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We investigate two-pathway interferences between nonresonant one-photon and resonant two-
photon ionization of atomic hydrogen. In particular, we analyze in detail the photoionization medi-
ated by the fundamental frequency and the second harmonic of a femtosecond VUV pulse when the
fundamental is tuned near an intermediate atomic state. Following our recent study [Phys. Rev.
A 91, 063418 (2015)] of such effects with linearly polarized light, we analyze a similar situation with
circularly polarized radiation. As a consequence of the richer structure in circularly polarized light,
characterized by its right-handed or left-handed helicity, we present and discuss various important
features associated with the photoelectron angular distribution.

PACS numbers: 32.80.Rm, 32.80.Fb, 32.80.Qk, 32.90.+a

I. INTRODUCTION

The control of quantum phenomena represents a cru-
cial challenge, from both experimental and theoretical
standpoints. One possible way to achieve “coherent con-
trol” at the quantum level [1–3] is to manipulate two-
pathway interferences by tuning a parameter that is di-
rectly responsible for the interference phenomenon. As
a result, the probability for finding the affected quan-
tum system in a definite final state can be varied in a
predictable manner.

In two-pathways coherent control of photoionization,
one may adopt a scheme in which the photoelectron is
emitted from absorption of an odd number of photons
through one path and an even number of photons through
another path, as for instance in ω+2ω processes. The re-
sulting interference induces noticeable effects only if the
two paths have comparable probability amplitudes. The
latter condition might be fulfilled by tuning the funda-
mental frequency near an optically allowed intermediate
state, thus enhancing the probability for two-photon ab-
sorption. However, the interference phenomenon does
not affect the total ionization yield (unless an external
electric field is applied [4, 5]), but instead manifests itself
in the photoelectron angular distribution (PAD) [6–11].
Therefore, the phase difference between two distinct ion-
izing pathways can, in principle, be used to manipulate
the PAD.

The study of two-pathway interferences in photo-
ionization is not limited to the domain of coherent con-
trol, but it is also essential in order to model cer-
tain experimental conditions. Recent advances in high-
harmonic generation (HHG) and X-ray free-electron
lasers (XFELs) have enabled experimentalists to reach
the extreme ultraviolet (XUV) and X-ray wavelength do-
main on the femtosecond (fs) and even attosecond (as)
time scales. Radiation from XFELs usually carry at least
a tiny fraction of the second harmonic, which cannot al-

ways be filtered out completely. Hence, it is important
to understand the effects of two superimposed harmon-
ics [12] in ionization experiments for different light polar-
izations. An additional promising idea consists in being
able to deconvolve the PAD in order to determine the
phase difference, or the time delay, between the funda-
mental and the second harmonic of a VUV pulse. Finally,
counterrotating circularly polarized laser fields have re-
cently attracted significant attention, since it was demon-
strated that one can generate electron vortices in photo-
ionization by circularly polarized attosecond pulses in he-
lium [13], as well as isolated elliptically polarized attosec-
ond pulses in neon [14].

In a recent study [15], we considered two-pathway
interferences induced by linearly polarized light. In
this case, a “left-right” asymmetry is created along
the direction of the electric field as a result of inter-
ference between partial waves with opposite parities.
The theoretical treatment involved solving the time-
dependent Schrödinger equation (TDSE) numerically us-
ing the split-operator algorithm or the matrix iteration
method [16, 17]. Furthermore, the time-dependent calcu-
lations were complemented by predictions obtained from
a perturbative formalism at sufficiently low field intensi-
ties.

For the present work, we modified our time-dependent
code in order to handle light of arbitrary polarization.
As a natural next step, we now consider atomic photo-
ionization processes in a circularly polarized bichromatic
field, i.e., an electric field of the form

EEE(t) = F (t)
[
cos(ωt+ φ1)x̂− sin(ωt+ φ1)ŷ

+ η
{

cos(2ωt+ φ2)x̂ + H sin(2ωt+ φ2)ŷ
}]

(1)

with fundamental frequency ω and second harmonic 2ω.
The same envelope function F (t) is used for both the fun-
damental and the second harmonic, while the ratio of the
amplitudes is specified by the real parameter η (η > 0).
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FIG. 1: (Color online) (a) Bichromatic ionization by left-
handed (negative helicity) circularly polarized light propagat-
ing along the Z-axis. (b) Level scheme of the ω+ 2ω process.
The dashed arrow indicates 2ω ionization with positive light
helicity.

The corresponding carrier-envelope phases (CEPs) are
denoted by φ1 and φ2, respectively. The geometry of
the process is shown in Fig. 1. Equation (1) defines
the X- and Y -axes in terms of the electric-field vector
direction at t = 0. The unit vectors x̂ and ŷ spec-
ify the plane of circular light in which the fundamen-
tal is chosen to have negative helicity, whereas the pa-
rameter H = ±1 indicates the positive or negative he-
licity of the second harmonic. Consequently, the cases
H = ±1 correspond to resulting fields for which the
harmonics have opposite or equal helicity, respectively.
As will be discussed below, the PADs for the cases of
both beams left-circularly polarized or both beams right-
circularly polarized will be different. The field in Eq. (1)
is obtained, with negligible envelope effects for multicycle
pulses, from EEE(t) = −c−1∂AAA(t)/∂t, with AAA(t) denoting
the vector potential and c the speed of light. The latter
procedure was performed to avoid unphysical pulse-shape
effects, as recently discussed in Ref. [18].

For a linearly polarized bichromatic radiation beam,

the PAD exhibits an asymmetry with respect to the plane
perpendicular to the electric field, while the axial sym-
metry along the field direction survives. On the other
hand, for circularly polarized light the axial symmetry
with respect to the light propagation direction, i.e., the
Z-axis in Fig. 1(a), is broken as a result of interferences,
as discussed in detail in [19]. Consequently, circularly
polarized light might offer the possibility to manipulate
the orientation of the principal direction of photoelectron
emission in the XY -plane. Additionally, switching from
equal to opposite helicity between the two harmonics of-
fers a new degree of freedom to investigate.

The present study shares some similarities with our
previous work on linearly polarized light [15]. The asym-
metry still occurs as a result of a nonzero time-average
cube

〈
E3x
〉
6= 0 and

〈
E3y
〉
6= 0 of the electric field compo-

nents, whereas the time average of the field itself van-
ishes, i.e., 〈EEE〉 = 0. We consider again the “multi-
photon regime” of ionization for comparatively weak
fields (1011 − 1013 W/cm2) and pulses containing many
optical cycles. Stronger fields and shorter pulses may
lead to asymmetries already for one-color ionization [20].

Below we investigate in detail the effects of interfering
one-photon and two-photon pathways with circularly po-
larized light, using ionization of atomic hydrogen for the
benchmark study and extending our recent results [19].
We concentrate on the photoionization of the hydrogen
atom from its 1s ground state, using 2p as the intermedi-
ate state, as shown schematically in Fig. 1(b) for either
positive or negative helicity of the second harmonic. We
also point out the similarities and differences with the
same process for linearly polarized light.

This paper is organized as follows. In Sect. II, we
present the theoretical formalism of the PADs for ω+2ω
ionization. We also briefly describe the required imple-
mentation to compute the solution of the TDSE for cir-
cular light polarization, as well as the nonstationary per-
turbation theory (PT) approach. In Sect. III, we present
our numerical results for the hydrogen atom and com-
pare the TDSE with the PT results. We also analyze
and discuss the shape of the PADs. The final section is
devoted to our conclusions.

Unless indicated otherwise, atomic units (a.u.) are used
throughout this manuscript.

II. THEORY

A. Time-dependent Schrödinger equation

Since the general procedure to solve numerically the
TDSE was described at length in [21], we only summa-
rize here the necessary modifications to treat circularly
polarized light. We consider the propagation of the wave
packet with a HamiltonianH(r, t) expressed in the length
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gauge and the electric dipole approximation as

H(r, t) = −∇
2

2
− 1

r
+

√
4π

3
r
∑
q=±1

E∗q (t)Y1q(θ, ϕ). (2)

Here we introduced the spherical coordinates (r, θ,ϕ) of
the electron with the Z-axis oriented along the light
propagation direction (c.f. Fig. 1 (a)). The elements Eq,
q = ±1, represent the spherical components of the elec-
tric field, expressed in terms of its Cartesian components
as E±1 = ∓(Ex ± iEy)/

√
2. When the solution of the

TDSE is expanded in partial waves as

Ψ(r, t) =
1

r

∑
lm

ξml (r, t)Ylm(θ, ϕ), (3)

the radial terms ξml (r, t) are solutions of the following set
of coupled equations:

i
∂ξml (r, t)

∂t
=

[
−1

2

∂2

∂r2
+
l(l + 1)

2r2
− 1

r

]
ξml (r, t)

+r
∑
q=±1

∑
l′m′

E∗q (t) I1qlm,l′m′ ξ
m′

l′ (r, t), (4)

with Ikµlm,l′m′ defined in terms of Clebsch-Gordan coeffi-

cients (l1m1, l2m2|lm) as

Ikµlm,l′m′ = (−1)m
′
l̂l̂′k̂−2(l0, l′0 | k0)(lm, l′ −m′ | kµ) ,

(5)
where â ≡

√
2a+ 1. The initial condition is ξml (r, 0) =

δl0δm0P1s(r), where P1s(r) is the ground-state radial or-
bital of atomic hydrogen. The most general form of the
PAD is given by

dW

dΩ
=
W0

4π

1 +
∑
k>0

0≤µ≤k

|βµk |P
µ
k (cos θ) cos(µϕ+ ψµk )

,
(6)

where dΩ is the solid angle corresponding to an elec-
tron emitted in the (θ, ϕ) direction and W0 is the angle-
integrated ionization probability. The anisotropy param-
eters βµk = |βµk | exp (iψµk ) in Eq. (6), defined for k > 0 and
0 ≤ µ ≤ k, are complex quantities expressed as

βµk = Nµ
k

∑
lm

∑
l′m′

il−l
′
ei(σl′−σl)Zm∗El Z

m′

El′ I
k−µ
lm,l′m′ . (7)

In the above equation, E is the photoelectron energy,
σl = arg Γ(l + 1 − i(2E)−

1
2 ) is the Coulomb phase, and

the factor Nµ
k takes the value

Nµ
k =

{
k̂2W−10 if µ = 0

2k̂2
√

(k−µ)!
(k+µ)! W

−1
0 if µ > 0.

(8)

The partial-wave photoionization amplitudes ZmEl are
given by

ZmEl = lim
t→∞

∫ ∞
0

PEl(r) ξ
m
l (r, t) dr, (9)

where PEl(r) are energy-normalized Coulomb wave func-
tions. In addition, the angle-integrated ionization prob-
ability takes the simple form

W0 =
∑
lm

|ZmEl|2. (10)

Note that Eqs. (6) and (7) are general and apply to arbi-
trary light polarization. As an example, the coefficients
β0
k reduce to the well-known anisotropy parameters for

the case of linearly polarized light with electric field vec-
tor aligned along the Z-axis. Although not explicitly
specified in the above equations, βµk , as well as ψµk , are
energy-dependent parameters on the photoelectron line.

In the present treatment of circularly polarized light,
the symmetry of the PAD depends on the symmetry char-
acter of the various terms entering the sum in Eq. (6).
To be more specific, we now turn to the concept of the
number of absorbed photons, although when solving the
TDSE this concept is not always directly applicable for
fields of arbitrary strength. For one-photon ionization
alone, only β0

2 contributes, whereas for two-photon ion-
ization alone, both β0

2 and β0
4 contribute. Therefore, in

either case, the PADs (6) exhibit even parity π (since
π = (−1)k), have axial symmetry around the Z-axis (due
to µ = 0), and are symmetric against reflection with re-
spect to theXY -plane (due to k+µ = even). Considering
the case for which both one-photon and two-photon ab-
sorption processes are combined, however, contributions
from odd k and odd µ, especially β1

1 , β1
3 (equal helic-

ities) and β3
3 (opposite helicities), should be accounted

for. The latter terms, originating from the interference
of amplitudes of the two ionization paths, are responsi-
ble for breaking both the inversion and axial symmetries,
whereas the reflection symmetry with respect to the XY -
plane is preserved. The latter symmetry is a consequence
of the dipole approximation.

A quantitative description of the axial asymmetry
breaking of the PAD can be achieved by introducing a
doubly-differential angular asymmetry of the form

A(θ, ϕ) =
I(θ, ϕ)− I(θ, π + ϕ)

I(θ, ϕ) + I(θ, π + ϕ)
, (11)

where I(θ, ϕ) ∝ dW/dΩ is the intensity of the electron
flux into the solid-angle element dΩ defined by the angles
(θ, ϕ). In particular, it will be instructive to consider the
asymmetry in the XY -polarization plane, i.e., the val-
ues of A(90◦, ϕ). Further considerations regarding the
characterization of the asymmetry for circularly polar-
ized light will be guided by the results of the perturbative
approach presented in Sect. II B.

The anisotropy parameters βµk and, therefore, the dif-
ferential asymmetry (11), are functions of the pulse pa-
rameters, i.e., the fundamental frequency, the pulse in-
tensity, the pulse envelope, the second harmonic inten-
sity and helicity, and the CEPs. In this study, we con-
sider pulses of the form (1) covering an integer number
N (N � 1) of optical cycles T = 2π/ω, with a pulse en-
velope F (t) = F0 sin2 Ωt (Ω = ω/2N , 0 ≤ t ≤ NT ) and
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F (t) = 0 otherwise. For N � 1, it can be shown by ap-
plying the rotating-wave approximation (RWA) that all
significant observables depend only on φ = φ2 − 2φ1 but
not on the individual carrier-envelope phases φ1 or φ2.
The latter fact was confirmed numerically for a pulse
with N = 40 optical cycles, which we used in the TDSE
calculations. Therefore, we set φ1 = 0 below and only
vary φ = φ2.

Additional details on the method employed to solve
the TDSE can be found in [21]. The extension of the
code, required to treat light of any polarization in space,
is computationally demanding and necessitates the use
of parallel architectures, as provided by modern super-
computers like Stampede [22] or SuperMIC [23]. The
accuracy of the code in its previous form was tested many
times over the years [17, 24, 25]. The present version
was also checked in numerous ways. An important test
of accuracy was to reproduce, for linearly polarized light
of random orientation in space, earlier results for light
polarized along the Z-axis.

B. Perturbative approach

In the weak-field regime, the amplitudes can be eval-
uated within the lowest-order time-dependent perturba-
tion theory. The approach is particularly useful in the
case of arbitrarily polarized radiation, in light of the com-
putational complexity associated with solving the TDSE.
Furthermore, the PT approach can provide considerable
insight by predicting analytically the dependence of phys-
ical observables over a wide range of laser parameters. On
the other hand, the validity of the PT approach should
be tested in order to avoid potential pitfalls in drawing
conclusions in an inappropriate parameter regime.

Let us denote by |El,m 〉 the hydrogen eigenstates and

by UEl,m ≡ 〈El,m | Û(NT ) | 1s〉 the ionization ampli-

tude, with Û(t) representing the time-evolution operator.
In this case, the anisotropy parameters in Eq. (7) can be
expressed in terms of UEl,m as

βµk = Nµ
k

∑
lm

∑
l′m′

U∗El,mUEl′,m′Ik−µlm,l′m′ , (12)

where Ikµlm,l′m′ is defined by Eq. (5). The ionization am-

plitudes in Eq. (12) can be evaluated within the lowest-
order PT, bearing in mind a number of considerations.
As a result of direct photoionization of the 1s ground
state of hydrogen by the second harmonic of the circu-
larly polarized light, a p-photoelectron is emitted, with
either positive or negative magnetic quantum number
m = ±1, depending on the field helicity H = ±1. On
the other hand, only d-photoelectrons with m = −2 are
produced from ionization by the fundamental via a two-
photon absorption process with an intermediate real or
virtual p-state with m = −1, as shown in Fig. 1(b).
Note a characteristic difference in comparison with the
case of linearly polarized light, as no s-photoelectron is

produced. As a consequence, the resulting interferences
are constructed from p- and d-waves only. In the RWA
(which is well satisfied for N � 1) the only nonvanishing
first-order ionization amplitude from the 1s state, at a
given helicity H = ±1, is expressed as

U
(1)
Ep,±1 ≡ 〈Ep,±1 | Û (1)(NT ) | 1s〉

= −i〈Ep,±1 | D̂ | 1s〉
∫ NT

0

ei(E−E1s)t
′
E∗±1(t′)dt′

= −iD(1)
Ep T

(1)
H =±1, (13)

whereas the only nonvanishing second-order amplitude is

U
(2)
Ed,−2 ≡ 〈Ed,−2 | Û (2)(NT ) | 1s〉

= i2
∫∑
En

〈Ed,−2 | D̂ |Enp,−1〉〈Enp,−1 | D̂ | 1s〉

×
∫ NT

0

ei(E−En)t′E∗−1(t′)

∫ t′

0

ei(En−E1s)t
′′
E∗−1(t′′)dt′′dt′

= −
∫∑
En

D
(2)
Ed(En)T

(2)
En
. (14)

The time dependence of the field is contained in the fac-

tors T
(1)
H =±1 and T

(2)
En

. The radial dipole matrix elements
in (13) and (14) are given, respectively, by

D
(1)
Ep ≡ 〈Ep,±1 | D̂ | 1s〉

= −i eiσp
1√
3

∫ ∞
0

PEp(r)rP1s(r)dr (15)

and

D
(2)
Ed(En) ≡ 〈Ed,−2 | D̂ |Enp,−1〉〈Enp,−1 | D̂ | 1s〉

= −eiσd

√
2

15

∫ ∞
0

PEd(r)rPEnp(r)dr

×
∫ ∞
0

PEnp(r)rP1s(r)dr. (16)

Here PEnp(r) denotes the radial orbitals of the inter-
mediate states |Enp,−1 〉 with energy En. The time-
dependent factor in Eq. (13) takes the form

T
(1)
H =±1 = ∓e−iφ F0√

2

∫ NT

0

sin2(Ωt′)e−2iωt
′
ei(E−E1s)t

′
dt′ .

(17)
The ionization amplitude in (13) is thus seen to be pro-
portional to the factor e−iφ. The time-dependent factor
of the second-order amplitude (14) is of the form

T
(2)
En

=
F 2
0

2

∫ NT

0

sin2(Ωt′)e−iωt
′
ei(E−En)t

′

×
∫ t′

0

sin2(Ωt′′)e−iωt
′′
ei(En−E1s)t

′′
dt′′dt′ . (18)

We now introduce the reduced symbols ∓U (1)
p ≡

U
(1)
Ep,±1 and U

(2)
d ≡ U

(2)
Ed,−2 for brevity in the following
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expressions. The nonvanishing real anisotropy parame-
ters (Eq. (12), µ = 0) which are independent of the field
helicity, then take the form

β0
2 = −W−10

[
η2|U (1)

p |2 +
10

7
|U (2)
d |

2

]
, (19)

β0
4 =

3

7
W−10 |U

(2)
d |

2 . (20)

Here the ionization probability is given by

W0 =
∣∣∣U (2)
d

∣∣∣2 + η2
∣∣∣U (1)
p

∣∣∣2 , (21)

and the (dimensionless) probability for ionizing the hy-
drogen atom during the entire pulse is P =

∫
W0dE.

The relation

β0
2 + β0

4 = −1 (22)

holds, where − 10
7 ≤ β

0
2 ≤ −1, and 0 ≤ β0

4 ≤ 3
7 . Consider-

ing the case of equal helicities, i.e., H = −1, one obtains
two additional nonvanishing complex quantities, β1

1 and
β1
3 , while for opposite helicities (H = +1) one obtains a

single additional nonvanishing complex quantity β3
3 . The

latter three parameters are proportional:

β1
1 = −6β1

3 = 12β3
3 =

6√
5
ηW−10

(
U

(2)∗
d U (1)

p

)
. (23)

Thus, the PAD is characterized by only three indepen-
dent real quantities and Eq. (6) may be presented, for
example [19], as

dW

dΩ
=

W0

4π

(
1 +

∑
k=2,4

β0
kPk(cos θ)

+
15

2
|β1

3 | sin3 θ cos(µϕ+ ψ)

)

=
W0

8π
sin2 θ

(
10 + 7β0

2 −
35

4
(1 + β0

2) sin2 θ

+ 15|β1
3 | sin θ cos(µϕ+ ψ)

)
. (24)

Here µ = ±1 for equal and µ = ±3 for opposite helici-
ties, respectively. The upper (lower) sign corresponds to
negative (positive) helicity of the fundamental, and

ψ = arg
(
U

(2)∗
d U (1)

p

)
. (25)

The PADs determined by Eq. (24) depend on whether
both fields have positive or negative helicities. This fact
may seem surprising because usually only the relative he-
licity is important. Since the two frequencies of interest
are related by a factor of two, the same configuration
of the electric field appears again and again. For exam-
ple, if both beams are right-circularly polarized, then the
maximal field strength 1 + η is achieved at each period

in the direction ϕ1 − ϕ2. On the other hand, if both
fields are left-circularly polarized, then this direction is
characterized by the angle ϕ2 − ϕ1.

The above equations provide an elegant way to char-
acterize the PADs and the asymmetry in both cases of
opposite and equal helicities of the fundamental and the
second harmonic. It is seen that the PADs (24) possess a
perpendicular symmetry plane intersecting theXY -plane
at angles ψ or ψ/3, with respect to the X-axis, for equal
or opposite helicities, respectively. In addition, the max-
imum photoelectron emission in each case corresponds to
either ϕ = −ψ or ϕ = −ψ/3.

In light of these considerations, it is convenient to in-
troduce a polar asymmetry, defined along the line of inter-
section between the plane perpendicular to the radiation
beam and the symmetry plane of the PAD. Therefore, the
polar asymmetry is given by evaluating the asymmetry in
Eq. (11) at either A(90◦, ϕ = −ψ) or A(90◦, ϕ = −ψ/3),
depending on the field helicity. The polar asymmetry in
both cases has the same value

A =
15

2

|β1
3 |

1− β0
2/2 + 3β0

4/8
=

60|β1
3 |

5− 7β0
2

. (26)

It is non-negative, i.e., 0 ≤ A ≤ 1. After replacing |β1
3 | by

its real and imaginary parts, Re[β1
3 ] and Im[β1

3 ], Eq. (26)
yields the asymmetry along the X- and Y -axes, respec-
tively. In contrast to (26), these asymmetries are de-
fined along fixed-in-space directions and, therefore, may
change sign.

The polar asymmetry (26) possesses several interesting
properties that are worth mentioning. First, the results
of Eqs. (19) and (23) indicate that the polar asymme-
try depends neither on the field helicity nor on the value
of the relative phase φ between the second and first har-
monic. The validity of this result was checked using both
the TDSE and PT methods in the expected domain of
validity of perturbation theory. Nevertheless, one might
question the appropriateness of Eq. (26) outside the do-
main of applicability of the PT approach, since the def-
inition of the polar asymmetry itself depends explicitly
on the value of ψ, as derived in the PT approach. One
should, however, note that the form of the expressions
(19)-(26) is in fact more general than might be thought
at first sight. Recalling the general expression of the
asymmetry parameters (12), considering the RWA, and
assuming that the process is dominated by emission of
p- and d-electron waves and their interference, the fi-
nal expressions for the asymmetry parameters βµk and
ψ still remain valid to high precision if one substitutes
more accurate values of the matrix elements of the time-
evolution operator. On the other hand, at large field in-
tensity, when higher-order terms become important, the
PAD should differ from expression (24). In particular,
the symmetry of the PAD with respect to the plane per-
pendicular to the XY -plane will disappear. In Sect. III,
it will be shown that at the largest intensity considered
in our study, i.e., 1013 W/cm2, breaking of the symme-
try plane remains negligible. Consequently, Eq. (26) still
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represents an appropriate way to describe the asymme-
try.

When evaluating U
(2)
d numerically according to

Eqs. (14), (16), and (18), we included nine intermediate
discrete Enp states (n = 2, 3, . . . , 10) in Eq. (14). Fur-
ther increasing the number of intermediate states to 15
did not change the predicted anisotropy parameters for
photon energies in the vicinity of the 1s − 2p transition
within the thickness of the lines.

Finally, as in our earlier work [15], we applied pertur-
bation theory with infinitely long “pulses” (N = ∞),
i.e., continuous radiation of constant amplitude F ′0 =√

3/8F0. In this case U
(1)
p and U

(2)
d reduce to

U (1)
p = −i F

′
0√
2
e−iφD

(1)
Ep , (27)

U
(2)
d = i

F ′20
2

∫∑
En

D
(2)
Ed(En)

En − E1s − ω + i0
. (28)

Details of the variationally stable procedure for calcula-
tions of the second-order PT amplitude in hydrogen may
be found in [26, 27].

Equations (19), (20), (23) can be used to show that,
within the model containing the single 2p intermediate
state and for continuous radiation, the anisotropy pa-
rameters take the parametric forms

β0
2 = −

(
1 +

3

7

1

1 + ε2

)
, (29)

β0
4 =

3

7

1

1 + ε2
, (30)

β1
1 = −6β1

3 = 12β3
3 =

Cε

ε2 + 1
. (31)

Here

ε =
∆ω
1
2Γβ

, (32)

Γβ =

√
2F ′0
η

|D(2)
Erd

(E2p)|

|D(1)
Erp
|

, (33)

C =
6i√

5
ei(σp−σd−φ) , (34)

with ∆ω = ω − (E2p − E1s). Furthermore, Er =
2E2p − E1s is the photoelectron energy at the reso-

nance (Er = 0.250 a.u.). The values of D
(2)
Erd

(E2p), and

D
(1)
Erp

are constants. The lack of the two-photon ioniza-
tion s-channel for circularly polarized radiation makes
Eqs. (29) and (30) actually look simpler than the corre-
sponding equations for the anisotropy parameters in the
case of linearly polarized radiation (c.f. Eqs. (25) and (26)
of [15]).

The asymmetry (26) takes the form

A =
2|ε′|

1 + ε′2
, (35)

where ε′ = 2√
5
ε. Thus, the resonance profile of the asym-

metry A as function of the photon energy is slightly
broader than the profiles of the anisotropy parame-
ters (29)-(31). The widths of the resonant structures in
the asymmetry and the anisotropy parameters are inde-
pendent of the relative phase of the harmonics φ and also
of the interference between the first-order and second-
order ionization amplitudes.

The angle ψ defined in (25) undergoes a jump by π
when the photon energy crosses the resonance:

ψ = arctan(2
√

2E)−1 − φ+

{
+π

2 , E < Er ,
−π2 , E > Er .

(36)

When deriving Eq. (36) we used the recurrence relation
for the Coulomb phases (for negative unit charge) [28],

σl+1 − σl = − arctan[(l + 1)
√

2E]−1, and the fact that
the signs of integrals on the right-hand side of Eqs. (15)
and (16) are well defined, and all three are positive.

Although Eqs. (29)-(36) are only valid in a restricted
domain of pulse parameters, these analytical results pro-
vide a foundation for the qualitative understanding of the
features associated with ω+2ω ionization in the vicinity
of an intermediate resonance.

III. RESULTS AND DISCUSSION

In order to allow for a direct comparison with our pre-
vious study on linearly polarized light [15], we considered
a pulse with similar characteristics. Therefore, the cal-
culations were performed for peak intensities spanning a
range from 1011 W/cm2 to 1013 W/cm2, with pulse du-
ration corresponding to N = 40 cycles of the fundamen-
tal frequency, i.e., approximately 6 fs (FWHM of the in-
tensity). As we span different fundamental frequencies
while keeping a fixed number of cycles, the pulse dura-
tions change slightly, but the effect is not important in
our analysis.

We checked the migration of population as a function
of time and obtained results similar to ω+ 2ω ionization
by linearly polarized radiation (see the discussion and
Fig. 2 in [15]). Thus, we expect that the PT approach
will be appropriate for 1011 W/cm2, while it would likely
fail for 1013 W/cm2.

The ionization probability in the ω + 2ω scheme, ob-
tained by solving the TDSE near the 1s − 2p transition
frequency, is presented as a function of ω in Fig. 2 (a),
for intensities of the fundamental of 1012 W/cm2 and
1013 W/cm2, respectively. The curves represent the ion-
ization probability P =

∫
P (E) dE, where P (E) is the

probability density for ionization yielding a photoelectron
with energy E and the integral is taken over the main
photoelectron line. The parameter η, which specifies the
relative strength of the second harmonic with respect to
the fundamental, is chosen to obtain almost equal values
of the intensity of the photoelectron line generated by
each harmonic separately, thereby allowing for the max-
imum interference effect. The same value as in Ref. [15],
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FIG. 2: (Color online) Results for η = 0.225. (a) Ionization probability integrated over the main photoelectron line as a
function of the photon energy; TDSE (N = 40). The other panels show: (b) anisotropy parameters β0

2 , β0
4 , and real and

imaginary parts of β1
3 (for φ = 0), averaged over the main photoelectron line, for 1012 W/cm2; (c) angle ψ for 1012 W/cm2 for

different relative phases between the harmonics φ; (d) polar asymmetry A. In panels (b), (c), and (d): TDSE, N = 40 (solid
line); PT, N = 40 (dashed line); PT, N =∞ (chain line). See text for details.

i.e., η = 0.225, was used, with the associated second-
harmonic intensity corresponding to 5% of the funda-
mental intensity. Although the frequency dependencies
depicted in Fig. 2 (a) appear similar to the linearly po-
larized case [15], the ionization probability can differ by
more than 20% at some frequencies. The value of the
ionization probability confirms the fact that the PT ap-
proach is not adequate for 1013 W/cm2. When increasing
the intensity by a factor of 10, second-order PT for two-
photon absorption predicts an ionization probability 100
times larger, thus overestimating the TDSE results by
approximately a factor of three.

Generally, due to issues related to the experimental res-
olution, only an averaged value of the anisotropy parame-
ters over the photoelectron line can be measured. For this
reason, we actually calculate βµk = P−1

∫
βµk (E)P (E) dE

and will present results for such averaged quantities be-

low. In Fig. 2(b), we plot β0
2 , β0

4 , and β1
3 calculated in

the TDSE and PT approaches, as a function of the fun-
damental frequency, for 1012 W/cm2. We only present
results for the two negative helicities, since the results
for opposite helicities are either the same (for the asym-
metry A) or can be deduced by a rescaling factor (for the
anisotropy parameters β), as indicated in Eq. (23). The
TDSE and the PT results for N = 40 are close, showing
the applicability of the PT approach. The relation (22),
derived in the PT, is still seen in the TDSE results with
high accuracy. The resonance profiles of the anisotropy
parameters for N = 40 are broadened in comparison with
the profiles for the continuous radiation due to the spec-
tral width of the pulse. According to Eq. (31), for con-
tinuous radiation in the single-resonance approximation,
both Re[β1

3 ] and Im[β1
3 ], which represent the interference

effects, change sign at the resonance position. Applying
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shorter pulses and allowing for other intermediate states
leads to separation of the zeros in the real and imaginary
parts of the asymmetry parameters (31). This splitting
is clearly seen in Fig. 2 (b).

As discussed above, the polar asymmetry (26) is de-
fined with respect to the direction that makes an angle ψ
with the X-axis in the XY -plane. This is the line of
intersection of the symmetry plane of the PAD with the
XY -plane. Calculations of the angle ψ with both the
TDSE and PT approaches are exhibited in Fig. 2 (c) for
different relative phases φ between the harmonics. The
symmetry plane, and therefore the PADs, rotate rapidly
near the resonance. The frequency dependence of the
angle ψ (Fig. 2 (c)) closely follows Eq. (36), except that
the jump by π is smoothed out due to the finite duration
of the pulse in the case N = 40. In the limit of con-
tinuous radiation, this rotation is “infinitely fast” at the
resonance energy. It actually means dropping the polar
asymmetry to zero (Fig. 2 (d)) and simultaneously chang-
ing the direction of the symmetry axis to the opposite.

In Fig. 2 (d) we observe relatively good agreement be-
tween the PT and TDSE predictions for 1012 W/cm2.
The polar asymmetry is large in the vicinity of the reso-
nance and drops significantly at higher frequencies. The
characteristic energy dependence of the asymmetry near
the resonance energy with the local minimum is explained
by Eq. (35). In the TDSE and PT calculations for
N = 40 this expression is convoluted with the frequency
spectrum of the pulse. For the longer pulse the local
minimum would be deeper, reaching zero in the limit of
continuous radiation, as discussed above. Although the
polar asymmetry is defined as a non-negative number,
A in Fig. 2(d) crosses zero in the high-energy wing of
the resonance. We permitted this in the interest of bet-
ter visibility, and hence we do not show the jump of ψ
by +π in Fig. 2(c) at the corresponding energies either.
In our case the polar asymmetry A crosses zero when
Ud = 0. Within the PT, the vanishing of the two-photon
amplitude out of the resonance is a result of mutual com-
pensation of contributions from the lower-lying 2p inter-
mediate state and higher lying intermediate p-states, in-
cluding the p-continuum. Therefore the position of this
zero is highly sensitive to the inclusion of the latter con-
tinuum [29].

The asymmetries along the X- and Y -axes (not
shown), described by the real and imaginary parts of β1

3 ,
change sign rapidly near the resonance, as follows from
the curves for Re[β1

3 ] and Im[β1
3 ] in Fig. 2 (b). Hence, the

individual asymmetries along each axial direction behave
similarly to the ones for linearly polarized light [15].

The polar asymmetry for 1013 W/cm2 (Fig. 2 (d)) re-
veals a somewhat erratic and more surprising behavior.
It exhibits a deep minimum at the resonance, a sharp
local maximum at ω = 0.39 a.u., and is becoming largest
at lower frequencies. Note, however, that the maximum
at ω = 0.39 a.u. and the largest absolute values at lower
frequencies were also predicted for the linearly polarized
light for 1013 W/cm2 [15], thus showing consistency of

the results. Although the validity of the polar asymme-
try framework may be questionable for 1013 W/cm2, we
will show that three-dimensional representations of the
PAD corroborate the relevance of the polar asymmetry,
even at such high intensity.

Another aspect to consider is the behavior of the PAD
as a function of the relative phase between the two har-
monics. Experimentally, such a relative phase can, for
instance, be created by introducing a time-delay τ be-
tween the two harmonics. For simplicity, let as assume
that the first harmonic is of the form cos(ωt+ φ1), with
0◦ ≤ φ1 ≤ 360◦ as a randomly distributed carrier-
envelope phase (CEP). If we further assume that a time-
delay τ has been introduced, the second harmonic is de-
scribed by the nonlinear term cos2(ωt + φ1), leading to
the form cos(2ωt + φ2), with φ2 = 2ωτ + 2φ1. Using
the PT formalism and the RWA, we see from Eqs. (13),

(14), (17), and (18) that in the general case U
(1)
p ∝ e−φ2

and U
(2)
d ∝ e−2φ1 . As a result, the interference terms in

Eqs. (23) and (25) depend on 2φ1 − φ2 = −2ωτ , which
plays the role of the relative phase φ. If the time-delay τ
varies randomly, the interference effect would cancel out
on average. On the other hand, if τ is locked at some
specific value, one can efficiently control the interference
terms. For more details, see [31] and references therein.

Figure 3 depicts the behavior of some of the quantities
discussed above as a function of the relative phase be-
tween the harmonics φ at the resonance frequency. We
do not show the results of the PT calculations in this fig-
ure, because they are very close to the TDSE results. The
even-rank anisotropy parameters β0

2 and β0
4 keep a con-

stant value, since they are not involved in the ω+ 2ω in-

0 30 60 90 120 150 180
φ (degrees)

-1.0

-0.5

0.0

0.5

1.0

ψ (rad)

Re[β
3
]

β
4

β
2

A

1

o

o

Im[β
3
]1

FIG. 3: (Color online) TDSE results for equal helicities for
the anisotropy parameters β0

2 (dashed red line), β0
4 (dashed

green line), Re[β1
3 ] (chain magenta line), and Im[β1

3 ] (chain
indigo line), as well as the polar asymmetry A (black thick
line) and its corresponding symmetry angle ψ (thin blue line).
The photon energy is in resonance with the 1s−2p excitation,
the peak intensity is 1012 W/cm2, and N = 40. See text for
details.
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FIG. 4: (Color online) Three-dimensional PADs calculated in the TDSE approach for 1012 W/cm2, N = 40, and relative phase
φ = 0. The PADs have been averaged over the photoelectron line and rescaled to improve visualization. Calculations for equal
helicities are shown in panels (a), (b), and (c), while results for opposite helicities are depicted in panels (d), (e), and (f). The
fundamental frequency is given in atomic units.
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(d)	  
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FIG. 5: (Color online) Same as the upper row in Fig. 4 for 1013 W/cm2.

terference effects. In addition, the polar asymmetry also
remains constant. This is a somewhat unexpected re-
sult since the left-right asymmetry for linearly polarized
light oscillates as a function of the relative phase between
harmonics (see, for example, [7, 8, 10, 15]). The result
can be understood, however, by recalling that the polar
asymmetry A is defined with respect to a direction that,
itself, rotates with the angle φ. As mentioned above, it is
defined by the absolute values of the anisotropy parame-
ters, independent of φ. The angle ψ, which characterizes
this direction and the orientation of the symmetry plane
of the PAD, is a linear function of the relative phase,
ψ(φ) = ψ(0◦) − φ, as expected from Eq. (17). At the
same time, the real and imaginary parts of β1

3 oscillate
as functions of φ, as shown in Fig. 3.

Although the polar asymmetry and its associated an-
gle ψ provide a quantitative description of the asym-
metry generated by interfering one-photon and two-
photon pathways with circularly polarized light, they
only contain limited information on the PAD. For this
reason, it is desirable to directly visualize the three-

dimensional PAD [19]. Figure 4 exhibits the PADs for
1012 W/cm2 and φ = 0 for different fundamental fre-
quencies, i.e., on the left and right wing of the resonance
(ω = 0.330 a.u. and 0.410 a.u.), and at the resonance en-
ergy (ω = 0.375 a.u.). In addition, the PADs are shown
for equal (upper panels) and opposite (lower panels) he-
licities. As anticipated from the values of the asymme-
try parameters in Fig. 2, valid for both cases H = ±1,
the asymmetry of the 3D PADs is large on the left wing
(panels (a) and (d)) and almost vanishes, resembling a
donut-like shape, on the right wing (panels (c) and (f))
of the resonance. Since the TDSE and PT results are in
very good agreement, only the TDSE results are shown
here. The maximum asymmetry is observed near the res-
onance. It is combined with a rapid rotation of the PADs
by approximately 90◦ from ω = 0.330 a.u. to 0.375 a.u.
and by 180◦ when scanning from the left to the right
wing of the resonance. This result is in agreement with
Eq. (36) and the computed values of ψ in Fig. 2(c).

Figure 5 exhibits the PADs at the largest intensity
studied in this work, 1013 W/cm2. The shapes of the
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FIG. 6: (Color online) Polar asymmetry A (a) and associated angle ψ (b) as functions of the energy of the first harmonic and
pulse duration (expressed in the number of optical cycles N), calculated in PT for the peak intensity 1012 W/cm2.

PADs confirm that the latter still effectively possess a
symmetry plane. The survival of this symmetry plane
was discussed above. It is explained by the fact that,
even at this large laser intensity, the photoelectron line is
still dominated by p- and d-wave emission. We see that
the asymmetry of the PAD is small at the resonance,
as predicted from the computed polar asymmetry (c.f.
Fig. 2 (d)). We also plotted the PAD at the predicted
local maximum of the polar asymmetry (ω = 0.390 a.u.).

Figure 6 demonstrates how the asymmetry A and the
associated angle ψ evolve with the pulse duration in
the vicinity of the 1s − 2p resonance. These 3D plots
were generated from the PT predictions, which should
be a very good approximation to the TDSE results but
are computationally much easier to obtain. For long
(N ∼ 1000) pulses, A and ψ behave as predicted by
Eqs. (35) and (36), respectively, for continuous radiation.
Small deviations from the symmetric shape prescribed by
Eq. (35) are caused by contributions from additional in-
termediate states np (n > 2) and small variations of the
radial amplitudes (15) and (16) within the narrow in-
terval of photon frequencies. When the pulse duration
is decreased and, correspondingly, the spectral width of
the pulse is increased, the sharp resonance-like structure
in A is smeared out. This leads to a single broad maxi-
mum for N ∼ 10, but at N = 40 a local minimum is still
visible (see Fig. 2(d)). Similarly, the sharp jump in ψ for
N ∼ 1000 transforms into a shallow variation for N ∼ 10.
For the short pulses, the influence of the neighboring 3p
resonance can explicitly be seen in the high-energy wing
of the 2p resonance structure.

Another interesting point concerns the determination
of the phase φ between the harmonics of the XFEL, based

on measurements of the PADs. This can be discussed
within the domain of applicability of the PT for infinite
pulses, where analytical expressions can be developed
much further than in the more elaborate computational
approaches. A recipe suggested in our recent paper [15]
with the use of only linearly polarized radiation is, unfor-
tunately, not valid [30]. The relation between the phase
offsets, Eq. (40) in the above paper, is incorrect. Further-
more, since the pulse parameters of XFELs are usually
not known precisely, the observed quantities to extract
the relative phase of the harmonics should not be very
sensitive to these parameters. With circularly polarized
light, the angle ψ (Figs. 2(c) and 6(b)) is, in this respect,
a good candidate. It is defined by Eq. (36) and can be
used in cases where the atomic wavefunctions are not
known in analytic form. In the latter case the scattering
phase difference σd−σp can be accurately calculated (for
example, for He) far from the autoionizing resonances,
providing finally the value of φ from measurements of
the angle ψ.

IV. SUMMARY AND OUTLOOK

Extending previous studies for linearly polarized radi-
ation, we have presented a detailed investigation of two-
pathway interferences between nonresonant one-photon
and resonant two-photon ionization of atomic hydrogen
by circularly polarized photons. General formulas for ar-
bitrary light polarizations were derived and specified for
circularly polarized radiation beams. The validity of the
predictions based on perturbation theory was analyzed
by comparing those predictions with results obtained
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by solving numerically the time-dependent Schrödinger
equation.

Allowing for more general polarizations opens up a rich
field of further investigations. This was demonstrated
with predictions for coherent control of the photoelectron
angular distribution that would be achievable by employ-
ing circularly polarized radiation fields with equal or op-
posite helicities. An angle defining the symmetry plane
of the PAD and the polar asymmetry of the angular dis-
tribution with respect to a variable direction were in-
troduced. Although expressions for these quantities in
terms of the channel amplitudes were derived within the
perturbation theory, the concepts of the symmetry plane
and the polar symmetry keep their meaning far beyond
the domain of applicability of the perturbation theory.
Finally, analytical dependencies of the parameters that
determine the PAD were derived in the vicinity of an iso-
lated intermediate resonance within perturbation theory
for continuous radiation as functions of energy.

Given the experimental challenges associated with the
preparation of atomic hydrogen targets, it is likely that
such experiments would first be performed for systems
that are more convenient from a practical point of view.
Targets that come to mind are the light noble gases,
such as helium, neon, and possibly argon. In fact, ini-
tial experiments on helium and neon were recently per-
formed at the FERMI free-electron laser facility in Tri-

este (Italy) [31, 32]. Several more studies are planned
within the upcoming months [33]. While the current ex-
perimental laser parameters, namely relatively long and
strong pulses, as well as experimental details such as the
pulse form varying from shot to shot and the need for
focal averaging over the interaction region, will make a
quantitative comparison between experiment and theory
virtually impossible at the present time, it has already
become evident that studies like the present one are es-
sential to qualitatively predict possibly interesting effects
and thereby help in the planning of such highly sophisti-
cated and very expensive experimental endeavors.
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