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The quantum marginal problem asks whether a set of given density matrices are consistent, i.e., whether
they can be the reduced density matrices of a global quantum state. Not many non-trivial analytic necessary
(or sufficient) conditions are known for the problem in general. We propose a method to detect consistency
of overlapping quantum marginals by considering the separability of some derived states. Our method works
well for the k-symmetric extension problem in general, and for the general overlapping marginal problems in
some cases. Our work is, in some sense, the converse to the well-known k-symmetric extension criterion for
separability.
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I. INTRODUCTION

The quantum marginal problem, also known as the con-
sistency problem, asks for the conditions under which there
exists an N -particle density matrix ρN whose reduced den-
sity matrices (quantum marginals) on the subsets of particles
Si ⊂ {1, 2, . . . , N} equal to the given density matrices ρSi for
all i [1]. The related problem in fermionic (bosonic) systems
is the so-called N -representability problem. It asks whether
a k-fermionic (bosonic) density matrix is the reduced density
matrix of some N -fermion (boson) state ρN . Inherits a long
history in quantum chemistry, the N -representability problem
was extensively studied in the 1960s and 1970s in the hope of
finding a way to use the 2-body reduced density matrices to
simplify complex N -body computation [2–4].

The quantum marginal problem and the N -representability
problem are in general very difficult. They were shown to be
the complete problems of the complexity class QMA, even
for the relatively simple case where the given marginals are
two-particle states [5–7]. In other words, even with the help
of a quantum computer, it is very unlikely that the quantum
marginal problems can be solved efficiently in the worst case.
In this sense, the best hope to have simple analytic conditions
for the quantum marginal problem is to find either necessary
or sufficient conditions in certain special cases.

When the given marginals are states of non-overlapping
subsets of particles, and one is interested in a global pure
state consistent with the given marginals, both the quantum
marginal problem and the N -representability problem were
solved [1, 8–12]. However, not much is known for the gen-
eral problem with overlapping subsystems. For the tripartite
case of particlesA,B, C, the strong subadditivity of von Neu-
mann entropy enforces non-trivial necessary conditions for
the consistency of ρAB and ρAC such as S(AB) + S(AC) ≥
S(B) + S(C) [13]. In a similar spirit, certain quantitative
monogamy of entanglement type of results (see e.g. [14]) also
put non-trivial necessary conditions. Necessary and sufficient
conditions are generally not known, except in very few special
situations [13, 15, 16] when N is small.

In this work, we propose a simple but powerful analytic
necessary condition for arguably the simplest overlapping
quantum marginal problem, known as the k-symmetric exten-
sion problem. That is, we will consider quantum marginal
problems of k + 1 particles A, B1, B2, . . . , Bk for a given
density matrix ρAB , and require that there is a global quan-
tum state ρAB1B2···Bk whose marginals on A,Bi equal to the
given ρAB for i = 1, 2, . . . , k. The classical analog of this
particular case is trivial and there is a consistent global prob-
ability distribution as long as the marginals agree on A, see
e.g. [13]. In the quantum case, however, the problem remains
unsolved even for k = 2 though a few special cases were
known [17].

We prove the separability of certain derived state as a nec-
essary condition for the k-symmetric extension problem. A
quantum state ρAB is separable if it can be written as the
convex combination

∑
i piρA,i ⊗ ρB,i for a probability dis-

tribution pi and states ρA,i and ρB,i. It is now well-known
that the k-symmetric extension of ρAB provides a hierarchy
of separability criteria for ρAB , which converges exactly to
the set of separable states when k goes to infinity [18]. This
result is essentially given by the quantum de Finetti’s theo-
rem [18–23]. Our method can, in some sense, be thought of
as a converse to the k-symmetric extension criterion of sep-
arability. We will use separability instead as a criterion to
test k-symmetric extendability of a bipartite state. This, how-
ever, does not cause any circular reasoning problem—we can
instead use other known separability criteria [24–27], to give
necessary conditions for the k-symmetric extension problems.

In particular, our method computes a linear combination
ρ̃
(k)
AB of the given density matrix ρAB and its reduced density

matrix ρA. The separability of ρ̃(k)AB is then shown to be a nec-
essary condition of the corresponding k-symmetric extension
problem for ρAB .

Interestingly, the condition can also be applied to the more
general setting of overlapping quantum marginal problems
where the given marginals on A,Bi are different. We reduce
them to the k-symmetric extension problems of 1

k

∑k
i=1 ρABi .
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This averaging method may give trivial conditions in adver-
sarial situations. But it will nevertheless provide non-trivial
conditions better than many known results when the given
density matrices ρABi , though different, are related in some
way.

II. NECESSARY CONDITIONS FOR THE k-SYMMETRIC
EXTENSION PROBLEMS

Let HA, HB be two Hilbert spaces of dimension dA
and dB , respectively. For a Hilbert space H, let D(H)
be the set of density matrices on H. For a bipartite state
ρAB ∈ D(HA ⊗ HB), we consider the following overlap-
ping quantum marginal problem: whether there exists a state
ρAB1B2···Bk ∈ D

(
HA ⊗ (

⊗k
i=1HBi)

)
whose marginals on

A,Bi equal to ρAB for all i = 1, 2, . . . , k. The problem is also
called the k-symmetric extension problem of ρAB [18, 28–
31] and the global state ρAB1B2···Bk is called a k-symmetric
extension of ρAB . If such a global state ρAB1B2···Bk ex-
ists, one can choose it to be invariant under permutations of
B1, B2, . . . , Bk [18, 32].

If the state ρAB is separable, then it is also obviously k-
symmetric extendable for any k. Interestingly, the converse
of the statement is also true. That is, if ρAB is k-symmetric
extendable for all k, then ρAB must be separable [28]. This
provides a complete hierarchy of separability criteria. The k-
symmetric extension problem can be formulated as a semidef-
inite programming (SDP), providing a numerical procedure to
detect entanglement in a mixed state (see e.g. [33]).

In this paper, we want to know for a given k, whether ρAB is
k-symmetric extendable. One can of course use the semidef-
inite programming to solve the problem, but the size of the
SDP formulation will grow exponentially with k, rendering
the approach impractical even numerically for large k. We
will instead use the separability of some derived state ρ̃(k)AB to
detect the k-extendability of ρAB . The important thing is that
the dimension of the state ρ̃(k)AB is independent of k.

Our main observation is the following theorem, which pro-
vides a necessary condition for the k-symmetric extendability
of ρAB . In the theorem, HA and HB are two Hilbert spaces
of dimension dA and dB respectively.

Theorem 1. If a bipartite state ρAB ∈ D(HA ⊗ HB) has a
k-symmetric extension, then the bipartite state

ρ̃
(k)
AB =

1

d2B + k
(dBρA ⊗ IB + kρAB) (1)

is separable.

Before we prove this theorem, we first analyze our condi-
tions for the k-symmetric extension problem of the Werner
states [34, 35]. A two-qudit Werner state is a state invariant
under the U ⊗ U operator for all unitary U ∈ U(d) and has
the following form

ρW (ψ−) =
1 + ψ−

2
ρ+ +

1− ψ−

2
ρ−,

where ψ− ∈ [−1, 1] is the parameter, ρ+ and ρ− are the
states proportional to the projection of the symmetric sub-
space ∨2Cd and anti-symmetric subspace ∧2Cd respectively.
The Werner state ρW (ψ−) is separable if and only if ψ− ≥ 0.
The state ρ̃(k)W (ψ−) is separable when ψ− ≥ −d/k. There-
fore, by Theorem 1, ρW (ψ−) is not k-symmetric extendable
if ψ− < −d/k. We note that our bound, though not optimal,
is a close approximation of the necessary and sufficient con-
dition ψ− ≥ −(d − 1)/k proved in [36] for the k-symmetric
extendability of Werner states.

For convenience, we will also consider a variant of the
k-symmetric extension problem called the k-bosonic exten-
sion problem. For Hilbert spaces Hi of dimension d, let∨k
i=1Hi be the symmetric subspace of

⊗k
i=1Hi. A state ρAB

has a k-bosonic extension if it has a k-symmetric extension
ρAB1B2···Bk whose support on B1, B2, . . . , Bk is in the sym-
metric subspace

∨k
i=1HBi . In this case, the following lemma

is known [37, 38].

Lemma 2. If a bipartite state ρAB ∈ D(HA ⊗ HB) has a
k-bosonic extension, then the bipartite state

ρ̂
(k)
AB =

1

dB + k
(ρA ⊗ IB + kρAB) (2)

is separable.

The Werner state example indicates that the k-symmetric
extension and k-bosonic extension problems are generally dif-
ferent. In particular, it also implies that the dB in the linear
combination in Eq. (1) is essential for the k-symmetric exten-
sion problem.

III. PROOF OF THEOREM 1

In order to prove Theorem 1 1, we include a proof of
Lemma 2 for completeness. This will help to provide a
proof of Theorem 1 and a generalization to the multi-party
marginals case as discussed later.

Proof. LetHBi be Hilbert spaces of dimension dB and let ρ ∈
D(
∨k
i=1HBi) be a state supported on the symmetric subspace∨k

i=1HBi . Consider the following superoperator E :

E(ρ) =

∫
〈u|⊗kρ |u〉⊗k |u〉 〈u|dµ(u),

= TrB1···Bk

[(
IB ⊗ ρ

) ∫
|u〉 〈u|⊗k+1

dµ(u)
]

∝ TrB1···Bk

[(
IB ⊗ ρ

) ∑
π∈Sk+1

Wπ

]
,

(3)

where dµ(u) is the Haar measure over the pure states of HB
and Wπ is the permutation operator defined by

Wπ|i1, i2, . . . , ik〉 = |iπ−1(1), iπ−1(2), . . . , iπ−1(k)〉.

We claim that

E(ρ) ∝ tr(ρ)IB + kρB , (4)
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for all state ρ ∈ D(
∨k
i=1HBi) where ρB is the 1-particle

marginal of ρ. The claim follows from the Chiribella’s the-
orem [39]; we give a proof here for its importance to our
work. By the fact that any state ρ supported on the symmetric
subspace

∨kHB can be written as the linear combination of
states of the form |φ〉 〈φ|⊗k (see the Appendix of [39]), it suf-
fices to prove the claim in Eq. (4) for ρ = |φ〉 〈φ|⊗k. For all
π ∈ Sk,

TrB1···Bk

[(
IB ⊗ |φ〉 〈φ|⊗k

)
Wπ

]
=

{
IB if π(1) = 1,

|φ〉 〈φ| otherwise.

There are k! permutations π such that π(1) = 1 and k · k!
permutations π(1) 6= 1 and the claim follows from Eq. (3).

If ρAB has a k-bosonic extension ρAB1B2···Bk , by Eq. (4),

IA ⊗ E(ρAB1B2···Bk) ∝ ρA ⊗ IB + kρAB .

The separability of ρ̂
(k)
AB then follows from the positive

semidefinite property of ρAB1B2···Bk and Eq. (3).

We now prove Theorem 1.

Proof of Theorem 1. Let ρ ∈ D
(
HA ⊗ (

⊗k
i=1HBi)

)
be the

k-symmetric extension of ρAB . There exists a purification

|Φ〉 ∈ HA ⊗HA′ ⊗
[ k∨
i=1

(HBi ⊗HB′i)
]

of ρ where dA′ = dA and dB′i = dB [40]. State σ =

|Φ〉 〈Φ| is the k-bosonic extension of its reduced density ma-
trix σAA′BB′ on A,A′, B1, B

′
1. By Lemma 2,

σ̂AA′BB′ =
1

d2B + k

(
σAA′ ⊗ IBB′ + kσAA′BB′

)
is separable between AA′ and BB′. Tracing out the systems
A′ and B′, it follows that

ρ̃
(k)
AB =

1

d2B + k

(
dBρA ⊗ IB + kρAB

)
is separable.

IV. APPLICATIONS TO THE BELL-DIAGONAL STATES

As an application, we consider an example for the simple
case of k = 2, and A,B are qubit systems (dA = dB = 2).
Since for any two-qubit state, the existence of a 2-symmetric
extension implies that of a 2-bosonic extension (see Proposi-
tion 21 of [32]), we can use the stronger condition of Eq. (2)
also for the symmetric extension problem. For simplicity, we
will investigate our condition for 2-symmetric extension for
the class of Bell-diagonal states. A state ρAB is Bell-diagonal
if it is of the form

ρAB =

4∑
i=1

pi |Φi〉 〈Φi| , (5)

where pi ∈ [0, 1],
∑
i pi = 1 and

|Φ1〉 = (|00〉+ |11〉)/
√

2, |Φ2〉 = (|00〉 − |11〉)/
√

2,

|Φ3〉 = (|01〉+ |10〉)/
√

2, |Φ4〉 = (|01〉 − |10〉)/
√

2

are the four Bell states.
A simple computation tells that our condition that ρ̂(2)AB

being separable is equivalent to pi ∈ [0, 3/4] for all i =
1, 2, 3, 4. This is a close approximation of the exact condition
of 2-symmetric extendability given in [16, 41–44]:

1

2
≥

4∑
i=1

p2i − 4
( 4∏
i=1

pi

)1/2
.

The regions of p1, p2, p3 given by these two conditions are
plotted in Fig. 1. The volume of the exact set is approximately
0.15115 and the volume of the polytope given by our condi-
tion is 0.15625, which is only about 3% larger.

For comparison purposes, we have also plotted the con-
ditions given by the strong subadditivity (SSA). For Bell-
diagonal states, the SSA condition simplifies to S(AB) ≥
1. We find that our condition and the SSA condition are
incomparable—the non-extendability can sometimes be de-
tected by our condition but not the SSA condition, and vice
versa. See Fig. 2 for details.

V. APPLICATIONS TO THE OVERLAPPING MARGINAL
PROBLEMS

We now extend our method to the more general situation
with different marginals on A,Bi. That is, one asks whether
there exists a state ρAB1B2···Bk ∈ D

(
HA ⊗ (

⊗k
i=1HBi)

)
whose marginals on A,Bi is the given density matrices ρABi
for all i = 1, 2, . . . , k. This consistency problem for bipartite
marginals is of vital importance in many-body physics and
quantum chemistry, where the Hamiltonians of the system in
general involve only two-body interactions [2, 4, 45].

In order to use the necessary condition derived in the previ-
ous section, we observe the following fact.

Lemma 3. If the marginals ρABi with i = 1, 2, . . . , k are
consistent, then the bipartite state

ρAB =
1

k

k∑
i=1

ρABi (6)

has k-symmetric extension.

Proof. If ρABi with i = 1, 2, . . . , k are consistent, then there
exists a state ρAB1B2···Bk ∈ D(HA ⊗ H⊗kB ), such that its
reduced density matrix on the system ABi is ρABi for all i =
1, 2, . . . , k. Now consider the state

ρ′AB1B2···Bk =
1

k!

∑
π∈Sk

ρABπ(1)Bπ(2)···Bπ(k)
, (7)

where Sk is the symmetric group of k elements. Then
ρ′AB1B2···Bk is a k-symmetric extension of ρAB .
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(a)

(b)

FIG. 1: (a) The polytope of yellow color characterized by
0 ≤ pi ≤ 3/4 and 1/4 ≤ p1 + p2 + p3 ≤ 1 is the condition

given by the separability of ρ̃(2)AB . The convex set of red color
is given by the necessary and sufficient condition for

2-symmetric extension of Bell-diagonal states. (b) is the left
view of the same figure.

This then allows us to use Theorem 1 and Lemma 2 to
detect consistency of bipartite marginals. Consider the ex-
ample of a three-qubit system with ρAB = ρW (ψ−1 ), and
ρAC = ρW (ψ−2 ) for ψ−i ∈ [−1, 1] , both of which are two-
qubit Werner states. For two-qubit states, 2-symmetric ex-
tendability implies 2-bosonic extendability. Hence, we can
use the condition of Eq. (2), which implies that ρAB and ρAC
are consistent only if (ψ−1 +ψ−2 )/2 ≥ −1/2. This in fact gives
a quantitative entanglement monogamy inequality [14, 46–49]
for Werner states.

We compare our condition to that given by the Coffman-
Kundu-Wootters (CKW) entanglement monogamy inequal-

FIG. 2: The two convex sets of (p1, p2, p3) corresponding to
the condition given by the separability condition of ρ̃(2)AB (the
polytope of yellow color) and the SSA condition (the convex

set of red color).

(a) (b)

FIG. 3: The green region is the exact condition for two
Werner states to be consistent. The pentagon defined by

ψ−1 + ψ−2 ≥ −1 and −1 ≤ ψ−i ≤ 1 is the condition given by
our criterion. (a) is the condition given by the CKW

entanglement monogamy inequality, and (b) is the SSA
condition.

ity [14],

C2
AB + C2

AC ≤ C2
A(BC),

where CAB = max{0,−ψ−1 }, CAC = max{0,−ψ−2 } are the
concurrences [50, 51] between A,B and A,C respectively,
while CA(BC) = 1 is the concurrence between subsystems A
and BC for Werner states. As shown in Fig. 3a, our condition
(the pentagon defined by ψ−1 +ψ−2 ≥ −1 and −1 ≤ ψ−i ≤ 1)
is always better than the condition given by the CKW inequal-
ity (the union of the yellow and green regions). That is, there
exist non-consistent Werner states that cannot be detected by
the CKW condition, but can be detected by our condition.

We have also computed the SSA condition for this particu-
lar case and plotted the regions of the SSA condition and our
condition in Fig. 3b. Again, the SSA condition (the union of
the yellow and green regions) is incomparable with ours.
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VI. GENERALIZATIONS

Our method extends to the following more general settings.
Let ρAB1B2···Br ∈ D(HA ⊗ H⊗rB ) be a given density ma-
trix. The (r, k)-bosonic extension problem of ρAB1B2···Br
asks whether there is a global state ρAB1B2···Bk ∈
D
(
HA ⊗ (

∨kHB)
)

whose marginal on A,B1, B2, . . . , Br is
ρAB1B2···Br . Following a similar argument as in the proof of
Lemma 2 and using the Chiribella’s theorem [23, 39], one ob-
tains a necessary condition generalizing Lemma 2. Namely,

ρ̂
(k)
AB1B2···Br =

r∑
s=0

ps(k, dB , r)IA ⊗ Es(ρAB1···Bs) (8)

is an (r + 1)-party separable state. Here,

ps(k, d, r) =

(
k
s

)(
d+r−1
r−s

)(
d+k+r−1

r

) , (9)

is a distribution satisfying
∑r
s=0 ps = 1, and Es is the super-

operator given by

Es(ρ) =
ds
dr

Π+
r (ρs ⊗ I⊗(r−s))Π+

r , (10)

where dr =
(
d+r−1
r

)
, and Π+

r is the projection onto the sym-
metric subspace ∨rCd.

At the moment, however, we do not know how to generalize
the formula in Theorem 1 to this multi-party setting as the
procedure of tracing out A′, B′1, . . . , B

′
r does not commute

with the projection Π+
r in general. We leave it as an open

problem for future work.

VII. SUMMARY AND DISCUSSION

We have proposed a method to detect consistency of over-
lapping quantum marginals. The key idea is to construct some
other density matrix from the linear combinations of the lo-
cal density matrices and test the separability of the derived
density matrix, which leads to simple necessary conditions
for the consistency of overlapping quantum marginals. Our

idea is closely related to the finite quantum de Finetti’s theo-
rem [18, 21, 22, 52], which states that the r-particle marginal
of a symmetric N -particle state cannot be too far from an r-
particle separate state, with a distance bounded by O(1/N)
for fixed d and r. Therefore, if an r-particle state is too far
from a separable state, then it cannot be the marginal of a
symmetric N -particle state. However, to directly check the
distance to the nearest separable state is not easy. Moreover,
the bound given in the known versions of finite quantum de
Finetti’s theorem are in general not tight, so when N is small
those bound may not be useful.

For comparison, our method gives simple necessarily con-
ditions, which are evidently good even for N small. Our
method can also lead to improved bound in the finite de
Finetti’s theorem. For instance, as a direct consequence of
Theorem 1, we can obtain that for any k-symmetric extendible
state ρAB , its distance to separable states is upper bounded by

min
ρ∈Sep

‖ρAB − ρ‖1 ≤
∥∥∥ρAB − ρ̃(k)AB

∥∥∥
1
≤ 2d2B
d2B + k

, (11)

which slightly improves that of [22].
Another direct application is that in Lemma 2 if we choose

k = 1, then from Eq. (2), we get that for any bipartite state
ρAB , the state

σAB =
1

dB + 1
(ρA ⊗ IB + ρAB), (12)

is always separable. Notice that Eq. (12) implies that σA =
ρA, so we have (dB + 1)σAB − σA ⊗ IB = ρAB ≥ 0.
This gives an interesting sufficient condition of separability
for σAB : if (dB + 1)σAB ≥ σA⊗ IB , then σAB is separable.
We may also compare this with the known necessary condi-
tion of separability for σAB [53, 54]: if σAB is separable,
then σAB ≤ σA ⊗ IB .
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