈Cpy
(r)Cpx

(r)〉 = ∆eiQ·r, the system can be

described by the Bogoliubov-de-Gennes (BdG) Hamiltonian

at mean-field level

HBdG(k) =







εpx
(Q/2+ k) ε(Q/2+ k) 0 ∆

−ε(Q/2+ k) εpy
(Q/2+ k) −∆ 0

0 −∆∗ −εpx
(Q/2− k) ε(Q/2− k)

∆∗ 0 −ε(Q/2− k) −εpy
(Q/2− k)






, (A1)

where the Nambu basis is chosen

to be (Cpx
(Q/2+ k), Cpy

(Q/2+ k),

C†
px
(Q/2− k), C†

py
(Q/2− k))T , εpx

(k) =

2tx cos(kxax) − 2t′x cos(kyay) − (µ − h), εpy
(k) =

−2ty cos(kxax) + 2t′y cos(kyay) − (µ + h) and

ε(k) = 2it sin(kxax) + iΩz .

Then, the free energy can be obtained by diagonalizing the

BdG Hamiltonian in Eq. (A1) by standard procedure as

F [∆] = 1/2
∑

k

[εpx
(k) + εpy

(k)

+
∑

λ

Θ(−Eλ(k))Eλ(k)]−
N |∆|2

U
,

where Eλ is the quasi-particle energy, and Θ is the

Heaviside step function. The pairing order parameter ∆ and

the center-of-mass momentum of pairingQ can be determined

from minimizing the free energy.

Appendix B: Z2 topological invariant

To characterize the topological nature of the tFF superfluid

state, we calculate the Z2 topological invariant. Here, we

introduce the Majorana operators as γA(r) = C†
px
(r) +

Cpx
(r), γB(r) = [Cpx

(r) − C†
px
(r)]/i, γC(r) = C†

py
(r) +

Cpy
(r) and γD(r) = [Cpy

(r) − C†
py
(r)]/i, which fulfill the

relations γ†α(r) = γα(r) and the anticommutation relations

{γα, γβ} = 2δαβδ(r− r′) with α or β taking A, B, C

or D. In terms of Majorana operators, the Hamiltonian in

Eq. (4) under the mean-field approximation can be represented

as HMF = i
4

∑4N
l,m=1 Almγlγm with γ4j−3 = γA(rj),

γ4j−2 = γB(rj), γ4j−1 = γC(rj) and γ4j = γD(rj),
where j runs over all the N lattice sites and A is a skew-

symmetric matrix. The Pfaffian of matrix A is defined as

Pf(A) = 1
2nn!

∑

τ∈S2n
sgn(τ)

∏n
m=1 Aτ(2m−1),τ(2m) with

n = 2N , where S2n is the set of permutation and sgn(τ) is

the corresponding sign of that. The Z2 topological invariant

is defined as M = sgn[Pf(A)] when choosing the periodic

boundary condition. The Z2 topological non-trivial phase is

characterized by M = −1, where as the topological trivial
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FIG. A1: (a) Quasiparticle excitations of the gapless topological FF superfluids in the (kx, ky) plane , where h̃ = 0.62, t/ty = 0.5 and other

parameters are the same as in Fig. 3(a). The grey color plane corresponds to zero excitation energy. (b) The contours of zero-energy excitations

(nodal points).

phase corresponds to M = 1.

Appendix C: Onsite rotation in noncentrosymmetric optical

lattices

Through putting electro-optic modulators on the laser

beams forming the lattice [65] and also employing

modulations of potential depth [66], the lattice potential can

be expressed as

V ′(x, y) =
1

2

∑

γ=±

[−VX cos2(kLxx+ φγ)− VY cos2(kLyy + φγ) + VȲ cos2(3kLyy + π/4 + φγ)]

− δVX cos2(kLxx+ π/4)− δVY cos2(kLyy + φ̃), (C1)

where the electro-optic phase modulators φ+ =
∆φ cos(Ωzt) cos(ωRF t), φ− = ∆φ sin(Ωzt) cos(ωRF t)
with the slow precession frequency Ωz , the amplitude of

oscillation ∆φ and the fast rotation frequency ωRF at radio

frequency. δVX = ṼXsin(Ωzt) and δVY = ṼY cos(Ωzt)
are the modulation amplitudes of the lattice depth and

φ̃ is a certain phase. It results in a periodical overall

translation of the lattice at a radio-frequency ωRF . Atoms

do not follow the fast oscillation at radio frequency

ωRF and only feel a time averaged potential. The local

potential near each site minimum in the rotating frame

with frequency Ωz is then approximately (dropping a

constant) V ′
eff (r

′) ≃ 1
2mω2

0(1 − (∆φ)2

2 )r′2 + ṼXkLxy
′

with ω0 the radial vibration frequency of a lattice site

without modulation, when considering VXk2Lx = βVY k
2
Ly,

β = cos(2kLyy0) + 9 sin(6kLyy0), ṼXkLx = ṼY kLy

and tan(2φ̃) = cot(2kLyy0), where y0 is determined by

cos(6kLyy0)/ sin(2kLyy0) = VY /3VȲ . Therefore, each

lattice site rotates around its own center with frequency Ωz ,

meanwhile keeping the reflection symmetry breaking along

the y-direction. The onsite rotation technique is thus adopted

to our noncentrosymmetric optical lattices.

Appendix D: Gapless Fulde-Ferrell state

Since the px and py bands are highly anisotropically

dispersive, the Fermi surface are the slightly curved lines

across the entire Brillouin zone. As a result, the nodal points
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of the excitation in our predicted gapless Fulde-Ferrell state

will not form two disjoint loops in the momentum space

(Fig. A1). It is essentially different from the state found in the

previous studies of the system with Raman-induced spin-orbit

coupling. Furthermore, this gapless state is a topologically

trivial state, having a trivial Z2 topological invariant M = 1.

Appendix E: Stability of tFF superfluids

Here, We discuss the effect of small transverse tunneling on

the stability of tFF superfluids. The transverse hopping term

restores the 2D nature of the Fermi surface, which acquires a

finite curvature in the transverse direction. It suppresses the

perfect nesting, therefore it disfavors the tFF superfluid state.

Our numerical result indicates that the tFF superfluity remains

stable at small value of transverse tunneling. For example, the

tFF superfluid state, as shown in Fig. 3(a) with t/ty = 0.8 and

h̃ = 0.7, survives until t′y/ty reaches 0.2 and the flat bands

composed of Majorana fermions in a cylinder geometry will

be maintained [67]. Beyond this value, the bulk gap will close

and the tFF superfluids become unstable.
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