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We study numerically the detailed structure and decay dynamics of isolated monopoles in condi-
tions similar to those of their recent experimental discovery. We find that the core of a monopole
in the polar phase of a spin-1 Bose–Einstein condensate contains a small half-quantum vortex ring.
Well after the creation of the monopole, we observe a dynamical quantum phase transition that
destroys the polar phase. Strikingly, the resulting ferromagnetic order parameter exhibits a Dirac
monopole in its synthetic magnetic field. We observe quantitatively matching decay dynamics for
both ferromagnetic and anti-ferromagnetic spin–spin interactions.

I. INTRODUCTION

The significant roles played by topological defects in
nature and their appearance in various physical con-
texts [1, 2] have sparked numerous theoretical and exper-
imental studies. The precise control over experimental
parameters and the ability to image the quantum me-
chanical order parameter directly render Bose–Einstein
condensates (BECs) a unique platform to create and ob-
serve different types of topological defects. In particu-
lar, BECs with spin degrees of freedom may host a rich
variety of defects due to many possible order parame-
ter manifolds and symmetries [3–11]. In these systems,
topological defects can either be created in a determinis-
tic manner using precisely controlled magnetic and laser
fields [12–16], or they can form spontaneously, for exam-
ple when the condensate is rapidly quenched a through
quantum phase transition [17, 18]. The experimentally
realized topological structures in BECs to date include
singly and multiply quantized vortices [12, 13, 19–21],
half-quantum vortices [22], vortex rings [23], solitons [24],
skyrmions [15, 25], polar core vortices [18], coreless vor-
tices [26, 27], vortex-antivortex superpositions [28], soli-
tonic vortices [29], monopoles [16, 30], and knot soli-
tons [31].

The Dirac monopole configuration created in Ref. [16]
is an analogue of the classical stationary magnetic point
charge considered by Dirac in the context of quantum
mechanics [32]. It manifests itself as a point-like singu-
larity in the so-called synthetic magnetic field [33], which
is an effective gauge field for the scalar part of the order
parameter arising naturally from its spin degrees of free-
dom. In agreement with Dirac’s original work [32], this
kind of monopole induces in the condensate order pa-
rameter a nodal vortex line with vanishing particle den-
sity extending from the location of the monopole to the
boundary of the atom cloud. Thus the ferromagnetic
order parameter supporting the Dirac monopole is en-
ergetically and dynamically reminiscent of a line defect.
Critically, there is no topological point defect in the or-
der parameter itself, as the condensate is in a configura-
tion topologically equivalent to the ground state. Indeed,

the second homotopy group [2] for the ferromagnetic or-
der parameter space is trivial and topological point de-
fects are not permitted. Point defects may exist in the
polar phase of a spin-1 condensate, however, as the sec-
ond homotopy group for the polar order parameter space,
Gp = [S2 × U(1)]/Z2 [34, 35], is isomorphic to the addi-
tive group of integers, π2(Gp) ∼= Z.

Topological point defects in the polar phase of a
87Rb spin-1 BEC have been recently realized experimen-
tally [30]. No nodal lines or other physical line-like ob-
jects are attached to this monopole, and we therefore
refer to it as an isolated monopole. As Ref. [30] focused
only on the first observation of the isolated monopole
within a finite experimental resolution, there has been no
detailed study of the fine structure of the defect after its
creation. Furthermore, both the isolated monopole [6]
and indeed the entire polar phase of the 87Rb conden-
sate [18] are expected to be unstable at low magnetic
fields, prompting a study on the evolution of the isolated
monopole after its creation.

In this Letter, we present computational results of the
fine-grained structure and decay dynamics of the iso-
lated monopole. We observe that the core of the created
monopole contains a small half-quantum vortex ring. In
contrast to the studies of Ref. [6] based on energetic
arguments, the size of the dynamically-forming ring is
much smaller than the spin healing length. We show
that beyond the experimentally accessed time scales [30]
the polar order parameter evolves into a ferromagnetic
order parameter, accompanied by the decay of the iso-
lated monopole into a Dirac monopole in the resulting
synthetic magnetic field. Importantly, this decay arises
naturally from the thoroughly understood physics of
the atom cloud without any phenomenological damping
terms. Quantitatively matching dynamics are observed
for both ferromagnetic and anti-ferromagnetic spin-spin
interactions.



2

II. THEORETICAL BACKGROUND

The mean-field order parameter of a spin-1 condensate
can be expressed as ψ(r) =

√
n(r)eiφ(r)ξ(r), where n(r)

is the particle density, φ(r) is the scalar phase [36], and
ξ(r) is a three-component complex-valued spinor such
that ξ(r)†ξ(r) = 1. For brevity, the temporal depen-
dence of these functions is not expressed explicitly. The
evolution of the order parameter at low temperatures is
accurately described by the differential equation

i~
∂

∂t
ψ(r) = {h(r) + n(r)[c0 (1)

+ c2S(r) · F]− iΓn2(r)}ψ(r),

where h(r) is the single-particle Hamiltonian, F =
(Fx, Fy, Fz) is a vector composed of the dimensionless
spin-1 matrices, Γ is the three-body recombination rate,
and S(r) = ξ(r)†Fξ(r) is the local average spin. The
coupling constants characterizing the atom–atom inter-
actions are given by c0 = 4π~2(a0 + 2a2)/(3m) and
c2 = 4π~2(a2 − a0)/(3m), where af is the s-wave scat-
tering length corresponding to the scattering channel
with total two-atom hyperfine spin f . The single-particle
Hamiltonian is given by

h(r, t) =− ~2∇2/(2m) + V (r) (2)

+ gFµBB(r, t) · F + q[B(r, t) · F]2,

where m is the mass of the atoms, V (r) is an external
optical trapping potential, gF is the Landé g-factor, µB

is the Bohr magneton, B is an externally applied mag-
netic field, and q is the strength of the quadratic Zee-
man shift [37]. We assume that V (r) = m[ω2

r(x2 + y2) +
ω2
zz

2]/2, where ωr and ωz are the radial and axial trap-
ping frequencies, respectively.

In the pure polar phase with S(r) = 0, the order pa-
rameter can be expressed in the basis of the z-quantized
spin states {|1〉 , |0〉 , |−1〉} as [38, 39]

ψ(r) =

√
n(r)eiφ(r)√

2

−dx(r) + idy(r)√
2dz(r)

dx(r) + idy(r)


z

. (3)

Thus in the Cartesian basis the polar order parameter

reads ψ(r) =
√
n(r)eiφ(r)d̂(r), where d̂ = (dx, dy, dz)

T

is a real unit vector known as the nematic vector. Note
that if the order parameter in Eq. (3) is expressed us-

ing d̂(r) as the quantization axis, it remains fully in the
component (0, 1, 0)T

d̂
.

On the other hand, when the average spin does not
vanish, we investigate the nematic order through the
magnetic quadrupole tensor [38]

Qab =
ξaξb

∗ + ξbξa
∗

2
, (4)

where {ξi} are the components of the spinor in the Carte-

sian basis. For 〈S(r)〉 6= 0, the vector d̂ is defined as the
eigenvector corresponding to the largest eigenvalue of Q.

FIG. 1. (color online) (a) Horizontally and (b) vertically
integrated particle densities for the indicated waiting times
after the creation ramp which produces the the isolated
monopole. Different colors correspond to particles in differ-
ent z-quantized spin states with the color and intensity scales
given in the bottommost panel. The peak column density is
ñp = 2.7× 1011 cm−2 and the field of view is 15.5× 15.5 µm2

in each panel. The white arrows indicate the location of a
vortex line shown more clearly in Fig. 2.
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III. METHODS

The nematic vector behaves identically to the aver-
age spin under rotations in spin space, and hence it also
follows adiabatic changes in the external magnetic field.
Consequently, the method originally developed in Ref. [9]
for the adiabatic creation of Dirac monopoles in the ferro-
magnetic phase can be used to create isolated monopoles
in the polar phase, as realized in Ref. [30].

In brief, the condensate is subjected to an external
magnetic field B(r, t) = Bq(r) + Bb(t), where Bq(r) =
bq(xx̂ + yŷ − 2zẑ) is a quadrupolar magnetic field with
gradient bq and Bb(t) = Bz(t)ẑ is a spatially homoge-
neous bias field. In the beginning of the simulation, the
condensate is in the spin state |0〉, yielding a nematic vec-

tor d̂(r) = ẑ. At the initial bias field Bz = 1 G, the field
gradient is linearly ramped from zero to bq = 3.7 G/cm
in 10 ms and the bias field is subsequently decreased to
Bz = 10 mG in 10 ms. The monopole is created by de-
creasing the value of the bias field linearly to zero at a
rate Ḃz(t) = −0.25 G/s. This part of the control pro-
tocol is referred to as the creation ramp and it ideally

results in d̂ = B̂q(r). After the creation ramp the tem-
poral evolution continues with the quadrupole field and
optical trap intact.

(b)

y
x

(a)

3 μm

nmin
nminnmax

nmax

FIG. 2. (color online) (a) Spin density |ψ†Fψ| and (b) par-
ticle density ψ†ψ of the condensate 200 ms after the cre-
ation ramp. The shown density range is [nmin, nmax] =
[1.0, 4.8]× 10−4 N/a3r. The data in both panels is shown only
for |z| < 1.5ar. The spin density is well depleted along the
vortex, whereas the particle density is only partially depleted.

The initial particle number is 2.1×105 and the optical
trapping frequencies are ωr = 2π × 124 Hz and ωz =
2π × 164 Hz. We take the other parameters according
to 87Rb such as the literature values for the atom loss
arising from the three-body recombination Γ = ~× 2.9×
10−30 cm6/s [40, 41], the quadratic Zeeman shift q =
2π~ × 70 Hz/T2 [18], and the scattering lengths a0 =
5.387 nm and a2 = 5.313 nm. The computational volume
considered is 24×24×24a3r, where ar =

√
~/(mωr) =

1 µm and the corresponding size of the computational
grid is 200×200×200 points.

In order to enhance the numerical emulation of the ex-
perimental conditions of Ref. [30], we add spatially uncor-
related complex-valued noise to the spinor components at

each grid point prior to the creation ramp. The ampli-
tude of the noise is uniformly distributed to introduce
0–1% fluctuations in the local particle density for each
spinor component.

Before the beginning of the control cycle, the ground
state is found using the successive over-relaxation method
restricted to the spin state |0〉. Subsequently, the split-
operator method together with fast Fourier transforma-
tions are utilized to simulate the temporal evolution. The
length of the time step is fixed to τ = 2 · 10−4/ωr.

IV. RESULTS

We numerically integrate Eq. (1) and apply the con-
trol protocol described above with the initial condition

d̂ = ẑ. Figure 1 shows the resulting spin-contrast images
of the condensate particle densities for different waiting
times after the creation ramp. As in Ref. [30], the con-
densate particle densities just after the creation ramp are

in good agreement with Eq. (3) and d̂ = B̂q(r). Thus
the particles almost entirely reside in the so-called neu-
tral state which corresponds to the zero eigenvalue of the
local Zeeman Hamiltonian. However, 50 ms after the cre-
ation ramp, the polar phase has noticeably decayed to-
wards the local ferromagnetic strong-field seeking state
(SFSS), i.e., the spin state that minimizes the local Zee-
man energy

EZ(r) = gFµBξ
†(r)Bq(r) · Fξ(r). (5)

The ferromagnetic phase is first visible at the top and
bottom edges of the condensate and extends gradually
until the condensate resides almost entirely in the SFSS.
Qualitatively similar results are obtained in simulations
without the added noise (data not shown).

It is well known [9, 16, 33] that the SFSS corresponding
to the quadrupole field Bq(r) contains a Dirac monopole
in its synthetic magnetic field B∗ = ~∇ × A∗, where
A∗(r) = iξ†∇ξ is a vector potential arising from the
spinor part of the order parameter [16]. Physically, the
vector potential A∗ is related to the superfluid velocity
as v s = ~

m (∇φ−A∗), and the corresponding vorticity is
Ωs = ∇× v s. Note that the superfluid velocity and vor-
ticity are physical observables, and hence independent of
the choice of gauge for the synthetic fields [36]. In con-
trast, the synthetic vector potential depends strongly on
the gauge.

In Refs. [9, 16], the SFSS is accompanied by a double-
quantum vortex line terminating at the location of the
Dirac monopole. This vortex line corresponds to the
physical nodal [42] line consider by Dirac [32]. Note that
the superfluid vorticity contains a line singularity that
coincides with the vortex line, but any line singularity in
the synthetic magnetic field is not physical and can be
removed by the choice of gauge [36].

In contrast to Refs. [9, 16], the final order parameter
in our case does not have a terminating double-quantum
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FIG. 3. (color online) Projection of (a–c, e, f) the nematic vec-

tor d̂ (↑) and (d, g) average spin Ŝ (↑) of the condensate onto
(a–d) the xz- and (e–g) xy-planes for different indicated wait-
ing times after the creation ramp. The background colormap
shows (a–d) the y component, (e,f) the azimuthal component,
and (g) the z component of the spin. The core of the Alice
ring is shown with black dots in panel (a) which shows a mag-
nification of the center region of panel (b). The white arrow
indicates the location of a vortex line shown more clearly in
Fig. 2.

vortex. Instead, there is a single-quantum vortex that
reverses its circulation at the monopole, a scenario that
has previously been shown to minimize the mean-field en-
ergy in the case of a Dirac monopole [43]. We confirm the
presence of this single-quantum vortex in Fig. 2 where it
is visible as a line of suppressed spin density. We have
verified that the phase winding along this vortex line re-
verses its sign near the origin where the magnetic field

vanishes (data not shown). The orientation of the vor-
tex depends on the particular realization of the applied
noise.

Figure 3 shows the nematic vector and selected compo-
nents of the spin vector during the decay of the isolated
monopole. A ferromagnetic ring with a well-defined po-
larization is clearly visible just after the creation ramp
[see Fig. 3(a,b,e)] although it is so small that it was
not distinguished within the finite experimental resolu-
tion of Ref. [30]. This ring resides at the monopole core
and retains its size during the temporal evolution. Since
the nematic vector is observed to rotate by π about the
ferromagnetic core [see Fig. 3(a)], the ring is identified
as a half-quantum vortex ring, or Alice ring, discussed
in Ref. [6]. We determine the radius of the Alice ring
from the behavior of the nematic vector to be roughly
0.2 µm which exceeds neither the spin healing length
~/

√
2m|c2|n(0) ≈ 4 µm nor the density healing length

~/
√

2m|c2 + c0|n(0) ≈ 0.3 µm. Thus the texture im-
printed in the condensate using the creation ramp es-
sentially manifests itself a point defect. The subsequent
decay of the polar phase destroys the Alice ring and even-
tually the characterization of the condensate using the
nematic vector becomes obscure. We therefore do not
show the nematic vector but rather the local spin for
long evolution times. Ultimately, the local spin aligns
with the external magnetic field as shown in Fig. 3(d,g).

Figure 4 shows the fraction of particles in the neu-
tral state and the deviation of the order parameter from
the initial isolated monopole state during the decay.
The relative population of the neutral state is given by
nns(t) = 1

N(t)

∫
dr|Πns(r, t)ψ(r, t)|2, where N(t) is the to-

tal number of atoms and Πns(r, t) is a projection to the
neutral state [14]. The deviation of the order parameter
from the initial isolated monopole state at t = 0 is charac-
terized by ε(t) = 1 − |

∫
drψ∗(r, t)ψ(r, 0)|/

√
N(0)N(t).

We observe that just after the creation ramp, roughly
90% of the atoms reside in the neutral state, in agreement
with the experimentally obtained value in Ref. [30]. The
decay of the isolated monopole into the ferromagnetic
phase is observed to change from an exponential-like be-
havior into approximately linear decay with increasing
magnetic field gradient. This observation suggests that
a cascade of decay channels plays a significant role at
strong field gradients. Due to the decreasing spatial over-
lap between the resulting domains with increasing field
gradient, the decay dynamics is slower the stronger the
field gradient is. For a sufficiently strong gradient, the
resulting domains are spatially well separated as shown
in Figure 5.

Figure 4 also shows the results obtained for the three
additional cases: (i) eliminating the quadratic Zee-
man potential, (ii) eliminating three-body recombina-
tion, and (iii) reversing the sign of the spin–spin interac-
tion strength. None of these changes leads to a significant
effect on the decay dynamics, indicating that the decay
is not originating from these terms. We also studied the
creation and decay of the isolated monopole with param-
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FIG. 4. (color online) Temporal evolution of the relative pop-
ulation of the neutral state, nns(t) (solid line), and deviation
of the order parameter from the created isolated monopole
at t = 0, ε(t) (dashed line). In addition to the standard
parameters given in the text, neutral state populations are
also shown for (i) q = 0 (#), (ii) Γ = 0 (+) and (iii)
c2 = −4π~2(a2 − a0)/(3m) (♦) in Eq. (1). Furthermore, we
show nns(t) for cases, in which the quadrupole field gradi-
ent is suddenly changed at t = 0 from its standard value
bq = 3.7 G/cm to 1.4× bq (2), 0.5× bq (×), and 0.3× bq (∗).
All curves are interpolated using cubic splines for enhanced
visual appearance.

eters corresponding to 23Na atoms and obtained qualita-
tive agreement with the case of 87Rb atoms (results not
shown).

V. CONCLUSIONS

Our numerical studies suggest that the isolated
monopole structure observed in Ref. [30] contains a small
Alice ring [6]. This vortex ring is destroyed by a subse-
quent dynamical phase transition into a ferromagnetic or-
der parameter supporting a Dirac monopole. Although
the quadrupole field has been observed to stabilize the
polar phase of a 87Rb condensate if the field zero is
well outside the condensate [30], our simulations reveal
that after the field zero is brought into the condensate,
the polar phase decomposes on a time scale of 100 ms.
We attribute this behavior to the spatially varying mag-
netic field and the linear Zeeman interaction. Neither
the spin–spin interactions, quadratic Zeeman effect, nor
three-body recombination have a significant effect on the
decay dynamics. However, the strength of the magnetic
field gradient is shown to have a detrimental effect on
the decay speed and characteristics. These studies set
the stage for the detailed dynamics of topological point
defects in quantum fields. Finding ways to extend the
lifetime of the defect further and thereafter to study the
dynamics of multiple interacting point defects remain fu-
ture challenges.

FIG. 5. (color online) (a) Horizontally and (b) vertically in-
tegrated particle densities produced in the strong magnetic
field gradient Bq = 11.1 G/cm. All other parameters assume
identical values to those specified in the main text. The peak
column density is ñp = 2.7 × 1011cm−2 and the field of view
is 22× 22 µm2 in each panel.
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