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A non-abelian anyon can only occur in the presence of ground state degeneracy in the plane. It is conceivable

that for some strange anyon with quantum dimension > 1 that the resulting representations of all n-strand braid

groups Bn are overall phases, even though the ground state manifolds for n such anyons in the plane are in

general Hilbert spaces of dimensions > 1. We observe that degeneracy is all that is needed: for an anyon with

quantum dimension > 1 the non-abelian statistics cannot all be overall phases on the degeneracy ground state

manifold. Therefore, degeneracy implies non-abelian statistics, which justifies defining a non-abelian anyon

as one with quantum dimension > 1. Since non-abelian statistics presumes degeneracy, degeneracy is more

fundamental than non-abelian statistics.

PACS numbers: 05.30.Pr, 03.65.Vf, 03.67.Lx

I. INTRODUCTION

In 1991, the potential realization of non-abelian statistics in

fractional quantum Hall states was proposed [1, 2]. Recently,

the Majorana zero-mode version of non-abelian statistics has

been intensively pursued in experiments using nanowires (see

Ref. [3]). More generally, non-abelian statistics occur in topo-

logical phases matter—quantum phases of matter that exhibit

topological orders [4]. A direct observation of non-abelian

statistics will be to braid the non-abelian objects. But an eas-

ier experiment than braiding non-abelian objects is to observe

the Ising fusion rule σ⊗σ = 1⊕ψ. This Ising fusion rule im-

plies degeneracy, and more generally any anyon with quantum

dimension d > 1 has degeneracy. Does non- abelian statistics

follow from degeneracy? [5] In this letter, we point out that

indeed degeneracy implies non-abelian statistics. Since de-

generacy is a prerequisite for non-abelian statistics, degener-

acy is more fundamental than non-abelian statistics in a sense.

Without our observation, replacing non-abelian statistics by

degeneracy is unjustified.

Non-abelian statistics is a fundamentally new form of par-

ticle interactions. This “spooky action” is a manifestation of

entanglement in the degenerate ground states—the character-

istic attribute of quantum mechanics according to Schödinger.

The central role that braiding plays in recent work on ultracold

atoms can be seen in, e.g. [6–8]. Besides its general interest

as a new form of particle interaction, non-abelian statistics

underlies the idea of topological quantum computation—the

braiding matrices are inherently fault-tolerant quantum cir-

cuits [9–11]. Therefore, it is crucial to confirm non-abelian

statistics by experiments. The Ising fusion rule σ⊗σ = 1⊕ψ
is amenable to experimental test in nanowire technology now

[12]. Our result means that if we can verify a non-abelian

fusion rule by experiments, then on one hand, it is also a

verification of non-abelian particle interactions, and on the

other hand, it establishes the feasibility of the construction of

a topological quantum computer.

II. ANYON MODELS

Anyons are topological quantum fields materialized as fi-

nite energy particle-like excitations in topological phases of

matter. Like particles, they can be moved, but cannot be

created or destroyed by local operators alone. Two anyons

have the same anyon type or topological charge if they dif-

fer by local operators. There are two equivalent ways to

model anyon systems. We can focus on the ground state man-

ifold V (Y ) of an anyonic system on any possible space Y ,

and then the anyon system is modeled in low energy by a

(2+1)-dimensional topological quantum field theory (TQFT)

{V (Y )}. An alternative is to consider the fusion and braid-

ing structures of all elementary excitations in the plane. The

anyon system is then equivalently modeled by a unitary mod-

ular (tensor) category C. The two notions (2 + 1)-TQFT and

modular category are essentially the same [13]. Therefore,

anyon systems can be modeled either by TQFTs or unitary

modular categories. In this letter, we will use unitary modular

categories to model anyon systems (see Ref. [14]).

In the modular category model, an anyonX is a simple ob-

ject that abstracts an irreducible representation of some sym-

metry algebra. The topological charge or anyon type x of an

anyon X is an equivalent class of anyons [15]. All possi-

ble topological charges in an anyon system form a finite la-

bel set L = {a, b, ...} with fusion rules {N c
ab}, where N c

ab

are non-negative integers [14]. The fusion rule N c
ab encodes

the possible topological charges c that will appear when two

anyons of types a, b are fused: if N c
ab = 0, then anyons of

type c will not appear; otherwise N c
ab > 0 and there are N c

ab

different fusion channels for anyons A,B to fuse to anyon

C. There is always a label 1 in L that corresponds to the

ground state or vacuum. In the famous Ising theory, the la-

bel set is L = {1, σ, ψ}. Usually, we write the fusion rules

as a tensor-sum a ⊗ b = ⊕c∈LN c
abc. There are always the

trivial fusion rules 1 ⊗ x = x ⊗ 1 = x. In this tensor-sum

notation, the non-trivial fusion rules for the Ising theory are

σ ⊗ σ = 1 ⊕ ψ, σ ⊗ ψ = ψ ⊗ σ = σ, ψ ⊗ ψ = 1. The

anyon σ is called the Ising anyon. The anyon ψ is a fermion.

Generally, an anyon is self-dual if it has the same anyon type

as its anti-particle. Both σ and ψ are self-dual, hence ψ is
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Majorana—a real fermion.

III. QUANTUM DIMENSION AND DEGENERACY

An important quantum number of an anyon X is its quan-

tum dimension dX—a positive real number ≥ 1. The quan-

tum dimension of an anyon can be easily computed from its

fusion rules: regard all anyon types as unknown variables and

the fusion rules as polynomial equations, then the maximal

real solutions of these polynomial equations are the quan-

tum dimensions. For the Ising fusion rules, the quantum di-

mension of the Ising anyon σ is dσ =
√
2 and the Majo-

rana fermion dψ = 1. The quantum dimension dX of an

anyonX determines the asymptotic growth rate when n iden-

tical anyons X are confined to the sphere: the dimension of

the degeneracy ground state manifold VX,n,1 grows as dnX as

n → ∞. Therefore, an anyon X leads to degeneracy in the

plane if and only if its quantum dimension dX > 1.

IV. BRAID GROUPS AND NON-ABELIAN STATISTICS

In two spatial dimensions, statistics of quasi-particles can

be more general than bosons and fermions (see Ref. [16]). An

exotic form of statistics is not an overall phase, but a unitary

matrix: the overall change when two anyons X in n identical

anyons X are exchanged is a unitary matrix on the degener-

acy ground state manifolds Vx,n,a for some total topological

charge a. It follows that non-abelian statistics presumes de-

generacy.

The ground state manifold Vx,n,a is a representation of

the n-stand braid group Bn. It is well-known that the braid

group Bn is generated by n elementary braids {σi}, i =
1, 2, ..., n − 1. Non-abelian statistics means that the image

of the representation for some Bn is a non-abelian subgroup

of the unitary groupU(Vx,n,a). It is conceivable that for some

particular anyon X with quantum dimension > 1 that all rep-

resentations of Bn are overall phases, even though VX,n,a are

Hilbert spaces of dimensions > 1 for general n. We will see

below that this cannot occur. At the end of Sec. IIB in [17], a

weaker version of degeneracy implies non-non-abelian statis-

tics is proved [18].

V. DEGENERACY IMPLIES NON-NON-ABELIAN

STATISTICS

When n anyonsX are pinned in the plane, the ground state

manifold VX,n,a for some total charge a consists of exponen-

tially closed degenerate ground states. An orthonormal basis

of VX,n,a is usually represented by labelled fusion trees (see

Ref. [14]). The statistics of the anyon X is computed by

stacking braids on top of any state in VX,n,a. Physical states

have to satisfy fusion rules at each trivalent vertex.

An anyon X with dX > 1 is self-dual if and only if X ⊗
X = 1 ⊕ Y ⊕ ... for some non-trivial anyon Y , which could

have multiplicity. Otherwise, there is a different anyon X∗

such that X⊗X∗ = 1⊕Y ⊕ ... for some nontrivial anyon Y .

Theorem: SupposeX is an anyon with quantum dimension

dX > 1. Then

1) IfX is self-dual, the image of the afforded representation

of the 3-strand braid group B3 is non-abelian;

2) IfX is non-self-dual, the image of the afforded represen-

tation of the 4-strand pure braid group P4 is not trivial up to

scalars.

If an anyonX with dX > 1 is self-dual, to show that the 3-

strand braid group B3 has an image which is non-abelian, we

consider the following braid b = σ−1

2
σ−1

1
σ2σ1 in the 3-strand

braid group B3. Note the braid is the commutator of the two

elementary braids σ1 and σ2. We choose the representation

VX,3,X [19]. Note that dimVX,3,X ≥ 2. Starting with the state

of three anyons X in VX,3,X represented by the fusion tree

below the bottom horizontal line, we braid the three anyons

X through the braid b. We want to compute the resulting state

after braiding b with the constraint that the total charge of the

first two anyons X is Y (See Fig. 1).

1 X

Y X

← b

FIG. 1. (Color online) The self-dual case

By sliding and twisting, we can deform the thick braided

arc in Fig. 2 to the thick interval in the trivalent vertex without

deforming the other arc, hence deforming the braided fusion

tree to a trivalent vertex. Therefore, up to an overall non-zero

scalar α = θ2XR
Y
XX , the resulting state is a trivalent vertex

state (See Fig. 2). If Y has multiplicity, we choose a trivalent

vertex state where the braiding RYXX acts as a scalar.

The trivalent vertex state is non-zero because the fusion rule

is admissible. On the other hand, if the braid b has the same

image as the identity up to some scalar γ, we can replace the

braid b between the two horizontal lines in Fig 1. by the iden-

tity braid. Then the resulting state will be 0 due to the no-

tadpole rule (See Fig. 3).

This contradiction implies that the image matrix of b is not

a scalar. It follows that the images of the elementary braids σ1
and σ2 do not commute.

IfX is non-self-dual, then we will show that there is a braid

in B4 whose image is not the identity up to an overall scalar.
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1 X

Y X

= α

X

Y X

6= 0

FIG. 2. Self-dual case: a non-zero state

1 X

Y X

= γ

1 X

Y X

= 0

FIG. 3. Self-dual case: a vanishing state

Consider the following braid b′ in the 4-strand braid group

B4 (See Fig 4).

1

X X∗

Y

X X∗

Y

X X∗

1

X X∗

← b′

FIG. 4. The non-self-dual case

Similarly to the argument above, on one hand we have the

identity in Fig. 5, which shows the resulting state is non-zero.

On the other hand, if the image of the middle braid b′ is the

1

X X∗

Y

X X∗

Y

X X∗

1

X X∗

= α

Y

X X∗

Y

6= 0

FIG. 5. Non-self-dual: the overstrands result in a non-zero scalar.

The right-hand side is a non-zero state.

same as the identity up to an overall phase, then Fig. 6 implies

that the resulting state would be 0.

1

X X∗

Y

X X∗

Y

X X∗

1

X X∗

= γ

1

X X∗

Y

Y

X X∗

1

= 0

FIG. 6. Non-self-dual: replacing b′ by the identity braid results in a

zero state.

The contradiction implies that the image of the braid b′ is

not a scalar.

VI. CONCLUSIONS

In this letter, we find that degeneracy is more fundamental

than non-abelian statistics. One consequence is that experi-

mental confirmation of non-abelian fusion rules implies non-

abelian braiding statistics if anyon systems are modeled by

TQFTs or unitary modular categories up to overall phases.

VII. APPENDIX

Our Theorem is proved using graphical calculus–geometric

manipulation of operators in the algebraic theory of anyons,

i.e. ribbon categories. One may also perform these calcula-

tions directly. We illustrate this by verifying that the state in

Fig. 2 (self-dual case) is non-zero, making free use of the

standard notation and axioms of ribbon categories (see e.g.

[20]).

First we choose a basis for Hom(X ⊗ X,Y ) with respect

to which the braiding cX,X acts diagonally (on the right), and
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fix a non-zero element h ∈ Hom(X⊗X,Y ). The map in Fig.

2 is, with right to left composition read from bottom to top:

(h⊗ IX)(c−1

X⊗X,X)(IX ⊗ cX,X)(cX,X ⊗ IX)(bX ⊗ IX),

where bX ∈ Hom(1, X ⊗ X) is the creation operator and

IX is the identity map. We wish to show that this is a non-

zero vector. Two key axioms will be used: 1) the functoriality

of the braiding: cX,Y (f ⊗ g) = (g ⊗ f)cX′,Y ′ where f ∈
Hom(X ′, X) and g ∈ Hom(Y ′, Y ) and 2) rigidity: (dX ⊗
IX)(IX ⊗ bX) = IX where dX ∈ Hom(X ⊗ X,1) is the

annihilation operator. Using the fact that cX,XbX = α1bX for

some α1 6= 0 and (h ⊗ IX)(c−1

X⊗X,X) = c−1

Y,X(IX ⊗ h) we

simplify to:

α1c
−1

Y,X(IX ⊗ h)(IX ⊗ cX,X)(bX ⊗ IX).

Now since (IX ⊗ h)(IX ⊗ cX,X) = α2(IX ⊗ h) for some

α2 6= 0 and c−1

Y,X is invertible, it is enough to see that

(IX ⊗ h)(bX ⊗ IX) 6= 0.

For this we observe that

0 6= h = (h)(dX ⊗ IX ⊗ IX)(IX ⊗ bX ⊗ IX)

which then becomes

(dX ⊗ IY )(IX ⊗ IX ⊗ h)(IX ⊗ bX ⊗ IX).

Factoring this we obtain

(dX ⊗ IY )(IX ⊗ [(IX ⊗ h)(bX ⊗ IX)]) 6= 0.

Thus the factor (IX ⊗ h)(bX ⊗ IX) 6= 0, as desired.
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