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We calculate the ground-state properties of unpolarized two-dimensional attractive fermions in
the range from few to many particles. Using first-principles lattice Monte Carlo methods, we deter-
mine the ground-state energy, Tan’s contact, momentum distribution, and single-particle correlation
function. We investigate those properties for systems of N = 4, 8, ..., 40 particles and for a wide
range of attractive couplings. As the attractive coupling is increased, the thermodynamic limit is
reached at progressively lower N due to the dominance of the two-body sector. At large momenta k,
the momentum distribution displays the expected k−4 behavior, but its onset shifts from k ≃ 1.8kF
at weak coupling towards higher k at strong coupling.

PACS numbers: 03.65.Ud, 05.30.Fk, 03.67.Mn

I. INTRODUCTION

Precise experiments with ultracold atomic fermion
clouds are currently being carried out by several groups
around the world. Among the systems in the ever-
expanding set that such experiments can study, it is now
possible to probe two-dimensional (2D) physics in a clean
and controllable way [1–3]. This is an exciting opportu-
nity to understand key aspects of few- and many-body
quantum physics that are not specific to atoms but which
are generic to 2D quantum mechanics.
Such phenomena include the classical scale invariance

displayed by non-relativistic fermions in 2D, which is
broken by quantum fluctuations (i.e. the symmetry
is anomalous, see [4]), a property shared with four-
dimensional gauge theories like quantum chromodynam-
ics [5]. Although finite-temperature symmetry-breaking
transitions are not possible for continuous symmetries in
2D (as explained by the Mermin-Wagner theorem [6]), at-
tractive interactions do result in a Berezinskii-Kosterlitz-
Thouless (BKT) transition into a low-temperature su-
perfluid phase [7], which is another feature generic to
2D systems. High-temperature superconductivity is also
understood to be essentially a 2D phenomenon [8], and
it shares with ultracold atoms the so-called pseudogap
regime [9]. Last, but not least, the recent excitement
about the physics of graphene is also associated with scale
invariant 2D systems, and with its affinity with relativis-
tic strongly coupled matter [10].
Thus, the realization and exploration of flat ultra-

cold atomic clouds impacts a wide range of areas in
physics, and in the last few years this research has
been pursued vigorously (see Refs. [11, 12] for recent
wide-audience reports). On the experimental side, two-
dimensional fermionic clouds were first achieved just a
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few years ago in [13, 14], and many properties, rang-
ing from spectroscopy to thermodynamics and hydrody-
namic response, have been studied since [15–28].
On the theory side, early work in 2D used mean-

field approaches to study the crossover between Bose-
Einstein condensation (BEC) and Bardeen-Cooper-
Schrieffer (BCS) pairing [29–31]. The ground-state en-
ergy and contact were computed in the thermodynamic
limit in Ref. [32] using the diffusion Monte Carlo method,
which was updated and expanded by Refs. [33, 34] with
a precise ab initio study of multiple ground-state prop-
erties. Studies at finite temperature have also appeared
(see e.g. [35–44]).
Thus, a fair amount is known about the many-body

physics of these systems; however, much less is known
about their few-body properties and how they approach
the thermodynamic regime. In this work, we calcu-
late from first principles some of the most important
ground-state properties characterizing this few-to-many
crossover: the energy, Tan’s contact, the momentum dis-
tribution, and the single-particle propagator.

II. HAMILTONIAN AND COMPUTATIONAL

APPROACH

Since our intent is to focus on non-relativistic Fermi
systems with short-range interactions, our Hamiltonian
is given by

Ĥ = T̂ + g V̂ (1)

where the kinetic and potential terms T̂ and V̂ are given
by

T̂ =
∑

s=↑,↓

∫

d2x ψ̂†
s(x)

(

−~
2∇2

2m

)

ψ̂s(x) (2)

and

V̂ = −
∫

d2x n̂↑(x)n̂↓(x), (3)
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respectively, and where the spin-s fermionic field opera-

tors are denoted with ψ̂s and ψ̂†
s, with associated den-

sities n̂s. From this point on, we use units such that

~ = m = kB = 1, such that g is dimensionless and V̂ has
dimensions of energy as written. Although no new di-
mensionful parameters enter the dynamics of the system
when the interaction is turned on, the classical scale in-
variance is broken by quantum fluctuations, which result
in a non-zero pair binding energy.
Given a stable many-body system, ground-state expec-

tation values may be obtained from the large-imaginary-
time properties of an arbitrary trial state |φ0〉, so long as
the latter is not orthogonal to the system’s true ground
state. In this work, we take |φ0〉 to be a single Slater
determinant made out of the lowest-energy plane-wave
orbitals. While this choice can certainly be optimized,
we find it to be sufficient for our purposes.
For an operator Ô, we define

Oβ ≡ 〈φ0| Û(β, β/2) Ô Û(β/2, 0) |φ0〉
〈φ0| Û(β, 0) |φ0〉

, (4)

where

Û(τb, τa) ≡ exp
[

−(τb − τa)Ĥ
]

(5)

is the imaginary-time evolution operator. It follows im-

mediately that Oβ

β→∞−−−−→ 〈Ô〉, where the expectation
value on the right is in the true ground state of the sys-
tem. For some observables, in particular the Hamilto-
nian itself, this convergence can be easily shown to be
monotonic in β (in fact, exponential), which makes their
acquisition to some extent straightforward.
To address the interaction, we approximate the

imaginary-time evolution operators Û via a symmetric
Suzuki-Trotter decomposition as

Û(τa + τ, τa) = e−τT̂/2 e−τgV̂ e−τT̂/2 +O(τ3), (6)

again splitting the Hamiltonian into its relatively sim-
ple one-body kinetic term and comparatively complicated
two-body, zero-range potential term. While continuous-
time approaches have been known for a long time [45],
they have not yet been adapted to the hybrid Monte
Carlo technique, which we prefer in order to make contact
with lattice-QCD methods [46]. At each timestep t, we
decompose the central (potential energy, two-body) oper-
ator via a Hubbard-Stratonovich transformation [47] into
a linear combination of products of one-body operators
writing (generically)

e−τgV̂ =

∫

Dσ e−τV̂↑,σe−τV̂↓,σ , (7)

for an auxiliary field σ(x) summed over all possible con-
figurations at imaginary-time slice t. The specific form of

the operators e−τV̂
s,σ , for s =↑, ↓, depends on the choice

of Hubbard-Stratonovich transformation. In our case,

we have decoupled the interaction in the density-density
channel using a continuous and compact auxiliary field
(see e.g. Ref. [48] for further details).
In the above, we have implicitly assumed that the num-

ber of spatial degrees of freedom at each time step is fi-
nite. We accomplish this by taking space to be a square
lattice, which results in lattice field theory approach in
the same usual fashion as in lattice-QCD and Hubbard-
model Monte Carlo calculations. The field integral of
Eq. (7) is estimated in practice using Metropolis-based
Monte Carlo methods, which is possible as for unpolar-
ized systems there is no sign problem. Further details
can be found in Ref. [48]; closely related methods were
used to examine systems in 1D in Ref. [49] and in 3D in
Ref. [50].
In this work, we have used spatial lattice sizes of side

Nx = 24, 28, 32, 36, 40 points, and taken the spatial lat-
tice spacing to be ℓ = 1 and the temporal lattice spacing
τ such that τ/ℓ2 = 0.01− 0.05. While the method is not
limited by these parameters, we found them sufficient
to achieve the continuum limit and to characterize the
crossover from few- to many-body physics. On the other
hand, the Monte Carlo estimation of the field integrals
carries a statistical uncertainty. To reduce the latter, we
took at least 500 decorrelated samples of the auxiliary
field, such that the uncertainty can be expected to be of
order 5% or less.

III. RESULTS AND DISCUSSION

To calibrate our lattice field theory, we solved the two-
body problem for all values of Nx mentioned above and
determined the lattice binding energy εB as a function of
the dimensionless coupling g and the lattice size Nx. Us-
ing those results, we performed calculations for higher
particle numbers N = 4, 8, 12, . . . , 40 at fixed physics
as set by the renormalized coupling η = 1/2 ln(2εF/εB),

where εF = k2F/2 is the Fermi energy, kF =
√
2πn is the

Fermi momentum, and n = N/L2 is the total density. To
ensure that our results are converged to the ground state,
we followed the procedure outlined above of calculating
at finite β and extrapolating to β → ∞.
In Fig. 1, we show our results for the energy (extrap-

olated to infinite volume), in units of the energy of the
noninteracting case EFG = 1

2
NεF, as a function of parti-

cle number and coupling. For display purposes, we have
separated weak couplings (i.e. BCS side, shown in the top
panel) from strong couplings (mostly BEC side, shown
in the bottom panel). As evident from the top panel, at
weak couplings there is a structure of oscillations before
the few-body problems heal to the thermodynamic limit
result (shown on the right-side of the figure with squares,
using the data of Ref. [33] and interpolations thereof
where needed). Such oscillations are typically associated
with so-called shell effects and have been seen in 1D and
3D analogues of this system (see e.g. [51] and [52]). In or-
der to better understand the strong coupling regime, we
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FIG. 1. (color online) Ground-state energy E of N =
4, 8, 12, ..., 40 unpolarized fermions, for several values of the
dimensionless coupling η = −1.5,−1.0, . . . , 3.0,∞, the final
corresponding to a free system. Top panel shows E for the
four weakest couplings we calculated, in units of the energy
of the noninteracting system EFG = 1

2
NεF. Bottom panel

displays E for the strongest couplings we considered, using
the binding energy per particle εB/2 as a scale. Clearly, for
η < 0 the energy per particle is dominated by the pair binding
energy across all particle numbers. In both plots, the ground-
state energy results of Ref. [33] in the thermodynamic limit
are shown with solid squares at N = 50.

subtracted the binding energy per particle εB/2 from the
total energy per particle in the bottom panel. Indeed,
for η ≤ 1.0, the onset of the BEC regime implies that
the energy is expected to be dominated by the binding
energy of the pairs, which form immediately upon turn-
ing on the interaction. The numerical results plotted in
Fig. 1 are given in the Appendix.

While the ground-state energy is an essential quan-
tity in any few- and many-body problem, more detailed
information about the short-distance behavior of the sys-
tem can be obtained from Tan’s contact C [53]. Indeed,
it has been shown that C controls the high-momentum
tail of the momentum distribution (see below) [54], as
well as multiple sum rules of real-time response func-
tions [55]. The calculation of C itself, however, involves
a many-body problem that requires computational ap-
proaches [51, 56]. The contact obeys an adiabatic theo-
rem (see [57, 58]), which indicates that C is proportional

to the change in the ground-state energy E with the s-
wave scattering length a0. In our Hamiltonian Eq. (1),
the scattering length enters fully through the bare cou-
pling g (and, of course, the UV lattice cutoff, which we
hold constant). Therefore,

C ∝ ∂E

∂ ln(kFa0)
=
∂E

∂g

∂g

∂ ln(kFa0)
. (8)

The factor ∂g/∂ ln(kFa0) is a derivative at constant N
that depends only on two-body physics, as the bare cou-
pling g is determined by tuning to the desired a0 by
solving the two-body problem. The ∂E/∂g factor, on
the other hand, encodes many-body correlations and de-
pends on the particle content N . Because we have used
a contact interaction [see Eq. (1)], the expectation value
of the potential energy gives us access to ∂E/∂g through
the Hellmann-Feynman relation for the N -body problem:

〈V̂ 〉N =
∂E

∂g
. (9)

In Fig. 2, we show 〈V̂ 〉N in units of the ground-state
energy of the noninteracting gas EFG and as a function
of both particle number and coupling. The numerical
results plotted here are given in the Appendix.
In Fig. 3, we show our results for the momentum dis-

tribution as a function of k/kF for N = 36 particles and
for several values of the dimensionless coupling η, ex-
trapolated to β → ∞ (i.e. the ground state). Data at
finite β are shown in the Appendix. The inset shows
the same data in log-log form along with fits of the ex-
pected power law k−4 (see e.g. Ref. [59]), which yield
the contact at k ≫ kF. The expected behavior is ob-
tained at weak coupling, but the region where it is valid
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FIG. 2. (color online) Expectation value of the interaction op-

erator V̂ for N=4,8,12,...,40 fermions, in units of the ground-
state energy of the noninteracting gas, for several values of the
dimensionless coupling η = −1.5,−1.0, . . . , 3.0, along with the
noninteracting case η → ∞. The dashed line shows −1/(2π),
which is the result in the noninteracting limit.
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FIG. 3. (color online) Momentum distribution of N = 36
unpolarized fermions, as a function of k/kF, for several values
of the dimensionless coupling η = −2.0,−1.5, ..., 3.0, as well
as the noninteracting case. Inset: Momentum distribution
in log-log scale, showing the power-law decay that heals to a
∼ (k/kF)

−4 decrease at large k.

becomes increasingly limited (i.e. it moves toward high
k/kF) at strong coupling. Thus, in order to see the ex-
pected momentum tail at strong coupling, calculations
at larger volumes (lower kF) are needed. For most of
the couplings we studied, however, it appears that the
k−4 decay is reached around k/kF ≃ 1.8 − 2.0, which is
remarkably close to its 3D counterpart [56].
In Fig. 4, we show our results for the one-body density

matrix ρ1 defined in our unpolarized system as

ρ1(x,x
′) = 〈ψ̂†

↑(x)ψ̂↑(x
′)〉 = 〈ψ̂†

↓(x)ψ̂↓(x
′)〉, (10)

given the figure as a function of the dimensionless dis-
tance kFr, where r = |x − x

′|, as we take into account
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FIG. 4. (color online) One-body density matrix ρ1 for N = 36
unpolarized fermions, as a function of kFr, for several values
of the dimensionless coupling η = −2.0, ..., 3.0, along with the
η → ∞ (i.e. noninteracting) case.

translation and rotation invariance. The results shown
are for N = 36 particles and cover several values of the
coupling η. The localized shape of ρ1 around x = 0
at strong couplings is a direct manifestation of the for-
mation of bound pairs, which in turn makes lattice ap-
proaches to the problem more challenging: the presence
of the lattice-spacing scale competes with the pair size,
which must be properly resolved in order to obtain accu-
rate results.
Results for other particle numbers are shown in the Ap-

pendix. To encode the intermediate and short-distance
(kF r < 3.0) shape of our numerical results for ρ1, we fit
the following dimensionless form to the data of Fig. 4:

f(kF r, η) = 2 e−ap
B
r J1(kFr)

kFr
, (11)

where a is a fit parameter used to interpolate across
couplings, and pB =

√
2kFe

−η is the binding momen-
tum of the two-body system. The exponential factor in
Eq. (11) is motivated by the deep bound state in the BEC
regime, where single-particle correlation lengths are ex-
pected to be governed by the inverse binding momentum.
The Bessel function factor, along with the denominator,
corresponds to the noninteracting case in the continuum
limit.

TABLE I. Fit parameter a obtained by fitting Eq. (11) to
the data of Fig. 4, as a function of the dimensionless cou-
pling η. The rightmost column shows the sum of the absolute
value of the residuals per degree of freedom. These values of
a exemplify the typical numbers obtained across all particle
numbers, i.e. beyond the data of Fig. 4.

η a Mean residual
−2.0 0.45(3) 0.001
−1.5 0.44(3) 0.002
−1.0 0.42(3) 0.004
−0.5 0.27(6) 0.03
0.0 0.11(4) 0.02
0.5 0.06(4) 0.02
1.0 0.05(7) 0.02
2.0 0.0(1) 0.02
3.0 0.0(1) 0.02

IV. SUMMARY AND CONCLUSIONS

In this work, we set out to examine, in a fully non-
perturbative fashion, the progression from few- to many-
body fermions in 2D, with attractive short-range inter-
actions across a wide range of coupling strengths in the
BEC-BCS crossover. Using lattice Monte Carlo methods
akin to those of lattice QCD, we calculated the universal
behavior of systems of N = 4, 8, ..., 40 particles in the
ground state. We focused, in particular, on the energy
per particle, Tan’s contact, the momentum distribution,
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and the single-particle correlator. The ground-state en-
ergy for each coupling strength forms a smooth curve
with mild oscillations toward the thermodynamic limit.
For η ≤ 0, particularly for N > 16, the ground-state
energy is completely dominated by the binding energy
of the pairs. Thus, the thermodynamic limit is reached
much faster on the BEC side than on the BCS side. The
momentum distribution approaches a (k/kF)

−4 decay at
large k, as expected, but the onset of that behavior shifts
noticeably towards large k as the coupling is increased.
Finally, our fits to the single-particle correlation function
ρ1 indicate a shift from a kF -dominated region at weak
coupling, to a pB-dominated region at strong coupling.
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V. APPENDIX A: FINITE-VOLUME EFFECTS

AND EXTRAPOLATIONS

In this appendix we elaborate on the procedure we em-
ployed to carry out extrapolations to the infinite volume
limit, and present specific examples. In Fig. 5 we show
the extrapolation for N = 16 particles for three different
values of the dimensionless coupling η. To complement
that example, we show in Fig. 6 the infinite-volume ex-
trapolation for two different particle numbers at a fixed
coupling.
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FIG. 5. (color online) Extrapolation to the infinite vol-
ume limit for N = 16 unpolarized fermions, as a func-
tion of N−2

x , for several values of the dimensionless coupling
η = −1.0, 0.0, 1.0.
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FIG. 6. (color online) Extrapolation to the infinite volume
limit for N = 16, 32 unpolarized fermions at fixed dimension-
less coupling η = 1.0, as a function of N−2

x .

In Fig. 7 we show, for a specific coupling η = −0.5,
the results of extrapolating our data for the momentum
distribution n(k) to the ground state, which we accom-
plish by increasing the length β of the imaginary time
direction (i.e. the projection time). Clearly, such a cou-
pling, though intermediate in strength, requires β ≃ 8.0
to start converging to the large β limit, in particular for
the region k < kF . One way to overcome such large pro-
jection times is to use a different guess for the ground-
state wavefunction, as done for instance in Refs. [33, 34].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

N = 36
η = −0.5

n(
k/

k F
)

k/kF

β = 0.5
β = 1.0
β = 1.5
β = 2.0
β = 3.0
β = 4.0
β = 5.0
β = 6.0
β = 7.0
β = 8.0
β = 9.0

β = 10.0
β = 12.0

β = ∞

FIG. 7. (color online). Momentum distribution extrapolated
to infinite imaginary time β for N = 36 unpolarized fermions
on a 32 × 32 lattice and at fixed dimensionless coupling η =
−0.5.
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VI. APPENDIX B: GROUND-STATE DATA

TABLES

In this appendix we present tables showing our esti-
mates for the ground-state energy and Tan’s contact as

a function of the coupling η = −1.5,−1.0, ..., 3.0, for par-
ticle numbers N = 4, 8, 12, . . . , 40, extrapolated to the
infinite-volume limit.

TABLE II. Ground-state energy E on the lattice, in units of the continuum noninteracting energy EFG = NεF /2 of the
N-particle system, as a function of N and the dimensionless coupling η.

η
N -1.5 -1.0 -0.5 0.0 0.5 1.0 2.0 3.0 ∞
4 -37(2) -12.8(3) -3.4(7) 0.6(2) 1.34(7) 1.30(2) 1.34(1) 1.45(3) π/2
8 -43.0(3) -13.8(4) -4.66(5) -0.6(2) 0.64(4) 0.80(3) 0.96(1) 1.03(2) 3π/8
12 -41(2) -14.7(3) -5.0(2) -1.4(2) 0.3(1) 0.61(2) 0.80(3) 0.89(1) 4π/12
16 -40.6(2) -15.0(3) -4.70(4) -1.65(9) 0.1(1) 0.52(2) 0.74(1) 0.80(0) 5π/16
20 -39(1) -15.2(4) -4.72(6) -1.65(9) -0.0(1) 0.53(2) 0.74(1) 0.80(1) 8π/25
24 -38.0(8) -15.1(2) -4.9(1) -1.69(9) -0.15(4) 0.59(1) 0.78(0) 0.84(1) 4π/12
28 -37.6(3) -15.3(2) -4.91(8) -1.79(4) -0.25(5) 0.58(2) 0.77(1) 0.86(1) 33π/98
32 -38(1) -14.9(3) -4.99(1) -1.70(8) -0.31(4) 0.52(3) 0.78(1) 0.86(1) 43π/128
36 -38.5(6) -14.6(1) -5.01(7) -1.6(1) -0.38(3) 0.48(3) 0.75(1) 0.82(0) 53π/162
40 -39.8(9) -15.2(2) -5.00(9) -1.58(4) -0.40(2) 0.40(3) 0.70(0) 0.80(1) 63π/200

TABLE III. Ground-state interaction 〈V̂ 〉N , in units of the energy of the non interacting gas EFG, as a function of N and the
dimensionless coupling η.

η
N -1.5 -1.0 -0.5 0.0 0.5 1.0 2.0 3.0 ∞
4 -39(2) -19.7(6) -7.0(7) -1(1) -0.1(2) -0.34(5) -0.50(1) -0.6(2) -1/(2π)
8 -28(2) -15(1.5) -7.9(7) -2.7(5) -0.86(9) -0.55(9) -0.41(1) -0.5(1) -1/(2π)
12 -21(2) -14.1(9) -7.8(3) -4.0(1) -1.47(4) -0.59(1) -0.42(4) -0.44(7) -1/(2π)
16 -17.7(1) -12.2(5) -6.8(1) -3.9(1) -1.2(2) -0.58(1) -0.38(2) -0.43(2) -1/(2π)
20 -16(1) -11.7(6) -6.8(3) -3.8(1) -1.44(8) -0.59(4) -0.41(2) -0.52(6) -1/(2π)
24 -14.0(9) -10.4(6) -6.4(3) -3.8(1) -1.55(1) -0.60(1) -0.41(1) -0.50(5) -1/(2π)
28 -12.5(9) -9.5(6) -6.0(4) -3.6(2) -1.67(3) -0.64(1) -0.44(1) -0.48(5) -1/(2π)
32 -11.4(9) -8.5(6) -5.6(3) -3.4(1) -1.68(1) -0.69(4) -0.41(1) -0.46(4) -1/(2π)
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