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We study harmonically trapped, unpolarized fermion systems with attractive interactions in two
spatial dimensions with spin degeneracies Nf = 2 and 4 and N/Nf = 1, 3, 5 and 7 particles per
flavor. We carry out our calculations using our recently proposed quantum Monte Carlo method on
a nonuniform lattice. We report on the ground-state energy and contact for a range of couplings,
as determined by the binding energy of the two-body system, and show explicitly how the physics
of the Nf -body sector dominates as the coupling is increased.
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I. INTRODUCTION

In the past year, there have been multiple reports
on experiments with ultracold fermionic atoms in con-
strained, quasi-two-dimensional optical traps. For in-
stance, the Berezinskii-Kosterlitz-Thouless (BKT) su-
perfluid transition [1] was observed in Refs. [2, 3], and
the finite-temperature thermodynamics was studied in
Refs. [4, 5]. The first realization of two-dimensional
(2D) systems was in fact reported only a few years ago
in [6, 7], and since then multiple efforts followed, such
as radiofrequency spectroscopy [8, 9], studies of dimen-
sional crossover [10, 11], polarons [12], density distri-
bution [13], viscosity [14], Tan’s contact [15], ground-
state pressure [16], and polarized systems [17]. (See
also [18, 19]).

Experiments continue to move forward at an excit-
ing pace, and consistent advances are seen on the the-
ory side as well. Early analytic studies considered pair-
ing in the 2D Bose-Einstein condensation (BEC) and
Bardeen-Cooper-Schrieffer (BCS) crossover at the mean-
field level [20–22]. The ground-state equation of state
was obtained in an ab initio fashion only in 2011, in
Ref. [23]. Reference [24] followed up with a more detailed
first-principles study of the ground state where the pres-
sure, contact, pairing properties, and condensate fraction
were determined. The thermal equation of state was first
computed in Ref. [25] in the virial expansion, and in the
Luttinger-Ward approach in Ref. [26]. Pair correlations
were investigated in Refs. [27] in dilute, high-temperature
regimes using the virial expansion, and in Ref. [28], which
also analyzed Tan’s contact. The work of Refs. [29–
31] studied collective modes, while the shear viscosity
and spin diffusion were calculated in Ref. [32]. Finite-
temperature quantum Monte Carlo calculations charac-
terized the density, pressure, compressibility, and contact
more recently in Ref. [33], and a comparison between the-
ory and experiment was carried out in [34].

The present work aims to complement some of the
above computational studies by reporting our Monte
Carlo calculations of the ground-state energy and con-

tact of 2D fermions in a harmonic oscillator (HO) trap.
Our calculations were performed in a non-uniform lat-
tice, a technique put forward in Ref. [35]. We study spin
degeneracies Nf = 2 and 4 and unpolarized systems of

N particles for N/Nf = 1, 3, 5, 7. In this first paper we
do not study higher values of Nf , although such calcula-
tions are certainly feasible with the same methods. This
is particularly interesting given the progress in the ex-
perimental realization of SU(Nf )-symmetric systems in
the last few years, in particular in the presence of opti-
cal lattices [36]. Moreover, experiments involving a small
number of atoms have been achieved as well [37], and for
those experiments, if ever carried out in 2D, the present
work represents a prediction (see [38] for a recent review).

II. HAMILTONIAN AND MANY-BODY

METHOD

As mentioned above, we focus here on a 2D system of
Nf fermion species, attractively interacting via pairwise
interactions. The full Hamiltonian in second quantiza-
tion form is

Ĥ = T̂ + V̂ext + V̂int, (1)

where

T̂ =

Nf
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is the kinetic energy operator,
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is the external potential energy operator, and

V̂int = −
g

2

∑

s6=s′

∫

d2x n̂s(x)n̂s′ (x) (4)
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is the two-body interaction operator. In the above equa-
tions, n̂s(p) and n̂s(x) are, respectively, the particle-
density operators in coordinate and momentum space for
species s, and we have included an overall factor of 1/2
to avoid over-counting in the flavor sum.

As in Ref. [35], but now in 2D, we place the system in
a discretized space of Nx × Nx points using the Gauss-
Hermite lattice {xi, yj} and weights {wi, wj} of gaussian
quadratures in each direction to define such a lattice [39].
The discretized form of the interaction then becomes

V̂int = −
g

2

∑

s6=s′

Nx
∑

i,j=1

wiwje
x2

i+y2

j n̂s,(i,j) n̂s′,(i,j), (5)

where n̂s,(i,j) is the lattice density operator for spin s

at position (i, j). Thus, we obtain a position-dependent

coupling constant g(xi, yj) = g wiwje
x2

i+y2

j .

Following the usual path of the lattice Monte Carlo
formalism, we then approximate the Boltzmann weight
using a symmetric Suzuki-Trotter decomposition:

e−τĤ = e−τ/2(T̂+V̂
ext

)e−τV̂
inte−τ/2(T̂+V̂

ext
) +O(τ3), (6)

for some small temporal discretization parameter τ
(which below we take to be τ = 0.05 in lattice units).
This discretization of imaginary time results in a tem-
poral lattice of extent Nτ , which we also refer to below
in terms of β = τNτ and in dimensionless form as βω.
A Hubbard-Stratonovich (HS) transformation [40] of the
interaction factor is then used to represent the interac-
tion using an auxiliary-field (see e.g. [41]), which results
in a field-integral form of the left-hand side of Eq. (6).
We use that form combined with the power-projection
method [42] to obtain ground-state properties of the sys-
tem, using a Slater determinant of HO single-particle or-
bitals as a trial wavefunction.

As in our previous work, we tune the system to spe-
cific physical points by way of the 2D scattering length
a0 between any two different species. We present a0 ev-
erywhere in units of the HO length scale aHO (which is
1 in our units, such that ω = 1/a2HO = 1). To this end,
we computed the ground-state energy EGS of the two-
body problem and matched it to that of the continuum
solution, for which the relationship between EGS and the
scattering length is well known (see, e.g., Ref. [43]). We
used this renormalization procedure for each lattice size,
and then proceeded to higher particle numbers using the
coupling thus determined. To illustrate the success of
the procedure, we show the results for the unpolarized
spin-1/2 six-body problem in Fig. 1 for several lattice
sizes. As can be appreciated in that figure, the finite-
size effects are vanishingly small for Nf = 2. The same
holds for Nf = 4, but only in the weakly coupled regime

2aHO/a0 < 0.6. To account for these effects in the strong
coupling regime of the Nf = 4 case, we used Nx = 40.
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FIG. 1: (color online) Ground-state energy per particle of six
spin-1/2 fermions (top figure) and twelve spin-3/2 fermions
(bottom figure) harmonically trapped in 2D as a function
of the coupling strength 2aHO/a0 for 4 different lattice sizes
Nx =10, 20, 30, 40. The error bars reflect the statistical
uncertainty. The exact result at 2aHO/a0 = 0, i.e. for the
noninteracting case, for spin-1/2 is E/(~ωN) = 5/3, but the
approach is logarithmic, which explains the peak-like struc-
ture at very weak coupling (see figures below).

III. ANALYSIS AND RESULTS

In this section we present our results for the energy per
particle and Tan’s contact. In all of our tests, as illus-
trated in the previous section, the lattice-size effects were
very small. However, increasing Nf effectively enhances
the attractive interaction, such that bound states become
even more deeply bound, which in turn amplifies lattice-
spacing effects (see also Ref. [44]). For this reason, we
do not consider Nf > 4 in this work. As a compromise
with the computational cost of running the calculations,
we chose to fix Nx = 10 for Nf = 2 and Nx = 40 for
Nf = 4, and explore a range of values of N/Nf . To mini-

mize statistical effects, we took 104 decorrelated samples
of the auxiliary field σ, which results in a statistical un-
certainty of order 1%.
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A. Ground-state energy

In Fig. 2 we show our results for the ground-state en-
ergy of systems with Nf = 2 and 4. For each flavor

number, we studied systems with N/Nf = 1, 3, 5, and
7 particles per flavor. In all cases, as evident from the
figures, the energy per particle monotonically increases
when the particle number is increased, which seems to
indicate that no new N -body bound states appear for
N > Nf (i.e. other than the one at N/Nf = 1). Like-
wise, in all cases we find that, at fixed Nf , the energy per

particle heals to the energy of the N/Nf = 1 case, i.e. it
is dominated by the Nf -body bound-state contribution.
To see this in more detail, we show the energy again in
Fig. 3, where we have subtracted the energy per particle
of the N/Nf = 1 case from that of the N/Nf = 3, 5, 7
cases. At strong coupling that energy difference falls be-
low the energy per particle of the system (somewhat more
noisily in the Nf = 4 case than for Nf = 2), which shows
that the Nf -body bound-state energy dominates the pic-
ture. While qualitatively this is not an unexpected result,
our calculations show it in a quantitatively clear fashion.
Furthermore, this suggests that, for each Nf , no new N -
body bound states appear beyond the N = Nf case.

B. Tan’s contact

Besides the ground-state energy, one of the most inter-
esting quantities in many-body systems with short-range
interactions is Tan’s contact [45, 46]. This quantity is
thermodynamically conjugate to the renormalized cou-
pling, as shown by several authors [47–49]. Indeed, one
way to find it is to determine the change in the energy
with the scattering length (which is often referred to as
the “adiabatic theorem”). Early on, it was shown by
Tan that the contact determines the high-momentum tail
of the momentum distribution, and this was soon after-
wards associated with the operator-product expansion of
high-energy physics [50], and since then several authors
have derived exact results in the form of sum rules for
response functions and high-energy or short-distance be-
havior of correlation functions.
Because our calculations used a contact interaction,

the determination of the contact is essentially given by
differentiation of the ground-state energy with respect to
the bare coupling. Indeed, according to the adiabatic
theorem in 2D [48, 51],

C = 2π
∂EGS

∂ ln(a0/aHO)
= 2π〈V̂ 〉

∂ ln g

∂ ln(a0/aHO)
, (7)

i.e. computing C reduces to finding the ground-state ex-
pectation value of the potential energy operator V̂ in the
many-body problem, as the remaining factor is entirely
due to two-body physics. The same is true in the present
ground-state approach.
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FIG. 2: (color online) Ground-state energy of Nf = 2 (top)
and 4 (bottom) species of harmonically trapped fermions in
2D as a function of the coupling strength 2aHO/a0, for particle
numbers N/Nf =1, 3, 5, 7 (from bottom to top). The error
bars reflect the statistical uncertainty. The inset shows the
(logarithmic) approach to the non-interacting limit. ForNf =
2 the exact values of EGS/N in the noninteracting limit are
(from bottom to top): 1, 5/3, 12/5, 3.

Our results for C are shown in Fig. 4, where we com-
pare the contact per particle C/N for Nf = 2 and 4
with the two-body result. While at weak couplings the
Nf = 4 result is above the two-body answer, we find
that both Nf = 2 and 4 appear to approach that answer
at strong coupling. This indicates that, in absence of a
better guess, one may safely use the two-body contact in
the many-body problem at strong coupling, even as Nf
is increased.

IV. SUMMARY AND CONCLUSIONS

We used our recently proposed method of non-uniform
lattice quantum Monte Carlo to analyze the behavior
of few- to many-body systems of fermions in a two-
dimensional harmonic trap. We explored systems of
Nf = 2 and 4 flavors and up to N/Nf = 7 particles
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FIG. 3: (color online) Energy per particle difference, taking
N/Nf =1 as a reference, for Nf = 2 and Nf = 4 species of
harmonically trapped fermions in 2D as a function of the cou-
pling strength 2aHO/a0, and for particle numbers N/Nf =3,
5, 7 (from bottom to top).

per flavor and focused on two experimentally measurable
quantities: the ground-state energy and Tan’s contact.
While higher values of Nf are possible, we have deter-
mined that finite-size effects can be sizable when Nf is

increased (although they appear to be vanishingly small
for the systems studied here). Previous work (e.g. [25]
or [52]) studied the exact spectrum of the three-body
problem in 2D; our work complements and extends those
approaches (though restricting ourselves to the ground
state only). As harmonically trapped 2D systems are
under intense experimental study at the moment, calcu-
lations of these basic quantities are timely [38]. Future
2D experiments with large-Nf atoms can be expected,

for which our results are a prediction [36].

We find that the ground-state energy per particle
shows no qualitative difference for Nf = 2 and 4: it
increases monotonically for all the couplings we studied
when the particle number per flavor N/Nf is increased.

On the other hand, at fixedN/Nf , increasing the number
of flavors leads to a decrease in the energy, as expected.
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FIG. 4: (color online) Ground-state contact per particle of
Nf = 2 (top) and 4 (bottom) species of harmonically trapped
fermions in 2D, in units of the HO frequency ω, as a func-
tion of the coupling strength 2aHO/a0, for particle numbers
N/Nf =1, 3, 5, 7. The solid line shows, as a reference, the
two-body result for Nf = 2.

In all cases, the energy is largely dominated by the Nf -
body bound state as the coupling is increased. As the
attractive interaction is thus enhanced by the addition of
fermion species, a natural question is whether new bound
states arise as Nf is increased (i.e. beyond the one at

N/Nf = 1). We find that this is not the case; likely the
appearance of new bound states requires a finite-range
interaction, as is the case in 1D (see e.g. [53]).
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