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Superconducting systems such as those modeled by the Kitaev Hamiltonian are found to exhibit
the Zitterbewegung (ZB) oscillations. Remarkably, the dispersion relation in one-dimensional Kitaev
systems allows for wavepackets of arbitrary size undergoing non-decaying ZB without any distortion,
with the typical ZB amplitude being one lattice site. To motivate possible experimental interest
in this dynamical aspect of superconducting systems, we further show that certain on-resonance
modulation of the Hamiltonian parameter can be exploited to convert ZB oscillations to net drifting
of particle’s wavepacket and hole’s wavepacket along opposite directions, leading to long-distance
particle-hole separation.
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I. INTRODUCTION

The Zitterbewegung (ZB) oscillations originally refer
to the jittering motion of free relativistic Dirac parti-
cles, as predicted by the Dirac equation [1]. However,
a direct experimental detection of ZB is hardly possi-
ble due to its extremely high frequency and small am-
plitude. Furthermore, as far as the ZB dynamics of a
quantum wavepacket is concerned, different momentum
components of a wavepacket typically involve different
ZB frequencies and as such the overall oscillation in the
wavepacket position expectation value dephases rapidly.
This makes the observation of coherent ZB oscillations
even more challenging. Indeed, to explore ZB-related
quantum dynamics, researchers have actively studied
Dirac-like systems with spin-orbit couplings (SOC), both
theoretically and experimentally. The studied systems
include single trapped ion [2, 3], ultracold atoms [4–7],
band electrons in graphene [16], cavity electrodynamics
[9], as well as ZB of electrons in semiconductors [10].
In this short paper, we propose to explore a rather

alternative version of ZB in a type of superconducting
systems, where particles and holes are coupled via the
Cooper pair mechanism. For all the above-mentioned
ZB studies, synthesizing the SOC constitutes the start-
ing point; whereas in our consideration below, the ZB is
made possible by a pseudo-SOC afforded by the Cooper
pair mechanism. As shown below, the pseudo spin degree
of freedom is actually the particle state or the hole state,
and the coupling is between states of opposite momen-
tum. Because of this coupling, the obtained ZB can be
qualitatively different from all previously known cases.
Though our general ideas apply to various supercon-

ductor models (so long as momentum-dependent Cooper
pairs are present), we choose to use the Kitaev model as
a case study. The Kitaev model is the simplest model
that realizes Majorana zero-energy state [11] (Majorana
fermion) that has become one important topic in con-
densed matter physics [12] due to its potential applica-
tion in fault-tolerant topological quantum computations.

Experimentally, the Kitaev system can be realized by
a nanowire that has strong SOC (e.g., InSb and InAs
nanowire) with s-wave superconductor and a Zeeman
field [13]. Specifically, by working on one-dimensional
Kitaev systems, we show that the dispersion relation
of such superconducting systems allows for wavepack-
ets undergoing non-decaying ZB without any distortion.
We further show that on-resonance modulation of cer-
tain Hamiltonian parameters can be exploited to convert
ZB wavepacket oscillations to net drifting of particle’s
wavepacket and hole’s wavepacket along opposite direc-
tions, leading to long-distance particle-hole separation as
a coherent quantum control phenomenon.
Before closing this introductory section, we would like

to mention that in all previous ZB studies, the ZB ampli-
tude turns out to be much smaller than the width of the
wavepacket itself. A qualitative argument indicates that
if this were not the case, then the ZB oscillations will
have to dephase and damp very rapidly [6, 14]. Known
exceptions, where revivals of ZB amplitudes may occur,
were possible when the translational motion of the par-
ticle undergoing ZB has a discrete spectrum [15, 16]. As
we shall see in the following, the Kitaev system is an un-
precedented playground for studying ZB in systems with
a continuous spectrum in that (i) the ZB lifetime can
be tuned to infinitely long and (ii) the ZB oscillation can
occur for wavepackets of arbitrary size, i.e. the ZB ampli-
tude can be arbitrarily large as compared with the width
of the wavepacket undergoing ZB.

II. ZB IN THE KITAEV CHAIN

A. General results

The mechanism of a low-temperature superconduct-
ing system is explained by Cooper pairs, as well cap-
tured by the conventional and standard Bardeen-Cooper-
Schrieffer (BCS) Hamiltonian expressed in the momen-
tum space. An alternative superconductor model is the
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Kitaev model, where terms of electronic tunneling and
Cooper pair are expressed on a lattice, i.e., in real space.
In particular, the p-wave-based superconductor of the Ki-
taev chain is often described by the following Hamilto-
nian,

H = −µ
∑

j

c†jcj−
∑

j

(tp c
†
jcj+1+H.c.)−

∑

j

(d c†jc
†
j+1+H.c.)

(1)
where j is the lattice coordinate; tp and d are the tun-
neling integral and superconducting pairing amplitude
for electrons between the nearest neighboring sites. The
real µ parameter is the chemical potential. Though
our discussions below apply to two-dimensional Kitaev
models as well, we restrict ourselves to the above one-
dimensional model.
When the chain is long enough and our main concern

is not the edge states (like Majorana fermion) but the
bulk properties, it is convenient to carry out a Fourier
transformation to the k-space (momentum space), i.e.,

c†k = 1√
N

∑

j c
†
j exp (ijkal) to write the Hamiltonian as (j

is the lattice coordinate; the lattice constant al is taken
to be unity throughout, i.e., the quasi-momentum k is
taken to be dimensionless),

Hk =
∑

k

(ξ(k)c†kck +∆(k)c†kc
†
−k +∆(k)∗ckc−k)

=
∑

k

(

c†k c−k

)

(

ξ(k) ∆(k)
∆(k)∗ −ξ(k)

)(

ck
c†−k

)

, (2)

where ξ(k) = −µ− 2tp cos(k) and ∆(k) = i2d sin(k). As
seen above, the Kitaev model defined in real space can be
equivalently expressed in the momentum space, thereby
assuming a form identical with the BCS Hamiltonian.
As in the case of the BCS model, the Kitaev chain

defined in Eq. (2) has both ground and excited states
at a given fermion energy, which are determined by the
number of excited Bogoliubov quasi-particles. Suppose
|E〉 is an eigenstate of Hk, then a rather arbitrary spinor-
like state,

|u, v〉 = (uc†k + vc−k)|E〉 (3)

will not be stationary. Instead, it will evolve under the
superconductor Hamiltonian Hk. The only exception
arises if u, v happen to satisfy the Bogoliubov condition

and (uc†k + vc−k)|E〉 then represents the creation or an-
nihilation of a quasi-particle. Certainly, the dynamical
evolution of u, v must satisfy a two-mode Schrödinger
equation governed by the effective Hamiltonian,

Heff =

(

ξ(k) ∆(k)
∆(k)∗ −ξ(k)

)

. (4)

Thus a particle state on top of an overall eigenstate with
amplitude |u|2 and a hole state of inverse momentum
with amplitude |v|2 are coupled together. If the particle-
hole representation is understood as the two component

of a pseudo spin degree of freedom, then the above ef-
fective Hamiltonian Heff describes a pseudo SOC. This
pseudo SOC is different from early SOC model Hamilto-
nians in that the internal state dynamics is always accom-
panied by two opposite momentum values rather than the
same momentum values. The implication of this coupling
will be discussed much later. Here it is worth noting that
the periodic dependence of Heff on k reflects the periodic
quasi-momentum nature for discrete lattice model, and
the one period interval is just the one-dimensional Bril-
louin zone.
Without loss of generality, the tunneling parameter tp

and the pair amplitude parameter d are assumed to be
real positive numbers. We now examine the motion of
an initial state (t = 0) as a product state of a one-
dimensional wavepacket on the lattice and an internal
two-component pseudo- “spinor” state,

〈j|ψ(0)〉 = G(j)

(

a
b

)

, (5)

where G(x) is a broad Gaussian in real space centered at
j = 0; the central momentum of the initial wavepacket
along the chain is assumed to be zero. In connection with
Heff defined above, this initial state stands for a superpo-
sition of particle and hole states, coherently delocalizing
over some lattice sites with a Gaussian profile.
Since ZB can be more clearly investigated in the mo-

mentum space, we carry out the Fourier transformation
of the above initial state to arrive at a narrow wavepacket
in the momentum representation, i.e.,

|ψk(0)〉 = 〈k|ψ(0)〉 =
(

g(k)a
g(−k)b

)

, (6)

where g(k) or g(−k) is also a Gaussian as the Fourier
transformation of G(j). Here g(k) = g(−k) is an even
function of k because the initial Gaussian state is sym-
metric in both the lattice space and in the momentum
space.
Interpreting the momentum-space effective Hamilto-

nian Heff as a magnetic Hamiltonian for a (pseudo) spin,
one can see that the internal state specified in Eq. (6)
evolves in the presence of two components of a “mag-
netic fields”: one along “z” of strength ξ(k) and the other
along “y” with strength −2d sin(k). The total “mag-

netic field” strength is
√

ξ2 + 4d2 sin(k)2 and the direc-
tion of the total magnetic field is characterized by an
angle arctan[2d sin(k)/ξ(k)].
To gain more insights let us first make an expansion to

the first order of k, by considering a narrow wavepacket
in the momentum space (we stress that later we will drop
this kind of approximation) [5]. Keeping the effects up
to the first order of k, we have

arctan

(

2d sin(k)

−ξ(k)

)

≈ 2d

µ+ 2tp
k;

√

ξ2 + 4d2 sin(k)2 ≈ µ+ 2tp, (7)
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where we have assumed that µ+2tp > 0 and µ+2tp ≫ kd.
For the case µ+2tp < 0, we can perform an analogous ap-
proximation, which is not repeated here. Physically, this
approximation is to assume that, for different k compo-
nents, their effective Zeeman splitting is almost the same,
but with the internal state precessing around slightly dif-
ferent directions linearly dependent on k. As shown in
the following calculations, this linear k-dependence on
the magnetic field orientation angle will carry over to the
wavepacket dynamics, resulting in a wavepacket phase
linearly proportional to k. Such a phase linear in k in-
dicates a shift of the wavepacket center in the position
space. Note that this is obtained under the assumption
that the total magnetic field strength is approximately
independent of k, so all the different k components oscil-
late at the same angular frequency. Because this common
angular frequency is given by ω = 2(µ+2tp)/~ (in dimen-
sionless units), the shift in the wavepacket centre should
be periodic with a period T = 2π

ω
= π~

µ+2tp
.

More specifically, according to this approximation, the
evolution of the initial state specified in (6) can be ex-
plicitly written down. For clarity and concreteness, we
write down the time-evolving state at t = T/2 = π~

2(µ+2tp)

for a specific case a = b = 1/
√
2 (neglecting an overall

phase),

|ψk

(

π

2(µ+ 2tp)

)

〉 = 1√
2

(

g(k)
−g(−k)

)

e
−i 2kd

µ+2tp . (8)

In above, the first component of the state is for the par-
ticle component, depicting a wavepacket on the lattice
whose center is located at j = 2d

µ+2tp
. This becomes more

obvious if we perform an inverse Fourier transformation
of the first component to real space, arriving at

〈j|ψelectron〉 =
1√
2
G

(

j − 2d

µ+ 2tp

)

. (9)

The second component in the above expression is for the
hole component, depicting a “hole” wavepacket centered
at j = − 2d

µ+2tp
. Indeed, the corresponding inverse Fourier

transformation yields

〈j|ψhole〉 =
1√
2
G

(

j +
2d

µ+ 2tp

)

. (10)

Clearly then, despite the fact that initially the particle
and hole wavepackets are spatially on top of each other,
they start to separate from each other due to the ZB
oscillations. The net result at t = T/2 is a net separation
of particle from hole on the Kitaev chain.
When t = T = π~

µ+2tp
, the “spinors” for all momen-

tum components rotate back to the initial state, and as a
result the particle’s wavepacket once again exactly over-
laps with the hole’s wavepacket, both centered at the
j = 0 lattice site. This also indicates that both particle
and hole undergo opposite ZB oscillations with period
T = π~

µ+2tp
, amplitude A ∼ 2d

µ+2tp
. Such kind of ZB phe-

nomenon is qualitatively different from the conventional

ZB studied so far (that is, in the conventional ZB, all
the components of the “spinor” always undergo shift in
the same manner). In this sense, it can be said that the
ZB found here, which allows for a space separation be-
tween different spin components, differs from all previous
ZB studies. Indeed, in all previous ZB studies, the cou-
pling between different spin components is at the same
momentum value and as such, the wavepackets associ-
ated with different spin components always oscillate in
the same manner.

For completeness, the time-evolving state in the above
case in coordinate space is given as,

〈j|ψ(t)〉 = cos[(µ+ 2tp)t/~]
1√
2

(

G(j)
G(j)

)

+i sin[(µ+ 2tp)t/~]
1√
2





G
(

j − 2d
µ+2tp

)

−G
(

j + 2d
µ+2tp

)



 .(11)

B. Perfect ZB oscillations without damping

The central ZB physics discussed above is still based
on the approximation depicted by Eq. (7), where we es-
sentially require µ + 2tp ≫ (δk)d, where δk(∼ 1

δj
) and

δj are the characteristic width of the wavepacket in the
momentum space and in the position space, respectively.
For this assumption to be valid, the wavepacket should
be sufficiently narrow in the momentum space or suffi-
ciently wide in the position space. For this reason, the
ZB amplitude A turns out to be much smaller than the
wavepacket’s width in the position space, i.e., A ≪ δj
(please refer to Ref. [14] for a detailed analysis and refer
to Ref. [3] for an experimental study). More importantly,
after a few ZB periods, the ZB oscillations start to damp
and the wavepacket shape starts to distort once the ef-
fects beyond the approximation to the first order of k kick
in [6]. For example, soon enough, different k-components
of the wavepacket start to oscillate at different phases be-
cause the effective field strength they experience is after
all different to the second order of k. Note also that
even for ZB in systems with a discrete spectrum [15, 16],
one in general still hopes to start from not-too-narrow
wavepacket in order to have a relatively stable ZB over a
long period before the ZB revival.

Remarkably, for the Kitaev chain considered here, we
find that the above-mentioned reasons to give rise to
non-perfect ZB oscillations and wavepacket distortion (in
systems with a continuous spectrum) can become irrele-
vant altogether, meaning that the relevant ZB amplitude
maintains a constant and the ZB is stable even for a δ-
function as the initial condition describing a wavepacket
initially localized over one lattice site. This finding is also
the main result of this work. In particular, coming back
to the effective Hamiltonian Heff in Eq. (4) and noting
the trigonometric dependence of ξk and ∆(k), we observe
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that the following condition

µ = 0;

tp = d (12)

constitutes a magic situation. Under this parameter
choice, we exactly have

arctan

(

2d sin(k)

−ξ(k)

)

= k;

√

ξ2 + 4d2 sin(k)2 = 2d. (13)

That is, regardless of the value of k, the total “magnetic”
field strength is always independent of k and the angular
dependence of the field on k is strictly linear. That is,
the above-mentioned first-order approximation (7) is no
longer needed as the very same relations hold precisely

for all k values. As a matter of fact, the effective Hamil-
tonian in the momentum space now becomes

Heff = 2d

(

cos(k) i sin(k)
−i sin(k) − cos(k)

)

. (14)

There it can be seen more evidently that for the k-
component, the pseudo-spin describing particle and hole
states experiences a “magnetic field” pointing at, in the
standard notation for a spherical coordinate system, the
direction of (θ, φ), with θ = mod (k, 2π) up to a 2π
shift, and φ = −π/2. The associated field strength is
independent of k. The k-independence of the effective
field strength guarantees that the oscillations of different
k components are always in phase. According to Eq. (8),
in the parameter condition specified in (12), the ZB am-
plitude is strictly to be (in units of lattice constant al),

A =
2d

µ+ 2tp
≡ 1, (15)

i.e., the ideal ZB amplitude is exactly one lattice site.
With the relation in Eq. (13) being exact and following

the same derivation as before, one immediately arrives
at an ideal ZB oscillations without any damping and de-
formation of the initial Gaussian wavepacket, where the
width of the initial wavepacket can be prepared in arbi-
trary size. Specifically, in this magic condition an initial
state of spatial δ-function profile, i.e., particle and hole
states localizing on one lattice site that correspond to
plane waves in momentum space, can equally implement
the ideal ZB dynamics with the δ-profile kept unchanged.
Following exactly the same procedure as before but now
with an initial state as a delta-function-profile δ(j), which
behaves as δ(j) = 1 for j = 0 and δ(j) = 0 otherwise, we
have

G(j) = δ(j),

g(k) =
1√
2
exp(−k · j0), with j0 = 0, (16)

i.e., with the initial state taken as,

〈j|ψ(0)〉 = 1√
2
δ(j)

(

1
1

)

, (17)

al

sin2(2td)/2 cos2(2td)/2

sin2(2td)/2cos2(2td)/2

al

FIG. 1: Schematic plot of on-site electron-hole wavepacket
motion satisfying the Kitaev equation. Cyclic population
transfers associated with electron and hole components be-
tween neighbouring sites give rise to ZB oscillation.

we derive the wavefunction evolving with time as,

〈j|ψ(t)〉 = cos

(

2d

~
t

)

(

δ(j)√
2

δ(j)√
2

)

+i sin

(

2d

~
t

)

(

δ(j−1)√
2

− δ(j+1)√
2

)

.

(18)
It can be seen evidently that the occupation probabilities
of the two sub-δ-profiles over one lattice site for particle
state (first component of spinor) are cos2(2td/~)/2 and
sin2(2td/~)/2, respectively, and those for hole state (sec-
ond component of spinor) are the same except that the
spatial direction is opposite, as illustrated in Fig. 1. As
time evolves, these two occupation probabilities oscillate,
thus giving rise to a time dependence of the average po-
sition for both particle state and hole state as,

〈jelectron〉 = 0 · cos
2(2d

~
t)

2
+ 1 · sin

2(2d
~
t)

2
=

sin2(2d
~
t)

2

〈jhole〉 = 0 · cos
2(2d

~
t)

2
− 1 · sin

2(2d
~
t)

2
= − sin2(2d

~
t)

2
,

which is nothing but the ZB phenomenon with ZB am-
plitude being one lattice constant.

This theoretical prediction is fully verified by Fourier
transformation and dynamics simulations. In Fig. 2, the
time dependence of the mean positions of particle and
hole, as well as the spatial profile of their respective
wavepackets are shown. The ZB oscillations are shown
to be perfect. Though not shown on the same figure, fur-
ther numerical results confirm that this type of ZB oscil-
lations will not degrade at all times, including the case
of ZB amplitude comparable to the wavepacket width
and the case of wavepacket coherently delocalizing over
a great number of lattice sites. However, in any case, the
ZB amplitude is exactly one lattice constant.
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FIG. 2: (Color online) Analytical Fourier transformations
plus numerical simulations of wavepacket dynamics showing
ZB oscillations in the Kitaev chain model, with the system
parameters chosen to be µ = 0, tp = d. The initial wavepack-
ets of the particle and of the hole on top of each other localize
on one lattice site, with its width determined by the lattice
potential. (a) the ZB oscillations for particle and hole as
shown in the time dependence of their mean position; (b) the
wavepacket profile for both particle and hole components, at
time points indicated by A and B in (a). The negative occu-
pation stands for the hole state. The position parameter j is
in units of the lattice constant al and t is in units of ~/d.

III. PERFECT ZB OSCILLATIONS SUBJECT

TO ON-RESONANCE DRIVING

We have shown that the ZB oscillations can be made
perfect by choosing the right system parameter in the
Kitaev Hamiltonian. During each period of oscillation,
the particle wavepacket and the hole wavepacket can be
separated even though they are on top of each other at
time zero. However, as suggested by our theory above
and by our numerical experiments, the amplitude of such
ideal ZB oscillations is one lattice site only. It would
be interesting to further convert such ZB oscillations to
a more dramatic effect, which may be of experimental
relevance in understanding and probing the system from
a novel perspective.
Our early work suggested that on-resonance modula-

tion of a ZB Hamiltonian can convert ZB oscillations into
directed motion [17]. On a lattice, both the phase and the
magnitude of the tunneling paramater tp may be modu-
lated by introducing a high-frequency driving field [18].
Consider then what happens if the sign of tp (we also
assume µ = 0 in this section) is reversed after every half
period of ZB, i.e., after every T/2. The tp parameter
is hence modulated at precisely the same ZB frequency.
The Hamiltonian for the second time interval of duration
T/2 is hence given by

Heff = 2d

(

− cos(k) i sin(k)
−i sin(k) cos(k)

)

, (19)

with its initial state being |ψk(T/2)〉. This state evolves
from the first interval of duration T/2 and its specific

form is already given in Eq. (8), now with µ = 0 and
tp = d using our parameter choice. The switch of the
sign of tp leads to a reversal of the ZB oscillation because
effectively, the field directions experienced by the parti-
cle and by the hole are exchanged. As such, after this
sign switch, the particle wavepacket will now evolve in
precisely the same manner as how the hole wavepacket
would evolve in the absence of the sign switch, and the
hole wavepacket will now evolve in precisely the same
manner as how the particle wavepacket would evolve in
the absence of the sign switch. Therefore, at the end
of the second time interval of duration T/2, the state
becomes (neglecting an overall phase)

|ψk(T )〉 =
1√
2

(

g(k)
−g(−k)

)

e−2ik, (20)

By use of the inverse Fourier transformation, the first
component of the state in Eq. (20) is seen to represent a
particle wavepacket centered at j = 2, whereas the sec-
ond component of the state in Eq. (20) is seen to stand for
a hole wavepacket centered at j = −2. Interestingly, the
net result after duration T is a particle-hole separation
of four lattice sites.
Repeating this strategy, i.e., changing the signs of tp

after every interval of T/2, the direction of the perfect
ZB oscillation is consecutively reversed after each half
oscillation period. Then the particle and hole wavepack-
ets are separated more and more, with each period T
contributing an increase of 4 sites in the separation. Of
course, because this modulation scheme replies on the
oscillation phases, the time when the modulation starts
can also make a difference.
We have carried out numerical experiments to confirm

these insights. Figure 3 presents details of the wavepacket
dynamics if the sign of tp is modulated for certain peri-
ods, switched off, and then switched on again. In case
(a), the on-resonance modulation is switched off for sev-
eral periods of ZB and then it is on again. First, the
particle-hole separation grows linearly with time, then it
oscillates around a constant value because the modula-
tion is off, and finally it grows linearly again. In case
(b), the modulation is off for a multiple ZB period plus
one half ZB period. In this case, once the modulation is
switched on again, the particle and hole separation starts
to decrease linearly with time and can return to zero. In
both cases, the wavepacket profile remain Gaussian all
the time.
In all previous models simulating the ZB physics, ZB

oscillations are often qualitatively understood in terms
of a quantum coherence effect between two spin compo-
nents, which requires the interference between two spin
components and hence requires their spatial wavefunc-
tions to overlap with each other. However, one interest-
ing observation made from Fig. 3 is as follows. After the
particle and hole wavepackets have separated completely
[see point B and the small oscillations during which the
modulation is off, in both Fig. 3(c) and Fig. 3(d)], the
perfect ZB oscillations (without any parameter modula-
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FIG. 3: (color online) Numerical results of wavepacket dy-
namics in the Kitaev chain if the system parameter tp is pe-
riodically modulated. Panels (a) and (b) illustrate two mod-
ulation schemes. When modulation is on, the sign of tp is
reversed after each time interval of T/2 (T is the ZB pe-
riod). The modulation off-period Tstop is an integer multiple
of T in (a) and a half-integer multiple of T in (b). Panels
(c) and (d) depict the time-dependence of the mean position
(j) of the particle and the hole wavepackets, for modulation
schemes in (a) and (b), respectively. It is seen that in (c),
the particle-hole separation continues to grow linearly after
the modulation is switched on again; but in (d), the change
in the particle-hole separation is reversed. Panels (e) and (f)
show the wavepacket profile, where the negative occupation
stands for the hole component, at three different time points
denoted by point A, B and C, for modulation schemes in (a)
and (b), respectively. Note that in (f), the wavepacket at C
is on top of that at A. tp is in units of d, t in units of ~/d and
j in units of lattice constant al.

tion) still persist. This is markedly different from previ-
ously studied ZB oscillations.

Let us now explain this observation. According to the
insights offered by two previous ZB studies [5, 14], the ZB
oscillation amplitude is the largest if the initial spinor is
perpendicular to the effective “magnetic field” depicting
Heff [see Eq. (4) or Eq. (14)]. The “magnetic field” in our
model is in the “y− z” plane, and indeed we have chosen
the initial spinor state parallel to the “x” direction, i.e.,
a = ±b = 1√

2
, to get the largest ZB oscillation amplitude

(which is exactly one lattice site). Consider next one
particle wavepacket and one hole wavepacket separated
in real space by 2D lattice sites, i.e.,

〈j|ψelectron〉 =
1√
2
G(j −D), (21)

〈j|ψhole〉 =
1√
2
G(j +D). (22)

In the momentum space, their respective wavefunctions
will be given by 1√

2
g(k)e−iD and 1√

2
g(k)eiD. Now, if

the effective ZB Hamiltonian couples the two wavefunc-
tion components at the same momentum (as in previous
ZB Hamiltonians), then the corresponding spinor would
become

(

1√
2
g(k)e−iD

1√
2
g(k)eiD

)

, (23)

which no longer represents a pseudo-spinor wavefunction
lying in the “x” direction. Then the ZB oscillations after-
wards would be suppressed ifD is not small. By contrast,
in our model Heff couples k and −k components, so the
actual spinor in the representation of Heff is

(

1√
2
g(k)e−iD

1√
2
g(−k)e−iD

)

=
1√
2
g(k)e−iD

(

1
1

)

, (24)

which stays in the “x” direction for arbitrary k. This
enhances our understanding of why ZB oscillations here
sustain a complete separation between the particle and
hole wavepackets.

IV. CONCLUDING REMARKS

In a typical model describing low-temperature super-
conductivity, there always exists a coupling to induce the
pairing of electron and hole of opposite momentum val-
ues. As we have shown based on the Kitaev model,
such kind of coupling offers an interesting mechanism
for ZB oscillations. By choosing appropriate system pa-
rameters, we have shown that the ZB oscillations can
be perfect in the following sense: they can last long (in
theory, infinitely long) without any amplitude damping
and can perfectly maintain the spatial profile of an ini-
tial wavepacket. Remarkably, the ZB we found has an
intriguing nature as compared with all previous cases in
that wavepackets associated with different spinor com-
ponents can oscillate in different manners, resulting in
their space separation. Furthermore, we have also shown
that, by periodically modulating the tunneling parameter
in resonance with the ZB oscillations, the ZB oscillations
can be converted to net drifting of particle and hole along
opposite directions.
The possibility of perfect ZB oscillations may provide

an alternative opportunity to study superconductor mod-
els. Besides the Kitaev system, it can be anticipated that
other Cooper-pair systems can undergo ZB as well. For
example, it can be easily proven that ZB can also occur
in the conventional BCS Hamiltonian. It is possible that
a direct experimental detection of the Cooper-pair super-
conducting mechanism can be realized by observing the
ZB amplitude, ZB frequency, and ZB lifetime etc. For ex-
ample, if ZB can never be detected in a superconducting



7

system, then we may doubt if the Cooper-pair mechanism
is indeed the underlying mechanism of superconductivity.
Q. Z. thanks Erhai Zhao for discussions on the Kitaev

chain and the partial support by AFOSR FA9550-12-1-
0079 as a visiting scholar at George Mason University.
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