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Generalizations of the classic Bell inequality to higher dimensional quantum systems known as
qudits are reputed to exhibit a higher degree of robustness to noise, but such claims are based on
one particular noise model. We analyze the violation of the Collins-Gisin-Linden-Massar-Popescu
inequality subject to more realistic noise sources and their scaling with dimension. This analysis
is inspired by potential Bell inequality experiments with superconducting resonator-based qudits.
We find that the robustness of the inequality to noise generally decreases with increasing qudit
dimension.
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I. INTRODUCTION

A Bell inequality [1] experiment consists of n parties
who share an entangled state of n (or more) particles.
Each party chooses to perform one of m measurements,
with each measurement producing one of d outcomes.
By repeating this round multiple times, the probabilities
for the various joint outcomes can be estimated. A Bell
inequality for this scenario is a relationship that these
probabilities must satisfy, if they arise from a local real-
istic model. The general structure of these inequalities
has been studied intensively since Bell’s original argu-
ment [2].

The most famous form of the Bell inequality is the
Clauser-Horne-Shimony-Holt (CHSH) inequality [3] for
n = 2 parties (e.g. Alice and Bob), each party perform-
ing one of m = 2 measurement choices, with each mea-
surement registering one of d = 2 outcomes. In terms of
the joint probabilities, the CHSH inequality reads

p(A1 = B1)−p(A1 = B2)+p(A2 = B1)+p(A2 = B2) ≤ 2,
(1)

where the measurement settings are labeled by 1 and 2
for Alice’s (or Bob’s) choice of measurement, with out-
comes A1 and A2 for Alice (and B1 and B2 for Bob),
and, in a slight abuse of notation, the joint probabil-
ity p(A0 = B0) indicates the probability that Alice and
Bob’s measurement outcomes are identical. For certain
entangled states and measurement choices, quantum me-
chanics predicts, and experiments confirm, a violation of
this inequality [1].

A common experimental procedure, illustrated in Fig.
1, replaces the alternative measurement settings by a uni-
tary transformation chosen by the parties and performed
just before a fixed measurement. This unitary must be
chosen and performed by one party sufficiently quickly
to ensure that no information can propagate to the other
party. If this cannot be done, the experiment is subject to
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FIG. 1: A general framework for a Bell inequality experiment
with n = 2 parties. A source of entanglement is shared to
Alice and Bob, who choose to rotate their part of the joint
quantum state by unitaries UA,a and UB,b, respectively. The
measurement outcomes MA and MB are then recorded, com-
piled, and compared against the inequality.

the so-called locality loophole, for which the derivation of
Eq. (1) fails. Another requirement is that the measure-
ments be sufficiently accurate so that the probabilities
entering the inequality can be reliably estimated. If this
is not the case, the experiment is subject to the so-called
detection loophole. Until very recently, experiments with
photons typically close the locality loophole [4, 5], but
are subject to the detection loophole (in the guise of
the fair-sampling assumption, but see recent progress
[6, 7]). Experiments with matter qubits (atoms [8], ions
[9, 10], solid-state spin qubits [11, 12] and superconduct-
ing qubits [13, 14]) typically close the detection loophole,
but are subject to the locality loophole. Only recently
have experiments begun to close these loopholes [15–17];
such experiments represent landmark tests of quantum
mechanics.

In order to further test quantum mechanics and achieve
a better understanding of entanglement and nonlocal-
ity, there have been many studies of generalized Bell in-
equalites [1]. These include the Mermin inequality [18]
for multiple qubits (n > 2), the Collins-Gisin inequality
[19] for multiple measurements (m > 2), and the Collins-
Gisin-Linden-Massar-Popescu (CGLMP) inequality [20]
for higher-dimensional systems known as qudits (d > 2).
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A recent approach [21] to the Collins-Gisin inequality for
entangled qudits (with n = 2 and m = d > 2) exhibits
the potential to reduce the requirements to close the de-
tection loophole.

In this paper we focus on understanding the CGLMP
inequality (for n = m = 2 and d > 2), which takes the
form

Id =

bd/2c−1∑
k=0

(
1− 2k

d− 1

)
[P(k)− P(−k − 1)] ≤ 2, (2)

where

P(k) = P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+P (A2 = B2 + k) + P (B2 = A1 + k). (3)

Here the joint probabilities are defined for outcomesAa =
0, 1, . . . , d − 1, and the addition is performed modulo d.
These can expressed as

P (Aa = Bb+k) =

d−1∑
j=0

P (Aa = j, Bb = j+k mod d). (4)

We have also studied a closely related inequality proposed
by Zohren and Gill [22]

P (A2 < B2) + P (B2 < A1) + P (A1 < B1)

+P (B1 ≤ A2) ≥ 1. (5)

These two inequalities have the remarkable property that
the violation increases with increasing d. Alternatively,
if the initial state is subject to depolarizing noise, the
amount of noise that removes the entanglement, and
hence the potential to violate the inequality, increases
with the dimension [23]. In this sense, these higher-
dimensional Bell inequalities exhibit a surprising robust-
ness to noise, and may be useful when exploring advanced
tests of quantum systems.

A recent experiment tested the CGMLP inequality us-
ing orbital angular momentum (OAM) states of light [24],
but did not find the enhanced violation with dimension.
In fact, they found that the violation ceased for dimen-
sions higher than d = 12. This fact strongly suggests that
the robustness of the inequality can be compromised by
the actual noise subject to the system. Previous work
on this topic has focused only on a simple form of de-
polarizing noise [20, 23], and its impact on the detector
efficiency needed to observe a violation of the inequality
[25]. To account for the behavior seen in the recent ex-
periment, and to predict the possible violations in other
experiments, more realistic noise models are necessary.

In general, noise can affect all of the stages of the
experiment: entangled-state preparation, state rotation,
and state measurement. The noise from each stage must
be analyzed to determine the robustness of the inequality.
In this paper we examine a general framework for testing
the CGLMP inequality with qudits, analyze the poten-
tial complexity of each stage of the experiment, and eval-
uate the impact of different types of noise (depolarizing,
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FIG. 2: A quantum circuit for a Bell inequality experiment,
consisting of entangled-state preparation, single-qudit rota-
tions, and qudit-state measurement. In the first stage, two
qudits, initially in the |00〉 state, are acted on by generalized
Hadamard gates H, a controlled-phase gate (with θ = 2π/d)
to prepared a maximally entangled two-qudit state. The
single-qudit rotations Ua and Ub determine the two measure-
ment bases (depending on the choices of Alice and Bob), while
the actual measurement is in a fixed qudit basis.

dephasing, and amplitude damping) on the inequality.
Our work is inspired by theoretical proposals to use the
quantum states of superconducting resonators as qudits
[26–28]; such systems have the potential for long-distance
entanglement through microwave photons [29, 30]. How-
ever, our analysis is intended to be general enough to
guide experiments with other potential matter qudit sys-
tems, and our results may have implications for photonic
qudits as well. Our analysis indicates that the CGLMP
inequality does not generally exhibit the special robust-
ness to noise claimed in previous work.

This paper is organized as follows. Section II describes
a general Bell inequality experiment with ideal qudits,
analyzing how state preparation, rotation, and measure-
ment can be implemented for a general qudit system.
Section III analyzes the potential inequality violation
subject to depolarizing, amplitude-damping, and dephas-
ing noise on the qudits during the full experimental se-
quence. In Section IV we conclude and discuss outstand-
ing questions. An Appendix details how our amplitude-
damping noise model compares with full simulations us-
ing the time-dependent Schrödinger equation.

II. BELL INEQUALITY EXPERIMENT WITH
IDEAL QUDITS

In this section we will describe an analysis of a bipartite
(n = 2) Bell inequality experiment, focusing on the gen-
eral structure of entangled-state preparation, single-qudit
rotations, and qudit-state measurement. A quantum cir-
cuit for this process is shown in Fig. 2. We will analyze
each component of this circuit, drawing inspiration from
recent theoretical work on the control of superconduct-
ing resonators. However, we expect our results can be
applied to alternative qudit implementations.
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A. Entangled-State Preparation

The first important stage of a Bell inequality experi-
ment is the production of entangled states of two systems.
As shown in Fig. 2, this can be accomplished by using
a generalized Hadamard or DFT (for Discrete-Fourier-
Transform) operation on each qudit and a controlled-
phase gate between the qudits.

The generalized Hadamard gate is the discrete Fourier
transform (DFT) matrix with matrix elements Hj,k =

ωjk/
√
d, where ω = e2πi/d. For d = 4, this has the

matrix form

H(d = 4) = DFT4 =
1√
4

 1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 . (6)

In general this matrix has d independent elements (and
d2 total elements), so an analysis of control on qudits
suggests that implementing a general qudit Hadamard
will require a number of elementary operations that is a
polynomial in d [31]; more details can be found in the
Appendix.

The controlled-phase gate is a two-qudit gate that im-
plements the transformation

CR(θ)|j, k〉 = e−i(jk)θ|j, k〉. (7)

This is a natural generalization of the two-qubit con-
trolled phase gate, and can also be implemented in a
time polynomial in d [31].

The combination of these operations in the preparation
stage of Fig. 2 performs the transformation

|Ψ〉 = (H ⊗ I)CR(2π/d)(H ⊗H)|0, 0〉

= (I ⊗H)CR(2π/d)
1

d

d−1∑
j,k=0

|j, k〉

= (I ⊗H)
1

d

d−1∑
j,k=0

e−i2π(jk)/d|j, k〉

=
1

d3/2

d−1∑
j,k,`=0

e−i2πk(j−`)/d|j, `〉

=
1√
d

∑
j

|j, j〉. (8)

This maximally entangled two-qudit state will be used in
the Bell inequality measurements for Alice and Bob.

We note that there are alternative approaches to gen-
erating the initially entangled state for superconducting
resonators, which typically scale linearly in the qudit di-
mension [32]. Qudit operations can also be optimized to
scale linearly with qudit dimension [33]. We optimisti-
cally conclude that the state-preparation stage can be
performed in a timescale that is linear in d.

B. Single-Qudit Rotations

After Alice and Bob have chosen their measurement
basis (a or b), they will adjust their measurement by
rotating their half of the joint-qudit state by one of the
unitary operators UA,a or UB,b. These have the matrix
elements

[UA,a]j,k =
1√
d
ei2π(jk)/deiαaj (9)

and

[UB,b]j,k =
1√
d
e−i2π(jk)/deiβbj , (10)

where α1 = 0, α2 = 1/2, β1 = 1/4, and β2 = −1/4.
These operations involve the discrete Fourier transform
(or its inverse), along with diagonal phases. These again
can be performed in a time polynomial in d, which we
again optimistically take as linear in the qudit dimension
[33]; a specific implementation that is quadratic in d is
described in the Appendix.

C. State Measurement

In order to close both the locality and detection loop-
holes, one wants a fast and efficient measurement of the
qudit states. For some qudit implementations, such as
hyperfine states of atoms or multilevel superconducting
devices, one can implement a direct d outcome measure-
ment. For qubit-resonator systems in trapped ion, cavity,
or circuit-QED systems, one often implements an indi-
rect measurement coupling the resonator to one or more
qubits. We consider a state measurement approach that
maps the resonator state of d = 2n dimensions onto n
qubits, inspired by the discussion in Chapter 6 of [34].
After this mapping, one can measure the state bit by bit.
This allows a single-shot measurement of the qudit state.

The measurement scheme can be represented by a
quantum circuit, illustrated in Fig. 3, composed of single-
qubit Hadamard gates, two-qubit controlled-phase gates,
and a special qubit-resonator controlled-phase gate. This
last gate acts on a qubit-resonator state as follows:

|x〉qubit ⊗ |y〉res → e−iθxy|x〉qubit ⊗ |y〉res. (11)

This gate can be implemented using the natural evolu-
tion of a qubit-resonator system in the dispersive regime
[27], resonant qubit-resonator logic operations [35], or
other methods [28, 36]. In brief, the measurement
circuit performs the mapping by sequentially correlat-
ing the resonator state |y〉 with a register of qubits
({x1, x2, . . . , xn}). Using a bit string {y1, . . . , yn} to la-
bel the resonator state |y〉, with the (big-endian) binary
representation

y = y12n−1 + y22n−2 + · · ·+ yn−12 + yn, (12)
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FIG. 3: A measurement circuit to map the quantum state of a resonator (of dimension d = 2n) onto the state of n qubits. This
circuit is composed of 2n single-qubit Hadamard operations, n qubit-resonator controlled-phase gates (with phases indicated in
the circular gates on the resonator), and n(n+1)/2 qubit-qubit controlled-phase gates (with phases indicated in the rectangular
gates on the qubits).

the circuit performs the mapping

|00 · · · 0〉qubits ⊗ |y〉res → |y1y2 · · · yn〉qubits ⊗ |y〉res. (13)

Then, measurement of the qubits will provide a bit-by-bit
measurement of the resonator state |y〉.

We now analyze the measurement circuit of Fig. 3 in
more detail. The qubits are initially prepared in an equal
superposition state (by Hadamard gates):

|Ψ0〉 =
1

2n/2

∑
{x1,...,xn},y

cy|x1 · · ·xn〉 ⊗ |y〉 (14)

The first qubit-resonator controlled-phase gate produces
the state

1

2n/2

∑
{x1,...,xn},y

cy(−1)xny|x1 · · ·xn〉 ⊗ |y〉. (15)

Using the binary representation, we have

(−1)xny = (−1)xny12n−1

(−1)xny22n−2

· · · (−1)xnyn

= (−1)xnyn . (16)

A subsequent Hadamard on qubit n yields

1

2(n+1)/2

∑
{x1,...,xn,z},y

cy(−1)xnyn+xnz|x1 · · ·xn−1z〉 ⊗ |y〉.

(17)
Performing the sums over xn and z, using the fact that

1∑
xn=0

(−1)xnyn+xnz = 2δyn,z, (18)

we find

|Ψ1〉 =
1

2(n−1)/2

∑
{x1,...,xn−1},y

cy|x1 · · ·xn−1yn〉 ⊗ |y〉.

(19)

The next qubit-resonator phase gate produces the con-
trolled phase(

eiπ/2
)xn−1y

= (−1)
xn−1yn−1 (i)xn−1yn , (20)

where we have used an argument similar to Eq. (16).
The final phase can be eliminated by a qubit-qubit phase
gate, while a subsequent Hadamard on qubit n−1 yields

1

2n/2

∑
{x1,...,xn−1,z},y

cy(−1)xn−1yn−1+xn−1z|x1 · · ·xn−2zyn〉⊗|y〉.

(21)
Performing the sums over xn−1 and z, using the corre-
sponding form of Eq. (18), the second stage yields

|Ψ2〉 =
1

2(n−2)/2

∑
{x1,...,xn−2},y

cy|x1 · · ·xn−2yn−1yn〉 ⊗ |y〉.

(22)

After k stages we will find

|Ψk〉 =
1

2(n−k)/2
×∑

{x1,...,xn−k},y

cy|x1 · · ·xn−kyn−k+1 · · · yn〉 ⊗ |y〉

(23)

The next qubit-resonator gate produces the controlled
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phase(
eiπ/2

k
)xn−ky

= (−1)
xn−kyn−k ×(

eiπ/2
)xn−kyn−k+1

· · ·
(
eiπ/2

k
)xn−kyn

.

(24)

Eliminating all of the trailing controlled phases by qubit-
qubit phase gates, performing a Hadamard gate on qubit
n− k, and evaluating the summation over xn−k yields

|Ψk+1〉 =
1

2(n−k−1)/2
×∑

{x1,...,xn−k−1},y

cy|x1 · · ·xn−k−1yn−k · · · yn〉 ⊗ |y〉.

(25)

Repeating until k = n, we finally obtain

|Ψn〉 =
∑
y

cy|y1 · · · yn〉 ⊗ |y〉. (26)

A measurement of the n qubits will produce the outcome
(y1, y2, . . . , yn) with probability |cy|2. This circuit uses
n qubit-resonator gates, 2n Hadamard gates, and n(n−
1)/2 qubit-qubit controlled-phase gates. Thus, we see
that this circuit requires a timescale of order (log2 d)2.

III. BELL INEQUALITY EXPERIMENT WITH
NOISY QUDITS

The preceding analysis shows that, in general, one can
expect that the state preparation, rotation, and measure-
ment stages of a Bell inequality experiment will each re-
quire a number of operations, such as quantum gates,
that depend on the qudit dimension. If these operations
are subject to noise, then the resulting experiment will
be subject to noise that scales with the qudit dimension.
How that scaling affects the inequality is the subject of
this section.

While we will analyze idealized models of noisy qudits,
our results can be understood in physical terms. Each
fundamental quantum gate will take some time, during
which the quantum state can be subject to fluctuating
fields, lose energy to the environment, or lose quantum
information in some other fashion. Each of these noise
processes will affect the quantum state of the system,
in terms of its density matrix. If the total time for the
experiment scales with the qudit dimension, the result-
ing density matrix will be subject to a correspondingly
increased amount of noise.

A detailed analysis of this process would require mod-
eling the qudits’ Hamiltonian and its coupling to external
fields and the environment. Such an analysis is described
in the Appendix. However, to understand the scaling
with dimension, we can simplify our analysis to consider
a single parameter figure-of-merit for each step of the

experiment, such as the gate fidelity, and look at three
types of noise: depolarizing noise, amplitude damping,
and dephasing noise [37]. Using these models, we allow
the strength of the noise to vary with the qudit dimension
in the following way.

We take the initial density matrix ρ0 = |Ψ〉〈Ψ|, with
|Ψ〉 given by Eq. (8), and iterate the appropriate trace-
preserving map

ρn+1 =
∑
m

EmρnE
†
m, (27)

where the error operators Em depend on the type of
noise, to be defined below, and are parametrized by a
single number p. This map is iterated N times, where
N is proportional to the number of fundamental steps
during the preparation and rotation stages of the Bell
circuit of Fig. 2 and p is proportional to the fidelity of
each step. The final density matrix, after N applications
of the noise map and subject to the measurement choices
a and b, is given by

ρa,b = (UA,a ⊗ UB,b)ρN (UA,a ⊗ UB,b)†. (28)

The probabilities of the measurement outcomes are then

P (Aa = j, Bb = k) = 〈j, k|ρa,b|j, k〉. (29)

As discussed above, the number of steps required to
prepare the initial state and rotate the measurement is
taken to be linear in d, while the single-shot measurement
circuit scales with (log d)2. For the dimensions d ≤ 16
considered below, there is little difference between linear
and logarithmic scaling. Thus, to understand how scaling
affects the Bell parameter Id, we set N = d. For com-
parison, we will also consider N = 1, similar to previous
work.

A. Depolarizing Noise

Depolarizing noise simulates the interaction of a sys-
tem with a high temperature environment. With each
iteration, the system has probability 1 − p of becoming
depolarized, i.e. replaced by the completely mixed state,
so that

ρn+1 = pρn + (1− p) I
d2
, (30)

while the system has probability p of being unaffected or
subject to no error. Note that for this map, smaller values
p indicate stronger noise (this convention is chosen to
match [20]). As described above, we allow this map to be
repeated for a variable number of times before calculating
the Bell parameter.

The value of the generalized Bell parameter Id(p) is
shown in Fig. 4, as a function of d and for several val-
ues of the (non-error) probability p. From these results,
we can make several observations. First, for p = 1, we
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FIG. 4: Generalized Bell parameter Id as a function of qudit dimension d for two types of depolarizing noise and various noise
strengths. (a) Single application of the depolarizing operator, with (non-error) probabilities of 1, 0.99, 0.95, and 0.9, from
top to bottom. (b) Repeated application of the depolarizing operator with the number of applications is linear with the qudit
dimension, with (non-error) probabilities of 1, 0.99, 0.95, and 0.9, from top to bottom.

see that the Bell parameter increases with dimension, as
found previously. In fact, we find

Id(p = 1) ≈ 2.97

(
1− 1

10d

)
. (31)

Second, for p < 1 and N = 1, the Bell parameter again
increases with dimension, as seen in Fig. 4(a). However,
the overall violation does decrease with decreasing p. In
fact, it can be shown that, for this type of depolarizing
noise, Id(p) = pId(1) [20]. This behavior underlies the
reputed robustness to noise.

By constrast, if we apply the map N = d times before
calculating Id [Fig. 4(b)], we find that the violation de-
cays with dimension. This can be understood by noting
that repeated iteration of Eq. (30) has the solution

ρd = pdρ0 + (1− pd) I
d2
, (32)

so that, in the presence of depolarizing noise scaling with
d, the Bell parameter behaves as pdId(p = 1). Thus, the
small increase in the Bell parameter (for p = 1) of Eq.
(31) is quickly reduced by the exponentially decreasing
factor pd.

This may have some bearing on the experimental re-
sults discussed above [24]. If one of the stages of the ex-
periment has a fidelity that decays with the dimension of
the entangled state, as evidenced in previous experiments
[38], one can easily reproduce the observed decay of the
inequality violation. For example, setting p = 0.998 and
N = d produces results in rough agreement with Fig. 3
of [24].

B. Amplitude Damping Noise

Amplitude damping describes the effects of energy dis-
sipation on the quantum system. We use a simplified am-
plitude damping model, chosen to represent the damping
of a quantum resonator over a time ∆t with decay time
T . In this model, the singly excited state |1〉 survives
with probability p = e−∆t/T , while state |j〉 survives with
probability pj [39]; the applicability of this model is jus-
tified in the Appendix.

The specific model of amplitude damping is given by
the map

ρn+1 =

1∑
`,m=0

(E` ⊗ Em)ρn(E` ⊗ Em)†, (33)

where the single-qudit amplitude-damping operators are
given by

E0 =

d−1∑
j=0

√
pj |j〉〈j| (34)

and

E1 =

d−1∑
j=1

√
1− pj |j − 1〉〈j|. (35)

We note that while this model intrinsically scales with
dimension, we continue to allow the number of iterations
of the map to scale with dimension as well. It is also
relevant to observe that this map is an approximation
to the actual decay process, in that single application of
this map with p = 0 corresponds not to complete loss of
energy, but to the subtraction of a single photon.

Using this model of amplitude damping, the resulting
Bell parameter Id as a function of dimension d is shown
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in Fig. 5, for several values of the probability p. For
N = 1, the violation decays slowly with d, but remains a
violation for up to d = 16 for p = 0.9. Already, however,
we see a significant difference from the behavior of Id
under depolarizing noise.

For N = d iterations, the violation decays much faster
with d. However, the decay is surprisingly less than the
depolarizing map for the same value of p. We will soon
return to this issue, but for certain values of d and choices
of the probability, the two are similar. For example, to
model the OAM experiment [24], one could use amplitude
damping with p = 0.992 and N = d.

The results above have used a discrete model of energy
loss, in which a single quantum is removed from the sys-
tem with some probability. Of course, the actual physics
involves a continuous loss of energy. The appendix com-
pares our discrete amplitude damping model to a more
continuous model. We find that the difference between
the two models is negligible for p near 1, in which the
probability of losing two quanta can be neglected.

C. Dephasing Noise

Dephasing describes loss of quantum information with-
out loss of energy: rather than changing the amplitudes
of the states as a function of time, the energy eigenstates
of a system accrue random phases with some probability.
This is modeled by

ρn+1 = pρn+ (1−p)
d−1∑
j,k=0

(〈j, k|ρn|j, k〉) |j, k〉〈j, k|. (36)

After each iteration, the off-diagonal elements of ρn are
reduced by a factor p.

We note that the off-diagonal elements of the final den-
sity matrix in this case are identical to those found for
the depolarizing map of Eq. (30). Remarkably, when
measuring the density matrix using the DFT operators,
the joint probabilities of Eq. (29) do not depend on the
diagonal elements. We thus arrive at the interesting re-
sult the effect of dephasing noise is identical to that of
the depolarizing noise considered previously.

To verify that the probabilities do not depend on the
diagonal elements, we consider an arbitrary “diagonal”
density matrix of the form

ρdiag =

d∑
j,k=1

cj,k|j, k〉〈j, k|, (37)

where

d∑
j,k=1

cj,k = 1. (38)

For this density matrix we use Eq. (29) to calculate the

joint probablitiies

P (`,m) = 〈`,m|UA,a ⊗ UB,bρdiag (UA,a ⊗ UB,b)† |`,m〉

=

d∑
j,k=1

cj,k|〈`|UA,a|j〉|2|〈m|UB,b|k〉|2

=

d∑
j,k=1

cj,k
1

d2
=

1

d2
. (39)

Since these probabilities are independent of cj,k, the diag-
onal elements of any density matrix will contribute the
constant value of 1/d2 to the probability P (`,m). Of
course, the off-diagonal elements will also contribute to
the probability. However, any two density matrices with
the same off-diagonal elements will lead to the same prob-
abilities, confirming the result claimed above.

We can also use this observation regarding the proba-
bilities to help understand the difference between ampli-
tude damping and depolarizing / dephasing noise. For
a single qubit, amplitude damping reduces the diagonal
elements by p, but the off-diagonal elements by

√
p > p.

Thus, the effect of amplitude damping on the probabil-
ities will be less than that for depolarizing / dephasing
noise, for the same value of p. That this holds true for
dimensions d > 2 is still somewhat surprising. One pos-
sible explanation is that coherence between neighboring
qudit states is largely maintained, much like the decay of
a coherent oscillator state [34], but we have not explored
this conjecture further.

D. Thresholds for Inequality Violation

A convenient way to summarize the results obtained
above is to consider the minimum probability pmin for
which the CGLMP inequality can be violated. This prob-
ability satisfies

Id(pmin) = 2, (40)

and depends on the different models of noise. Recall that
a smaller probability p indicates a greater probability of
error or amount of noise. For p < pmin, the inequality
is not violated, so we call pmin the threshold probabil-
ity. Previous work found that pmin decreases with dimen-
sions, with the conclusion that higher dimensional Bell
inequalities can be violated even if the system is subject
to greater amounts of noise.

We have calculated the minimum probabilities for the
various noise models described above and their depen-
dence on dimension, as shown in Fig. 6. We find that
only for depolarizing / dephasing noise with N = 1 does
the threshold increase with dimension. For all other
cases—depolarizing / dephasing noise with N = d, and
amplitude damping with N = 1 and N = d—the min-
imum probability increases with dimension. For these
noise models, a violation of the CGLMP inequality with
higher-dimensional systems requires higher-fidelity oper-
ations.
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FIG. 5: Generalized Bell parameter Id as a function of qudit dimension d for two types of amplitude damping and various noise
strengths. (a) Single application of the amplitude damping operators, with (non-error) probabilities of 1, 0.99, 0.95, and 0.9,
from top to bottom. (b) Repeated application of the amplitude damping operators, with the number of applications is linear
with the qudit dimension, with (non-error) probabilities of 1, 0.99, 0.95, and 0.9, from top to bottom.
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FIG. 6: The minimum probability pmin for which the CGLMP
inequality is violated, as a function of qudit dimension d and
for the noise models (from top to bottom) depolarizing / de-
phasing noise with N = d, amplitude damping with N = d,
amplitude damping with N = 1, and depolarizing / dephas-
ing noise with N = 1. Systems with (non-error) probabilities
of p < pmin will not violate the inequality.

E. Alternative Procedures

We have studied a number of alternative procedures
of the Bell inequality test. First, we have looked at the
inequality proposed by Zohren and Gill [22] described in
the introduction, and find that the threshold probabilities
are identical to those shown in Fig. 6. Second, we have
looked at the alternative entangled states

|Ψ〉app =
1

N

d−1∑
j=0

1√
(j + 1)(d− j)

|j, j〉, (41)

where N is a normalization factor; these states can
achieve a higher degree of violation than the maximally

entangled states [40], and approximate those states with
maximal violation. While the thresholds are slightly dif-
ferent for these states, they exhibit the same general be-
havior seen in Fig. 6.

Finally, we have considered another variation of the
entangled state

|Ψ〉rev =
1√
d

d−1∑
j=0

|j, d− j〉, (42)

in which Bob’s qudit states have been reversed (Bob’s
unitaries UB , b must also be “reversed”). These states
are easier to produce in superconducting circuits [32],
and one might think they would be less sensitive to am-
plitude damping. However, the thresholds are again only
slightly different for this alternative procedure. In short,
the behavior seen in Fig. 6 appears to be generic for
these inequalities and noise models.

IV. CONCLUSION

We have studied the effects of noise on Bell inequal-
ity experiments using the higher-dimensional inequalites
proposed by Collins, Gisin, Linden, Massar, and Popescu
[20] and Zohren and Gill [22] and variations thereof. By
modeling the required operations needed in the prepa-
ration, rotation, and single-shot measurement stages
of these experiments, we have analyzed how the num-
ber of operations scale with the qudit dimension. For
most types of noisy operations, namely amplitude damp-
ing, depolarizing, and dephasing noise, we find that
the higher-dimensional inequalities require increasingly
higher-fidelity operations. This conclusion runs counter
to previous work, which considered depolarizing noise
with a fixed noise probability, independent of qudit di-
mension. However, this conclusion is in agreement with
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a very recent analysis of higher-dimensional Bell inequal-
ities with random coherent errors [41].

We conclude with a few observations. Our results show
that these higher-dimensional inequalities are not more
robust against noise when taking into account the full ex-
perimental procedure. Thus, these inequalities do not ap-
pear to offer a quick route towards closing the detection
loophole with photons. However, there are other multi-
setting (m > 2) inequalities with qudits [21] that allow
for reduced detection efficiencies for both atom-photon
and photon-photon entanglement, and in the presence of
depolarizing noise. Our results motivate continued anal-
ysis of these and other inequalities (including those with
n > 2) in the presence of realistic noise appropriate for
matter and photonic qudits. The continued acquisition
of evidence for nonlocality from a wide variety of physi-
cal systems remains an intriguing and important goal of
modern quantum physics.
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APPENDIX

In this Appendix we model the dynamics of decoher-
ence on a superconducting qudit implementation of the
discrete Fourier transform matrix used in the higher-
dimensional Bell inequalities. We generate the unitary
matrix by using the Givens rotation method described in
[31]. We further show this noise model can be approxi-
mated by the amplitude damping model described in the
text.

Superconducting circuits can be operated as qudits
[42] and are conveniently modeled as nonlinear oscilla-
tors [43]. The nonlinearity allows state-selective two-level
transitions of the form |n〉 → |n+1〉, for any specified os-
cillator state |n〉, affecting those two states only. Noise on
the system can arise from dephasing and dissipation. We
choose to model the latter, and use a traditional Lindblad
equation for the density matrix of the form:

dρ

dt
= −i[Hn, ρ] +

1

T

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
. (43)

Here the driving Hamiltonian Hn, in the rotating wave
approximation, is modeled by

Hn =
1

2
Ω
(
eiφ|n〉〈n+ 1|+ e−iφ|n+ 1〉〈n|

)
, (44)

where Ω is the Rabi frequency with relative phase φ. In
addition, the dissipation model uses the harmonic oscil-
lator annihilation operator a|n〉 =

√
n|n− 1〉 with decay

time T . In our simulation we use the typical parameter
values of Ω/2π ≤ 25 MHz and T = 0.1 ms.

The discrete Fourier transform can be implemented by
a sequence of two-state rotations, each corresponding to
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FIG. 7: The state fidelity F for the discrete Fourier transform
as a function of dimension d for amplitude damping noise, cal-
culated by the (continuous in time) Lindblad master equation
for dissipation (points) and the (discrete in time) operator

mapping (solid curve) with p = e−∆t/(4T ) with ∆t = 40 ns
and T = 0.1 ms.

the unitary operation e−iHn∆t for a value of n and for
time interval ∆t. These operations are known as Givens
matrices, and the total number of such operations is

Nops =
1

2
d(d− 1) + 3(d− 1). (45)

The set of operations corresponds to the sequence

n = d− 1, d− 2, · · · , 1
= d− 1, d− 2, · · · , 2
· · ·
= d− 1, (46)

which generates the off-diagonal elements of the matrix,
and a final set of rotations (n = 0, · · · , d − 2, repeated
three times each) to generate the diagonal elements. As
described in [31], the parameters γ = Ω∆t/2 and φ of
each Givens rotation can be solved to implement any
desired unitary matrix (up to an overall phase).

Using this method, we numerically solve for these pa-
rameters for DFT matrices of dimensions d = 2 → 16.
We then numerically solve the Lindblad equation of Eq.
(43) by allowing each Hamiltonian to evolve for a time
∆t = 40 ns with the corresponding Rabi parameters
Ω = 2γ/∆t and a fixed value of T = 0.1 ms. Given an
initial state ρinit we can propagate to a final time Nops∆t
to find the final density matrix ρfinal. We set ρinit = |0〉〈0|
and evaluate the effect of decoherence by calculating the
state-fidelity

F = 〈0|U†ρfinalU |0〉, (47)

where U = DFTd is the discrete Fourier transform ma-
trix. We repeat this calculation for various dimensions

The resulting fidelity is shown in Fig. 7, which is com-
pared to the amplitude damping mapping model of Sec.
III.B, with N = Nops and p = e−∆t/(4T ). The factor
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of four appearing in this expression for p can be under-
stood as an averaging effect since we are starting from
state |0〉 and performing a sequence of state rotations to
produce ρfinal. We see that, for d < 12, the two models
are in very good agreement. We have performed simu-

lations with different values of ∆t and obtained similar
agreement between the continuous (in time) and discrete
(in time) models of dissipation, motivating the use of the
latter in the text.
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