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We explore to what extent path-integral quantum Monte Carlo methods can efficiently simulate
quantum adiabatic optimization algorithms during a quantum tunneling process. Specifically we
look at symmetric cost functions defined over n bits with a single potential barrier that a successful
quantum adiabatic optimization algorithm will have to tunnel through. The height and width of this
barrier depend on n, and by tuning these dependencies, we can make the optimization algorithm
succeed or fail in polynomial time. In this article we compare the strength of quantum adiabatic
tunneling with that of path-integral quantum Monte Carlo methods. We find numerical evidence
that quantum Monte Carlo algorithms will succeed in the same regimes where quantum adiabatic
optimization succeeds.

I. INTRODUCTION

A. Background

Quantum Adiabatic Optimization (qao), first pro-
posed by Farhi et al. [1], is a quantum algorithm for deter-
mining the minimum of a cost function by slowly evolv-
ing a Hamiltonian from one with known ground state to
one that has as its ground state the solution to an opti-
mization problem. qao relies on the quantum adiabatic
theorem (see Jansen et al. [2] for a proof), which roughly
says that a system is guaranteed to stay in its ground
state if the Hamiltonian evolution time-scales are much
larger than the square of the inverse spectral gap. It was
shown by, for example, Reichardt [3] and Farhi et al. [4]
that this algorithm might provide an exponential speed-
up over naive local search algorithms. On the other hand,
Farhi et al. [5] also described cases where it is no better
than the quadratic speed up of Grover’s quantum search.

qao is sometimes referred to as quantum annealing
(qa) in relation to classical simulated annealing (sa)
where a simulated system’s temperature is slowly lowered
reducing the probability of energetically less favorable
states until the ground state is reached at zero tempera-
ture. In recent years, there has been a push to compare
these two methods, often by using simulated quantum
annealing (sqa) [6]. sqa uses a path integral expan-
sion of the partition function for the evolving system to
create a (d + 1) dimensional classical system on which
Monte Carlo techniques can be used. Instead of varying
the temperature as in sa, sqa varies the Hamiltonian in
the same way as qao.

This path-integral Quantum Monte Carlo (qmc) al-
gorithm has been used to compare classical sa and qa.
Heim et al. [7] among others have shown that qmc meth-
ods outperform classical sa in several cases. In other sit-
uations Battaglia et al. [8] showed that sa can perform
better than qmc. In addition, new techniques in sqa

through qmc continue to be developed and improved,
such as by Farhi et al. [9].
sqa through qmc captures much of the power of qao,

and for some problems these two methods show corre-
lation in their success rates while at the same time re-
maining uncorrelated from classical sa [10]. However,
Hastings has recently [11] constructed several examples
where qao will find the ground state in polynomial time
whereas qmc methods will take exponential time.

B. Central Problem

This article will directly compare qao and qmc by
looking at the efficiency of qao in tunneling through a
potential barrier and comparing it to qmc applied to
the same problem. The specific problem consists of a
symmetric cost function on n bits where each basis state
x ∈ {0, 1}n is weighted by its Hamming weight |x| in
combination with a potential barrier centered at |x| =
n/4. Barriers of this form have been partially considered
in the context of qao by Reichardt [3] who found that
qao would succeed in time polynomial in n if the height
and width of the barrier are both Ω(n1/4).
A simplified problem with a barrier of width 1 was

analyzed by Farhi et al. [4], comparing qao and classi-
cal sa. There qao was found to succeed in polynomial
time while classical sa could not. Crosson and Deng [12]
numerically showed that the same thin barrier limit is a
case where qmcmethods and qao both succeed together.
More recently, Crosson and Harrow [13] proved this re-
sult analytically using the properties of the Markov chain
underlying qmc.
Muthukrishnan et al. [14] analyzed a similar problem

where instead of a barrier in the Hamming Weight, they
have a plateau. This problem has a constant gap, but
they showed that qao still outperforms sa, though both
run in polynomial time. They also showed that a non-
adiabatic approach to qa could outperform qao in this
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case with a constant gap.
Our current goal is to extend the comparison of qao

and qmc methods to the case of a varying barrier size.
Therefore, we seek to determine if the correlation be-
tween the two continues for the full case where the width
and height of the barrier are both powers of the number
of qubits n.

C. Organization

In Section II, we will setup the particular problem we
are working with, defining our symmetric Hamiltonian
and its tunable parameters. We will also show that our
Hilbert space is degenerate, allowing us to reduce the
size of the Hamiltonian, making numerical diagonaliza-
tion easier. We will also explore the classical limit of
our system to make the nature of our quantum tunneling
more explicit. In Section III we will examine the energy
eigenvalues of this Hamiltonian. We will focus on the
spectral gap between the ground state and first excited
state and will primarily use numerical diagonalization.
The size of this spectral gap determines how slowly adi-
abatic evolution must go in order to stay in the ground
state.
Section IV will outline and develop on our Monte Carlo

method. We will go through the approximations and how
those approximations effect our simulations; additionally,
we will discuss our choice of update rules. In Section V,
we present the results of our Monte Carlo simulations
and compare the scaling behavior of these simulations to
the scaling behavior of the spectral gap from Section III.
Finally in Section VI, we discuss the limitations of our
Quantum Monte Carlo algorithm and present several av-
enues for extension and generalization of our work.

II. HAMMING WEIGHT WITH A BARRIER

A. Full Problem

Our problem is one discussed by Reichardt [3], and a
simplified version of it was analyzed by Crosson and Deng
[12]. We consider a symmetric cost function f(|x|) =
|x|+b(|x|), where |x| is the Hamming Weight of the length
n bit string x, and b(z) is some perturbing function. We
will take b(z) to be some barrier, centered around z =
n/4, that has width and height proportional to nα. For
ease of computation, we will use

b(z) =

{

nα when
(

n
4 − 1

2c n
α
)

< z <
(

n
4 + 1

2c n
α
)

0 otherwise
,

(1)
where c is an n independent constant. From now on we
will say that this barrier has size c nα. The full cost
function will have a global minimum at |x| = 0 and a
local minimum at |x| =

⌊

n
4 + 1

2cn
α
⌋

+ 1.

We will encode this problem into a Hamiltonian on a
Hilbert space of n qubits:

Ĥ1 =
∑

x∈{0,1}n

f(|x|)|x〉〈x|. (2)

In qao, we slowly transition from a Hamiltonian with
a known ground state into one with a desired ground
state such as Ĥ1 (e.g. in this problem, we want to find
the |x| = 0 state). The standard initial Hamiltonian is

Ĥ0 =

n
∑

i=1

(H0)i with H0 =
1

2

(

1 −1
−1 1

)

, (3)

where i sums over all n qubits. The ground state of this
Hamiltonian is a uniform superposition over all |x〉 states.
Therefore, the ground state is initially a binomial proba-
bility distribution over |x| with width ∼ √

n centered at
|x| = n/2. In qao, we create the Hamiltonian

Ĥ(s) = (1− s)Ĥ0 + sĤ1, (4)

where s goes from 0 to 1. If we vary s slowly enough,
the adiabatic theorem says that the system will remain
in the ground state. The ground state should keep its
unperturbed, roughly binomial shape throughout most
of this evolution until it encounters the barrier which
will be at a higher energy Therefore, the system will be
forced to tunnel through the potential barrier in order
to reach the true final ground state with |x| = 0. As s
changes, the first two energy eigenlevels remain distinct
and have some spectral gap g(s). If the minimum gap
over s is mins∈[0,1] g(s) = gmin, then adiabatic evolution
is guaranteed to keep the system in the ground state if it
takes time Ω(g−2

min).

B. Symmetrized Hamiltonian

In order to diagonalize the Ĥ(s) of Eq. 4 for sizable n,
we rely on the symmetric subspace of our system. For
each Hamming weight 0 ≤ h ≤ n we have that Ĥ(s) is
degenerate in the

(

n
h

)

dimensional subspace spanned by
the vectors {|x〉 : |x| = h}. Hence we see that the spec-

trum of Ĥ(s) has at most n+1 distinct eigenvalues, which
will simplify our numerical calculations significantly. We
rewrite the Hamiltonian as follows.

Ĥsym(s) =

n
∑

h=0

[

(1− s)

2
n+ sf(h)

]

|h〉〈h| (5)

+

n−1
∑

h=0

[

− (1− s)

2

√

(h+ 1)(n− h)

]

|h〉〈h+ 1|

+
n−1
∑

h=0

[

− (1− s)

2

√

(h+ 1)(n− h)

]

|h+ 1〉〈h|

The spectral gap is then found by diagonalizing the
resulting (n+ 1)× (n+ 1) tridiagonal matrix.
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FIG. 1: Spin Coherent State Potential Energy: This plot
shows the spin coherent state potential energy as seen in Eq. 7
for φ = 0 and a square bump r(y). The different s values
correspond to the beginning and ending of annealing as well
as the point where the minimum of the potential becomes
degenerate, corresponding to the tunneling location.

Furthermore, the adiabatic theorem states that qao

run-time depends on the minimum spectral gap as s
evolves, gmin, so we minimize the gap as a function of
s. We restrict ourselves to n divisible by 4 so that the
barrier is centered on an integer Hamming weight. Since
the barrier width increases in integer steps, we only con-
sider ns such that the width has just increased (i.e. n
such that ⌊1 + cnα⌋ > ⌊1 + c(n − 4)α⌋). Finally we re-
quire the barrier to have width less than n/2, preferably
much less, so that the s = 0 ground state does not have
a significant overlap with the region of the barrier.

C. Classical Limit

The Hilbert space of this symmetrized system is iden-
tical to that of a single spin-n/2 particle. In that spin
context, the Hamiltonian describes applying a magnetic
field to the particle where the field starts as a uniform
field in the −~x direction and then rotates to one in the
~z direction with certain momentum modes picked out as
more energetic.

Ĥspin(s) = −(1− s)Ĵx + sĴz + sb(Ĵz + J), (6)

where J = n/2 and Ĵz and Ĵx are the spin operators for
this particle. Using this spin representation, we can use
spin coherent states and the large J limit [15] to find the
classical limit of our problem. Using spin coherent states,
the spin can be reinterpreted in terms of classical angles
θ and φ so that the Hamiltonian looks like

Hspin(θ, φ, s) = −(1−s)J sin θ cosφ+sJ cos θ+sr(J cos θ),
(7)

where r(y) is a function related to b(z) which is centered
around y = −J/2 and still has height and width propor-
tional to nα. Note that this problem has also been con-
sidered with spin coherent states by Kong and Crosson
[16].

This classical energy is minimized when φ = 0, and we
can plot Hspin(θ, 0, s) for s = 0, 1, 12 (

√
3 − 1) in Fig. 1.

This last s = s∗ ≡ 1
2 (
√
3 − 1) value is chosen to ensure

that the barrier will be centered in the bottom of a po-
tential well, leading to two degenerate classical energy
configurations separated by a barrier of height nα. This
s∗ is also the s at which the unperturbed ground state
of the full problem in Eq. 5 is centered at h = n/4, and
in the large n limit, our numerics indicate that it is the
location of the minimum spectral gap.

This potential energy barrier, which has a height of nα,
has higher energy than any of the low-lying energy states,
which in the unperturbed problem are independent of n,
so it is classically impossible to overcome. Since this is
the classical limit of our problem, we can interpret the
quantum algorithm as tunneling through this potential
barrier.

III. EXACT SPECTRAL GAP

Using the symmetry of the Hamiltonian we are able
to numerically diagonalize the Hamiltonian accurately in
the same range of finite n that our Quantum Monte Carlo
simulations access. As a result, we will be able to com-
pare the qmc run-times directly to the 1/g2min quantity,
rather than having to rely on extrapolations to large n
behavior.

A. Numerical Results

In Fig. 2 we show the minimum gap for a barrier of size
n0.5 as a function of n. The line drawn through the points
is a linear best fit to the log-log data, and the plot below
shows the residuals for this fit. Since the residuals curve
downward, the gap is decreasing faster than a power law
can account for; therefore, the running time for qao,
which depends on the gap g−2

min, is superpolynomial in n
for α = 0.5. In Figs. 3 and 4, we show similar plots for
α = 0.4 and 0.3 respectively.

In Fig. 2 we show the minimum gap for a barrier of
size n0.5 as a function of n. The line drawn through the
points is a linear best fit to the log-log data, and the plot
below shows the residuals for this fit. The downward
curve of the residuals indicates that a linear fit is insuf-
ficient here and that some higher order, nonlinear term
is necessary to describe this behavior. As an example,
let us approximate the residual shape to be quadratic, in
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FIG. 2: gmin vs. n for barrier size n0.5: We show a best
fit linear regression through the log-log data and plot the
residuals of that linear fit versus the log-log data. The fact
that the residuals curve down means that gmin is decreasing
faster than a power law with n, indicating superpolynomial
growth in the qao run-time
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FIG. 3: gmin vs. n for barrier size n0.4: The best fit linear
regression to the log-log data has residuals that curve down-
wards indicating superpolynomial growth in the qao run-
time. Also, notice that y-axis scale on the residual plot is
much smaller than in Fig. 2, indicating that this scaling is
not as strong as n the higher α case.

which case, we would need to add a term

ln gmin = −m lnn+ b+ a(lnn)2 (8)

gmin = ebn−mea(lnn)2 , (9)

for some p > 1. If a is negative, as it would be in our
case, then, this extra term would cause the gap to de-
crease faster than could be accounted for by a polyno-
mial, meaning that the running time for qao, which de-
pends on the gap g−2

min, is superpolynomial in n. This
quadratic approximation is just an estimate; for instance,
an exponentially decreasing gap would create a similar
pattern. We do not claim to determine whether the gap
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FIG. 4: gmin vs. n for barrier size n0.3: The best fit linear
regression to the log-log data has residuals that are essentially
zero, indicating polynomial scaling with n. We have used the
same residual scale as in Fig. 3 to indicate just how small
these residuals are.
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FIG. 5: Deviation of gmin from Power Law in n: For each
barrier scaling power α at c = 1 we found the spectral gap
for n between 100 and 5000 and tried to fit a linear curve to
the log-log plot of spectral gap versus n. What is displayed
here is the curvature of the residuals from those fits. If the
residuals are concave down (meaning negative curvature on
this figure), the spectral gap is decreasing faster than a power
law in n. Therefore, qao will become superpolynomial in n

somewhere between α = 0.33 and 0.34.

is truly exponentially decreasing here, merely that its de-
crease is superpolynomial.
Therefore, we can conclude that qao is superpolyno-

mial for α = 0.5. In Figs. 3 and 4, we show similar plots
for α = 0.4 and 0.3 respectively.
Varying α, we do the same procedure, sweeping

through a range of n from 100 to 5000 with c = 1. The
second derivative of these log-log residuals can be used
to estimate the curvature of those residuals (i.e. whether
they are concave up or down), and these second deriva-
tives are plotted in Fig. 5. This will tell us just what the
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second order correction to our fit should be and therefore
will give us information on whether there is some super-
polynomial effect, but there could be higher order terms,
leading possibly even to exponentially decreasing gaps.
The residual plots in Figs. 2, 3, and 4 are all used in the
construction of Fig. 5. Since the second derivative varies
over the range of n, the second derivative is averaged and
the standard error is used as the error bars. A negative
number indicates superpolynomial running time, whereas
zero represents polynomial scaling.

The curvature in Fig. 5 becomes negative by more than
one error bar starting at α = 0.34, which indicates that
the quantum adiabatic algorithm will undergo a transi-
tion from polynomial to exponential scaling somewhere
between α = 0.33 and 0.34.

It is a folklore result [17] by Goldstone that as n grows
for a barrier with height and width proportional to nα,
the spectral gap decreases asymptotically as:

gmin =











constant if α < 1
4

1/polynomial(n) if 1
4 < α < 1

3

1/exponential(n) if 1
3 < α

(10)

Hence we expect a transition from polynomial to expo-
nentially small gaps to occur when α = 1/3. The exis-
tence of constant scaling for α < 1/4 has been proven
rigorously by Reichardt [3]. More recently, the exponen-
tial scaling region for α > 1/3 was proven by Kong and
Crosson [16], and we [18] proved the n dependence of the
gap in the polynomial scaling region between α > 1/4
and α < 1/3. The cutoffs in Eq. 10 mesh exactly with
our numerical results for when the gap is polynomial ver-
sus when it transitions to superpolynomial behavior.

Our numerical results are still useful in their own rights
since our qmc calculations will be accessing finite n val-
ues and it is important to compare the qmc results with
equivalent gap results, and we need these results to be
aware of any possible small n phenomena.

Additional numerical results indicate that the large n
scaling behavior in Fig. 5 does not hold for smaller n
when c is large. For instance Fig. 3 does display the
large n superpolynomial behavior, but Fig. 6 does not.
In Fig. 6, if we consider just the largest n, there are
indications that the residuals are becoming concave down
at the end, indicating that the superpolynomial scaling
is starting at the end of the n range we are looking at.

The computational limits of our qmc algorithm and
computing facility mean that some of the qmc simula-
tions in this article will be at lower n where the large n
scaling behavior is not yet dominant. In cases where we
can access the large n scaling behavior, such as α = 0.4
and c = 1 in Fig. 3, we will mention so in subsequent
analysis. Largely, we will be comparing qmc running
times with g−2

min directly so that we can see if qmc run-
ning time scales polynomially with qao running time.
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FIG. 6: gmin vs. n for barrier size 2n0.4: The best fit linear
regression to the log-log data has residuals that curve upwards
indicating polynomial or subpolynomial decrease with n. At
the end of the n range, the residuals begin to curve down
again, indicating the beginning of the superpolynomial region
indicated by Figs. 5 and 3.

IV. PATH-INTEGRAL QUANTUM MONTE

CARLO

The path-integral qmc algorithm [19] is a method of
simulating a quantum mechanical system at finite inverse
temperature β. The procedure uses Trotter expansion to
take an n qubit quantum system to a classical system of
n bits evolving in a discretized “imaginary time” dimen-
sion. These time evolving states can then be treated as
states in a Monte Carlo simulation that samples possible
paths of the system.
The Monte Carlo algorithm then picks paths with

probability proportional to their Boltzmann weights, so
from these states, an expectation value for the ground
state energy can be obtained. We run the Monte Carlo
algorithm for fixed s until we reach the ground state at
that s value and then transition to a new s. This so
called annealing schedule captures the same adiabaticity
that makes qao so powerful.

A. Trotter Expansion

To start, we take the partition function at finite inverse
temperature β and Trotter expand it into T “time”-slices

Z = Tr
{

e−βĤ
}

(11)

= lim
T→∞

∑

x(0),...,x(T−1)

[

T−1
∏

τ=0

〈x(τ)|e− β

T
Ĥ |x(τ+1)〉

]

,

where the sums go over each x(τ) ∈ {0, 1}n. In order
to be in the ground state, the temperature needs to be
low, which means high β, but T also needs to be much



6

greater than β in order for the Trotter approximation to
work well. In practice, we will take β = 32 and T ∝ n
for reasons that will be discussed in subsection IVB. We
also have periodic boundary conditions x(0) = x(T ). The
goal is to have the operators act on these |x〉 basis states
so that we can get a partition function in terms of c-
numbers. Each of the T bases corresponds to a different
imaginary “time” slice of the system, so we are transform-
ing our n qubit system into an n × T lattice of classical
bits with interactions between adjacent time slices.

B. Exponential Approximation

The Hamiltonian includes terms diagonal in the com-
putational basis, which we will call Ĥd, and off-diagonal
terms, which we will call Ĥo. The goal is to separate
out these terms so that each operator can act on its own
eigenbasis. There are two approximations that can be
used here: either a linear approximation or an exponen-
tial approximation for β/T → 0:

e−
β

T
(Ĥd+Ĥo) = 1− β

T
(Ĥd + Ĥo) +O((β/T )2) (12a)

e−
β

T
(Ĥd+Ĥo) = e−

β

T
Ĥde−

β

T
Ĥo +O((β/T )2). (12b)

To first order these are both the same, but the additional
terms in the exponential change the algorithm signifi-
cantly. The linear approximation only includes one copy
of the off-diagonal Hamiltonian, so adjacent Trotter time
slices would differ by at most a single bit. Single bit flips
between adjacent sites lend a nice sense of continuity to
the time dimension, but they necessitate larger T . The
off-diagonal part of the Hamiltonian manifests itself in
the simulation as bit flips between adjacent time-slices,
so in order to get enough bit flips in the linear approxima-
tion, T must be larger, whereas the exponential approx-
imation, with multiple adjacent bit flips, can be more
compact.
In Fye [20], there is a discussion of these two approxi-

mation methods where they find that for local Hamilto-
nians the exponential approximation is more robust and
can be used with an n-independent T . The linear approx-
imation requires T to increase with increasing n, making
it less desirable. Our Hamiltonian relies on the Hamming
Weight, which is a non-local quantity, so these results do
not hold perfectly. We found that the exponential ap-
proximation did require T to have some dependence on
n; however, numerically, we found that dependence to be
much smaller than the dependence of the linear approx-
imation. Therefore, we use the exponential approxima-
tion in this article.
Eventually, we will want to interpret the product of

these exponentials as a Boltzmann factor or probability
for the given n×T configuration of the system. In order
to do this, the Boltzmann factors must be positive. In
order to ensure that our approximated exponentials re-
main positive, the Hamiltonian must be one with “no sign

problem.” This means that all the off-diagonal terms in
the Hamiltonian must be non-positive. To see why, con-
sider Eq. 12a; if the off-diagonal Hamiltonian contained
negative terms, then this operator would lead to negative
terms if it were between non-identical states. This same
logic is true in Eq. 12b. Our Hamiltonian has no sign
problem, so we are free to use these methods.

C. Final Partition Function

For an in depth derivation of the partition function
see Appendix A. Here, we will just cite the resulting
partition function

Z = lim
T→∞

∑

x(0),...,x(T−1)

[

T−1
∏

τ=0

e−
β

T ((1−s)n
2 +sf(|x(τ)|)) (13)

×
n
∏

d=1

(

e
β

T

(1−s)
2 + (−1)x

(τ)
d

−x
(τ+1)
d e−

β

T

(1−s)
2

)

]

.

The first summation can be thought of as a sum over
possible states, where a state is a full configuration of
the n×T bit lattice. The expression in the square brack-
ets is the Boltzmann factor for that configuration. The
Boltzmann factors are the unnormalized probabilities for
the states, so they can be used in a Metropolis algo-
rithm to create a Monte Carlo simulation. The Quan-
tumMonte Carlo method consists of performing standard
Monte Carlo methods on this classical partition function
which can then be used to gain information about the
original quantum system (e.g. see Appendix B for how
to extract the energy from this Monte Carlo simulation).

D. Update Rules

We follow the same update rule as Crosson and Deng
[12], where we sweep through these n×T bits. One sweep
consists of n× T updates, where we go through each bit
in the lattice separately. For that bit we try flipping its
value, and then compare the Boltzmann weight of the
lattice before and after the bit-flip. The acceptance rate
of this bit flip is then equal to the ratios of the Boltzmann
factors before and after the flip. Once the sweep has gone
through every bit in the lattice, the sweep ends, and the
algorithm calculates the current ground state energy of
the entire lattice based on the results of Appendix B.
For the annealing schedule, we have a fixed ∆s = 1

100
and change how much time we spend on each s value.
The algorithm calculates the quantum mechanical en-
ergy (see Appendix B) of the system after each sweep
and moves onto the next s value when the energy gets
close enough to the true ground state energy. The algo-
rithm then starts over again at s+∆s, using the ending
configuration of the system at s as the new starting con-
figuration at s+∆s.
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FIG. 7: qmc Sweeps vs. s for barrier size 3n0.5 at n = 116:
This is averaged over 30 simulations. The spike is roughly
located at the s value where qao would undergo tunneling in
this problem. This correspondence between the qmc run-time
spike and the qao minimum gap, indicates that there may be
a similar process occurring in both algorithms.

This annealing schedule does use information that the
qmc algorithm would not have in a normal simulation
(namely the ground state energy and spectral gap), but
since our goal is to judge how long it takes to reach the
ground state rather than how long it takes the algorithm
to realize it has reached the ground state, this is appro-
priate.

The algorithm judges it is close enough to the true
ground state when the average energy over the last 100
sweeps, 〈E(s)〉100, is within 0.4 spectral gaps, g(s), of the
true ground state energy, EGS(s):

|〈E(s)〉100 − EGS(s)|
g(s)

< 0.4 (14)

In subsequent graphs, we will report the number of
sweeps for each s value. If the algorithm has already
satisfied this condition after the first 100 steps, it ex-
trapolates back to when it first met the update condition
and report that as the number of sweeps.

In Fig. 7, the results are shown for simulations using
a barrier of size 3n0.5, and n = 116. The spike in run-
time here corresponds roughly to s∗, the location of the
minimum spectral gap, and this correspondence becomes
closer at larger n. This spike in difficulty for the qmc

algorithm right at the time when qao undergoes tunnel-
ing indicates that there may be a process going on in the
qmc algorithm that is analogous to qao tunneling.

In the next section when we report the run-time of
the qmc simulations, we will report the total number of
sweeps taken between s = 0.3 and s = 0.5. For all of
our simulations, this s range captures the run-time spike
and some of the surrounding area while ignoring any low
s initialization artifacts or high s tailing-off.
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FIG. 8: qmc Sweeps vs. gmin: This lists all our data together;
a further breakdown of this data is available in Figs. 9, 10,
and 11. Notice that there is an obvious strong correlation be-
tween required and sufficient qmc sweeps and the gap. More
analysis, specific to the different α values can be found in
Figs. 9, 10.

V. NUMERICAL MONTE CARLO RESULTS

In this section, we will explore a few different values
of the barrier scaling power, α, and the width scaling
coefficient, c, using the qmc methods developed in the
previous section. For most of the simulations considered
here our number of Trotter slices is related to the number
of qubits through T = 4n. In reporting qmc times, we
will report the number of sweeps each simulation took
while going through the critical s region. There are n ·T
Metropolis steps per sweep, so the actual run-time of
the algorithm depends polynomially on the number of
sweeps.
In Fig. 8, we show the full results of our qmc simu-

lations, comparing the run-times of these algorithms to
the corresponding g−2

min. There is a strong correlation be-
tween these two quantities, which at least indicates some
relation. The following sections will breakdown this data
by α value and analyze it independently.

A. Barriers Proportional to n
0.5

To start, we will focus on α = 0.5. Based on Fig. 5,
this size of barrier has qao run-times that scale super-
polynomially with n. Practically, we are able to run qmc

simulations with n ranging up to ∼ 220 qubits. For this
regime of n, small n effects mask the superpolynomial
scaling of the gap for c = 3 but not for c = 2.
Note that c = 2 leads to smaller spectral gaps than

c = 3 at fixed n. From trial and error, we found that the
smaller gap sizes mean that the Trotter approximation
needs to be better in order to get sensible results. Thus,
for c = 2, T = 16n rather than the usual T = 4n. This
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FIG. 9: qmc Sweeps vs. gmin for barrier size cn0.5: The num-
ber of sweeps is increasing faster than a power law with the
inverse gap size, indicating the our specific qmc algorithm is
worse than qao in this case. For c = 2 (green plus), n ranges
from 84 to 172, and for c = 3 (blue cross), n ranges from 88
to 216.

necessity to improve the qmc for simulations with smaller
gap sizes lends significant credence to the idea that the
qmc algorithm depends heavily on the spectral gap itself.
The qmc run-time (averaged over multiple simula-

tions) as a function of g−2
min is shown in Fig. 9 Notice

that the data in this figure does not lie along a straight
line, so the qmc run-times seem to be increasing at a rate
faster than polynomially in the inverse gap. This lack of
a power law could be caused by three possible effects.
It is possible that this means the qmc algorithm does

indeed scale superpolynomially with g−2
min. An alterna-

tive is that this curvature is due to small n effects that
are still prevalent even for n in the several hundreds. Es-
pecially for c = 3 and lower n, there is overlap between
the initial s = 0 ground state distribution and the bar-
rier, which could account for the apparent deviation from
a power law here. Additionally, this curvature could be
an indication of deficiencies in our qmc implementation
specifically. As will be discussed in the next section, our
algorithm has some notable approximations and simpli-
fications that could be leading to this discrepancy.

B. Barriers Proportional to n
0.4

For α = 0.4, the qmc simulations are able to go up
to ∼ 320 qubits. In this regime of n, small n effects
mean that the gap is not superpolynomial for c = 3, 2
(see Fig. 6) but it is for c = 1 (see Fig. 3). In Fig. 10 we
have compared the qmc run-times directly to the spectral
gap. Notice that in this case, there does seem to be a
linear relationship between the log-log data. Many of
the deficiencies in our specific implementation are less
pronounced in this case than in the α = 0.5 case since the
barrier is smaller. There is less overlap between the initial
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FIG. 10: qmc Sweeps vs. gmin for barrier size cn0.4: There
appears to be a linear relationship here, indicating that qmc
performance and qao performance are polynomially related
in this region. For c = 1 (red circle), n ranges from 184 to
320, for c = 2 (green triangle), n ranges from 132 to 320, and
for c = 3 (blue square), n ranges from 116 to 224.
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FIG. 11: qmc Sweeps vs. gmin for barrier size cn0.3: There
appears to be a linear relationship here, indicating that qmc
performance and qao performance are polynomially related
in this region. For c = 1 (red diamond), n ranges from 104
to 396, for c = 2 (green pentagon), n ranges from 104 to 660,
and for c = 3 (blue triangle), n ranges from 104 to 396.

ground state and the barrier, which could also mean these
simulations suffer less from small n effects than the α =
0.5 simulations.

C. Barriers Proportional to n
0.3

Finally for α = 0.3, numerical diagonalization indi-
cates the gap decreases polynomially in n for low and
high n, no matter what c is chosen. Since the width of
the barrier does not increase often for such a low scaling
power α, the number of n accessible to the qmc sim-



9

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

N
u
m

b
er

o
f

S
w

ee
p
s

s

FIG. 12: qmc Sweeps vs. s for barrier size 3n0.3 at n = 116:
This is averaged over 30 simulations. Notice that unlike Fig. 7,
there is no noticeable spike here corresponding to the location
of the minimum gap in qao

ulations is low here. Our data is displayed in Fig. 11.
Notice that there does seem to be a linear relationship
on the log-log scale between inverse gap size and run-time
here, though it is partially masked by the dearth of data
points. However, this does seem to indicate a polynomial
relationship between qmc run-time and g−2

min.
Additionally, a plot of run-time versus s for higher

powers, such as in Fig. 7, shows a noticeable spike near
where qao has its minimum gap. For lower powers, such
as α = 0.3 as shown in Fig. 12, there is no noticeable
spike in the run-time. From our simulation results, it
seems that the distinction between spikes and no spikes
corresponds with the superpolynomial scaling cutoff we
saw in the spectral gap in Section III.

VI. CONCLUSION

First, in Section III, we numerically verified a folklore
result [17] about the relationship between n and the min-
imum gap gmin. We showed that gmin scales polynomi-
ally with n for barriers whose height and width grow like
α < 1

3 but that for α > 1
3 , the minimum gap decreases

faster than a power law. This indicates that qao can
succeed in finding the true ground state in polynomial
time only for α < 1

3 .
Our numerical results with Quantum Monte Carlo sim-

ulations show that above α = 1
3 , there is a clear slowdown

in the qmc algorithm (see Fig. 7) whose location in s
corresponds well with the location of the minimum gap
in qao. This slowdown all but disappears for lower α
(see Fig. 12) where the qmc algorithm has little trouble
overcoming the potential barrier. This is strong evidence
that there is a correlation between spectral gap and qmc

performance.
Furthermore, in Section V, we showed that there is in-

deed a correlation between gap size and qmc run-time.
For αs less than 1

3 , we see data consistent with a polyno-

mial relationship between qmc run-time and g−2
min. This

relationship is more difficult to discern for α > 1
3 with

there seeming to be either a polynomial or superpolyno-
mial relationship. The lack of a solid polynomial rela-
tionship could be due to small n effects which are more
prevalent in our simulations for higher α, or it could also
be due to inadequacies in our qmc implementation rather
than qmc algorithms in general
Most notably our algorithm keeps a fixed ∆s through-

out its annealing schedule and relies on spending more
time on each s value rather than decreasing the size of
the s step. A more advanced algorithm could also dy-
namically update s to move more slowly through problem
regions.
For the most part, our simulations also keep the num-

ber of Trotter time steps T = 4n. While T = 4n is suffi-
cient for the region of parameter space discussed in this
article, it is possible that other Trotterization divisions
would be more efficient
Of course our work can also be extended by consid-

ering different regions in parameter space of the Hamil-
tonian. The scaling of the height and width are varied
together using α in our analysis, but they can be varied
independently. Additionally, the shape of the barrier can
be made more complicated than the simple step used
here. More generally, this procedure of applying qmc

algorithms with annealing schedules can be used with
other Hamiltonians to gain insight into the relationship
between qao and classical computing.
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Appendix A: Derivation of Partition Function

We will start with Eq. 11, and our goal will be to de-
rive Eq. 13 as well as an estimator for our quantum
mechanical ground state energy. Our first step will in-
volve inserting our exponential approximation scheme so
that

Z = lim
T→∞

∑

x(0),...,x(T−1)

[

T−1
∏

τ=0

〈x(τ)|e− β

T
Ĥde−

β

T
Ĥo |x(τ+1)〉

]

,

(A1)

where the sums go over each x(τ) ∈ {0, 1}n.
Here Ĥo and Ĥd are the off-diagonal and diagonal parts

of the Hamiltonian, given by

Ĥd ≡
∑

x∈{0,1}n

[

(1− s)
n

2
+ sf(|x|)

]

|x〉〈x|

Ĥo ≡
∑

〈x,y〉

[

− (1− s)

2

]

|x〉〈y|.

The sum in Ĥo is over nearest neighbor sites (i.e. bit

strings x and y that differ by one bit flip). Since Ĥd is
diagonal in the computational basis, we can just have
it act on our basis states pulling out the eigenvalues
Hd(x) = (1 − s)n2 + sf(|x|).

Z = lim
T→∞

∑

x(0),...,x(T−1)

[

T−1
∏

τ=0

e−
β

T
Hd(x

(τ))

]

(A2)

×
[

T−1
∏

τ=0

〈x(τ)|e− β
T
Ĥo |x(τ+1)〉

]

.

Next, we will claim that there is an orthonormal basis
|k(τ)〉 that is the eigenbasis for Ĥo, whose eigenvalues are
Ho(k

(τ)). We can insert a complete set of these states at
ever time slice to get

Z = lim
T→∞





∑

x(0),...,x(T−1)

∑

k(0),...,k(T−1)



 (A3)

[

T−1
∏

τ=0

e−
β

T
Hd(x

(τ))e−
β

T
Ho(k

(τ))〈x(τ)|k(τ)〉〈k(τ)|x(τ+1)〉
]

.

To find these |k〉 states, we just need to diagonalize

Ĥo. This operator can be represented by a translationally
invariant matrix on an n dimensional hypercubic lattice
(where each dimension is two sites long) with periodic
boundary conditions and nearest neighbor interactions.
These properties mean that the eigenstates of Ĥo are
simply the Brillouin Zone lattice sites. If we represent
each Brillouin Zone lattice site using k ∈ {0, 1}n, then
these lattice sites can be represented in the |x〉 basis by

|k〉 =
∑

x∈{0,1}n

eiπ
~k·~x|x〉. (A4)

Using standard Brillouin Zone methods for translation-
ally invariant matrices, we can work out that the eigen-
values of our off-diagonal Hamiltonian are

Ho(k) = − (1− s)

2

n
∑

d=1

(1− 2kd). (A5)

Furthermore, the overlap between |x〉 and |k〉 states is
given by

〈x|k〉 = (−1)
~k·~x. (A6)

Inserting Eqs. A6 and A5 back into our partition func-
tion gives us

Z = lim
T→∞

∑

x(0),...,x(T−1)

[

T−1
∏

τ=0

e−
β
T
Hd(x

(τ))

]

(A7)

×
[

T−1
∏

τ=0

∑

k(τ)

n
∏

d=1

e
β
T

(1−s)
2 (1−2k

(τ)
d

)(−1)k
(τ)
d

(x
(τ)
d

−x
(τ+1)
d

)

]

.

We can rewrite
∑

k(τ)

∏n
d=1 → ∏n

d=1

∑

k
(τ)
d

=0,1
. Focusing

on just the important part and dropping the τ labels in
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favor of labeling the two bit strings by x and y, we get

n
∏

d=1

∑

kd=0,1

e
β

T

(1−s)
2 (1−2kd)(−1)kd(xd−yd) (A8)

=
n
∏

d=1

[

e
β

T

(1−s)
2 + (−1)xd−yde−

β

T

(1−s)
2

]

.

Note that we have now eliminated the k variables entirely.
Inserting this simplification lets us exactly recover Eq. 13:

Z = lim
T→∞

∑

x(0),...,x(T−1)

[

T−1
∏

τ=0

e−
β

T ((1−s)n
2 +sf(|x(τ)|)) (A9)

×
n
∏

d=1

(

e
β

T

(1−s)
2 + (−1)x

(τ)
d

−x
(τ+1)
d e−

β

T

(1−s)
2

)

]

.

Appendix B: Derivation of Energy Estimators

Next, we need to look at what the expectation value of
a quantum operator is in the Trotter expanded formal-
ism. By definition, we have

〈

Ô
〉

=
1

Z
Tr

{

Ôe−βĤ
}

. (B1)

When we do the Trotter expansion we do not and
should not expand Ô as we do the exponential. In fact af-
ter the Trotter expansion, we will still only have one copy
of Ô still, so the original copy of Ô will just be with one
of the time slices. For convenience, we will put it with
the very first time slice, so that after Trotterization, we
are looking at:

〈

Ô
〉

= lim
T→∞

1

Z

∑

x(0),...,x(T−1)

〈x(T−1)|e− β

T
Ĥde−

β

T
ĤoÔ|x(0)〉

×
[

T−2
∏

τ=0

〈x(τ)|e− β
T
Ĥde−

β
T
Ĥo |x(τ+1)〉

]

,

〈

Ô
〉

= lim
T→∞

1

Z

∑

x(0),...,x(T−1)

〈x(T−1)|e− β

T
Ĥde−

β

T
ĤoÔ|x(0)〉

〈x(T−1)|e− β

T
Ĥde−

β

T
Ĥo |x(0)〉

×
[

T−1
∏

τ=0

〈x(τ)|e− β

T
Ĥde−

β

T
Ĥo |x(τ+1)〉

]

, (B2)

Next consider the probability of obtaining a specific
configuration, {x(τ)}, of our n× T lattice of bits:

p
({

x(τ)
})

≡ 1

Z

[

T−1
∏

τ=0

〈x(τ)|e− β

T
Ĥde−

β

T
Ĥo |x(τ+1)〉

]

(B3)
Using Eq. B3, the average becomes

〈

Ô
〉

= lim
T→∞

∑

x(0),...,x(T−1)

p
({

x(τ)
})

(B4)

× 〈x(T−1)|e− β

T
Ĥde−

β

T
ĤoÔ|x(0)〉

〈x(T−1)|e− β

T
Ĥde−

β

T
Ĥo |x(0)〉

.

The qmc method will specifically use the average en-

ergy:
〈

Ĥ
〉

=
〈

Ĥd

〉

+
〈

Ĥo

〉

. Starting with
〈

Ĥd

〉

, the

operator is already acting on its eigenstates, so the aver-
age becomes

〈

Ĥd

〉

= lim
T→∞

∑

x(0),...,x(T−1)

[

Hd(x
(0))p

({

x(τ)
})]

. (B5)

In actual simulations, the estimator Hd(x
(0)) →

1
T

∑T−1
τ=0 Hd(x

(τ)) is used so that information from the
entire time dimension can enter the statistics.

Moving onto
〈

Ĥo

〉

and focusing on just the relevant

piece we have (replacing x(T−1) → x and x(0) → y for
notational convenience):

〈x|e− β

T
Ĥde−

β

T
ĤoĤo|y〉

〈x|e− β
T
Ĥde−

β
T
Ĥo |y〉

,

we can insert k resolutions of the the identity in the top
and bottom to get

∑

k∈{0,1}n e−
β

T
Ho(k)Ho(k)〈x|k〉〈k|y〉

∑

k′∈{0,1}n e−
β

T
Ho(k′)〈x|k′〉〈k′|y〉

=
− (1−s)

2

∑

k∈{0,1}n e
β

T

(1−s)
2

∑n
d=1(1−2kd)

∑n
p=1(1− 2kp)(−1)k·(x−y)

∑

k′∈{0,1}n e
β

T

(1−s)
2

∑
n
d=1(1−2k′

d
)(−1)k′·(x−y)

(B6)

Next, we pull out what we can and switch
∑

k∈{0,1}n

∏n
d=1 → ∏n

d=1

∑

kd=0,1:
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In a given p element, the term in the product will be
the same in the numerator and denominator if d 6= p, so
the terms in the product cancel except in the case where
d = p:

− (1− s)

2

n
∑

p=1

e
β
T

(1−s)
2 − (−1)(xp−yp)e−

β
T

(1−s)
2

e
β

T

(1−s)
2 + (−1)(xp−yp)e−

β

T

(1−s)
2

(B7)

Inserting Eq. B7 into the off-diagonal energy estimator

gives

〈

Ĥo

〉

= lim
T→∞

∑

x(0),...,x(T−1)

p
({

x(τ)
})

(B8)

×
[

− (1− s)

2

n
∑

p=1

e
β

T

(1−s)
2 − (−1)(x

(0)
p −x(T−1)

p )e−
β

T

(1−s)
2

e
β

T

(1−s)
2 + (−1)(x

(0)
p −x

(T−1)
p )e−

β

T

(1−s)
2

]

Again, we typically average over the result for the dif-
ferent time slices in the actual simulation.


