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We study the strong coupling between photons and atoms that can be achieved in an optical
nanofiber geometry when the interaction is dispersive. While the Purcell enhancement factor for
spontaneous emission into the guided mode does not reach the strong-coupling regime for individual
atoms, one can obtain high cooperativity for ensembles of a few thousand atoms due to the tight
confinement of the guided modes and constructive interference over the entire chain of trapped
atoms. We calculate the dyadic Green’s function, which determines the scattering of light by atoms
in the presence of the fiber, and thus the phase shift and polarization rotation induced on the guided
light by the trapped atoms. The Green’s function is related to a full Heisenberg-Langevin treatment
of the dispersive response of the quantized field to tensor polarizable atoms. We apply our formalism
to quantum nondemolition (QND) measurement of the atoms via polarimetry. We study shot-noise-
limited detection of atom number for atoms in a completely mixed spin state and the squeezing of
projection noise for atoms in clock states. Compared with squeezing of atomic ensembles in free
space, we capitalize on unique features that arise in the nanofiber geometry including anisotropy of
both the intensity and polarization of the guided modes. We use a first principles stochastic master
equation to model the squeezing as function of time in the presence of decoherence due to optical
pumping. We find a peak metrological squeezing of ∼ 5 dB is achievable with current technology
for ∼ 2500 atoms trapped 180 nm from the surface of a nanofiber with radius a = 225 nm.

I. INTRODUCTION

Strong coupling between atoms and photons is at the
heart of many quantum information processing proto-
cols including efficient generation of remote entanglement
[1, 2], quantum data storage and retrieval [3], and QND
measurements [4]. From a general perspective, strong
coupling arises when atoms radiate predominantly into
the electromagnetic field mode that defines the quan-
tum atom-light interface. For an individual atom, the
strong coupling regime is attained via the Purcell effect,
whereby the boundary conditions of nearby dielectrics
and/or conductors enhance radiation into a desired mode
relative to all other modes. This can be achieved
with Fabry-Perot cavities (cavity QED) [5] and/or via
nanophotonic structures engineered such that the radia-
tion is predominantly into a specified mode [6–8]. The
Purcell enhancement factors for emission into a guided
or cavity mode scale respectively as Γ1D/Γvac ∼ σ0/A
and Γcav/Γvac ∼ Qλ3/V ∼ Fσ0/A. Here Γvac is the free
space spontaneous emission rate, σ0 ∝ λ2 is the resonant
absorption cross section, Q, V , and F , are the cavity
quality factor, volume, and finesse respectively, and A
is the effective area of the cavity or guided mode that
couples to the atom. The strongest coupling occurs on
resonance, and thus much effort has been devoted to de-
veloping the largest possible Γcav and Γ1D through ultra-
high-Q, small-volume resonators [5, 9, 10] and through
nanophotonic plasmonic [11, 12], metamaterial [13], and
dielectric [8, 14] waveguides.

In free space, where there is no Purcell enhancement,
strong coupling can be achieved via the cooperativity of
atomic ensembles. This is most naturally implemented

in a dispersive regime, off resonance, where light elas-
tically scattered from the ensemble constructively inter-
feres to match the mode of an exciting paraxial probe
[15]. The cooperativity per atom in a typical paraxial
beam is small, Γ1D/Γvac ∼ σ0/A ∼ 10−6. The total
cooperativity, however, can be significant for sufficiently
large ensembles, e.g. NA ∼ 107 atoms. The key parame-
ter that characterizes cooperativity is the total resonant
optical density of the ensemble, OD = NA(σ0/A). Such
strong cooperativity in free space has been employed
in a variety of applications including quantum memory
for storage of photonic states [16] and the generation of
squeezed states of the collective spin of the ensemble via
quantum nondemolition (QND) measurement [17–20].

A particular system that combines the elements above
consists of cold atoms trapped in the evanescent field of
the guided mode of a tapered optical nanofiber with a
subwavelength diameter [21–25] (see Fig. 1). The typi-
cal resonant OD per atom, or OD/NA, in the nanofiber
(σ0/A ∼ 10−2) is boosted by orders of magnitude over
free space for paraxial beams. However, one cannot reach
the strong coupling regime where Γ1D is on the order
of Γvac as is possible in engineered nanophotonic waveg-
uides, such as those arising in photonic crystals [8], where
atoms can be trapped at positions of peak intensity of the
field. One can, however, achieve strong cooperativity in
the dispersive regime with a moderately sized ensemble.
When compared to free space, all light scattered into the
guided mode is automatically mode matched, and thus,
given the relatively large ratio σ0/A, one can achieve high
OD with only a few thousand atoms (see Fig. 1). Such
strong cooperativity opens the door to new regimes to
create non-Gaussian quantum states of the ensemble [26]
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FIG. 1. Cooperativity and mode-matching for various atom-
light geometries. (a) The beam area at the waist of a tightly
focused beam is closely matched with the atomic scattering
cross section, but the scattered light of a single atom is poorly
mode-matched with the probe. (b) A paraxial beam probing
a rarefied atomic cloud whose scattered radiation interferes
constructively in the forward direction. (c) Atoms trapped in
a 1D optical lattices near the surface of an optical nanofiber
interacting with a fiber-guided probe. The tight confinement
and automatic mode matching that accompanies scattering
into the guided mode leads to strong cooperativity in the
atom-photon interaction.

and potentially to implement nonlinear optics at the level
of a few photons [27–29].

One-dimensional optical lattices in nanofibers based
on multiple co- and counter-propagating trapping beams
have been loaded with up to several thousand alkali
atoms [21, 22]. This has proved a fruitful platform for
quantum information processing. The anisotropic nature
of the strong atom-light coupling has been exploited for
control of internal atomic states [30], enhanced coupling
into a preferred propagation direction [31, 32], and op-
tical switching [29]. Off resonance, dispersive coupling
has allowed for non-destructive atom counting [33, 34]
and storage of fiber-guided light [35, 36]. Recent demon-
strations of photonic crystal cavities fabricated on the
nanofiber [37–39] promise further enhanced atom-light
coupling.

In this paper we study the quantum atom-light in-
terface in the dispersive regime for an optical nanofiber
geometry. We focus here on the coupling between the
atomic spin and light polarization induced by the elastic
scattering of photons by tensor-polarizable cesium atoms
trapped near the surface of the nanofiber. This provides
an entangling interaction that can be employed to gener-
ate spin squeezing via QND measurement. Our analysis
unifies a variety of different approaches found in the liter-
ature, including direct calculation of the dyadic Green’s
function for photon scattering [6, 11, 40–45] and the
input-output formalism studied for one-dimensional field
theories based on Heisenberg-Langevin equations [46–51].

The remainder of this article is organized as follows.
In Sec. II we solve for the mode decomposition of the
dyadic Green’s function which determines the electric
field scattered by a point dipole near the surface of the
nanofiber. This allows us to calculate the phase shift

and polarization transformation for fiber-guided photons
induced by tensor-polarizable atoms in the dispersive
regime. We connect this with a fully quantum mechani-
cal treatment based on a Heisenberg-Langevin picture in
Sec. III. The formalism we develop is used in Sec. IV to
study QND measurement of atoms based on polarization
spectroscopy. We consider shot-noise-limited atom detec-
tion as well as measurement-backaction-induced squeez-
ing of spin projection noise. We study squeezing of the
collective pseudospin associated with ensembles of atoms
in the atomic clock state and calculate its dynamics based
on a first principles stochastic master equation that in-
cludes both the effects of QND measurement as well as
decoherence due to optical pumping. We conclude with
a summary and outlook for future research in Sec. V.

II. DYADIC GREEN’S FUNCTION AND
INPUT-OUTPUT FIELD RESPONSE

Given a point particle with tensor polarizability α
↔

at
position r′ near the surface of a nanofiber, the field at
frequency ω0 is given by the solution to the wave equa-
tion,[
−∇×∇×+n2(r)k2

0

]
E(r)=−4πk2

0δ
(3)(r−r′)α↔·E(r), (1)

where k0 = ω0/c and n(r) is the spatially varying in-
dex of refraction that describes the fiber; Gaussian-cgs
units are used throughout. For an asymptotic input field
Ein(r), the scattering solution to Eq. (1) is given by the
Lippmann-Schwinger equation [44],

Eout(r) = Ein(r) +
↔
G(+)(r, r′;ω0) ·α↔ ·Eout(r

′) (2a)

≈ Ein(r) +
↔
G(+)(r, r′;ω0) ·α↔ ·Ein(r′), (2b)

where in Eq. (2b) we have made the first Born approx-
imation valid for weak scattering. The fundamental ob-
ject that fully characterizes the scattered radiation as
well as the energy level shift and modified decay rate
of a scatterer near the dielectric is the dyadic Green’s

function,
↔
G(r, r′;ω0). This determines the scattered field

from a point dipole at r′, Escat(r) =
↔
G(+)(r, r′;ω0) · d,

and satisfies the equation of motion,[
−∇×∇×+n2(r)k2

0

]↔
G(r,r′;ω0)=−4πk2

0δ
(3)(r−r′)I

↔
, (3)

where I
↔

is the unit tensor.
The solution for the Green’s function

↔
G(r, r′;ω0), fol-

lowing from Maxwell’s equations, has been studied pre-
viously [40, 42, 44]. As we are interested here in the
forward-scattered components that lead to phase shifts
and polarization transformations, we directly calculate
↔
G(r, r′;ω0) through a decomposition into normal modes.
A complete set of eigenmodes in the presence of lossless,
spatially inhomogeneous dielectric are defined according
to the procedure of Glauber and Lewenstein [52]. We seek
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the eigenmodes fη(r), indexed by η, that satisfy the ho-
mogeneous wave equation in the absence of sources, i.e.,
Eq. (1) for α

↔
= 0 with the eigen-wavenumber k0 → kη.

To do so, one defines functions gη(r) ≡ n(r)fη(r) that
form a complete basis, as they are eigenfunctions of the
Hermitian operator, H(k0) = − 1

n(r)∇ × ∇ ×
1

n(r) + k2
0,

according to H(k0)gη(r) = ληgη(r). The eigenvalue,
λη = (ω2

0 − ω2
η)/c2, determines the wavenumber for a

given mode at frequency ωη. We are interested specif-
ically in the generalized transverse functions satisfying
∇ · [n(r)gη(r)] = 0 with eigenvalues λn 6= 0 [44]. These
fall into two categories, guided (η = µ) and unguided
(η = ν) modes, which together form a complete, or-
thonormal set for transverse vector functions,∫

d3r g∗η(r)·gη′(r) =

∫
d3rn2(r)f∗η (r)·fη′(r) = δη,η′ , (4)∑

η

gη(r)g
∗
η(r
′)=
∑
µ

gµ(r)g
∗
µ(r
′)+
∑
ν

gν(r)g
∗
ν(r
′)= δ̃(T)(r−r′)I

↔
, (5)

where δ̃(T )(r − r′) is the delta function for generalized
transverse vector fields [53]. It follows that the gener-
alized transverse dyadic Green’s function can be decom-
posed in terms of the eigenfunctions [40, 42]

↔
G(T )(r, r′;ω0) = −4π

∑
η

ω2
0fη(r)f∗η′(r

′)

ω2
0 − ω2

η

, (6)

where the eigenvalues appear as ω2
η = c2k2

η. The sum in-
cludes both guided and unguided contributions. We fo-
cus here on the guided-mode contribution to the Green’s
function.

We treat an optical nanofiber of radius a with step-
index profile,

n(r⊥) =
{
n1 r ≤ a
n2 r > a

, (7)

for a silica core (n1 = 1.4469) [54] and infinite vacuum
cladding (n2 = 1). For a cylindrically symmetric dielec-

tric the guided modes are fµ(r) = uµ(r⊥)eiβz/
√

2π, with
indices µ = {j, β, p} for the jth guided mode with propa-
gation constant β at frequency ωµ = ω(β) and polariza-
tion p. The transverse mode functions are normalized ac-
cording to

∫
d2r⊥ n

2(r⊥)u∗µ(r⊥)·uµ′(r⊥)
∣∣
β=β′ = δj,j′δp,p′

and have units 1/
√
A [55]. Two convenient guided-mode

bases are the quasilinear and quasicircular polarization
modes, described in Appendix A [54].

We consider nanofibers that support only the lowest
HE11 guided modes at the relevant frequency ω0 [56], and
thus we drop the mode index j. In this case there are four
guided modes: two polarizations p, each with propaga-
tion constant β(ω0) = ±β0 corresponding to forward and
backward propagation. The guided-mode contribution to
the dyadic Greens function is then

↔
Gg(r, r

′;ω0)=

∫ ∞
−∞

dβ
∑
p

−2ω2
0

ω2
0−ω2(β)

uβ,p(r⊥)u
∗
β,p(r

′
⊥)e

iβ(z−z′), (8)

where ω(β) is the frequency of the guided HE11 for a
given β.

For z > z′ (z < z′), the contribution of the guided
modes to the retarded (causal) Green’s function is found
by the usual displacement of the pole on the positive
(negative) β-axis into the upper (lower) half of the com-
plex plane. The result for z 6= z′ is [6]

↔
G(+)
g (r, r′;ω0)

=2πi
∑
b,p

Res|β=bβ0

[
−2ω2

0

ω2
0−ω2(β)

]
ubβ0,p(r⊥)u

∗
bβ0,p(r

′
⊥)e

ibβ0(z−z′)

=2πi
ω0

vg

∑
b,p

ub,p(r⊥)u∗b,p(r
′
⊥)eibβ0(z−z′)Θ

(
(z−z′)b

)
, (9)

where b = ± indicates the propagation direction, vg =
|dω/dβ|β=β0 is the group velocity at ω0, and Θ

(
b(z −

z′)
)

is a Heaviside function enforcing causality for the
forward- and backward-scattered fields. In the second
line, we have suppressed the label β0 as it is implicit in
the definition of the guided modes at frequency ω0.

Radiative properties of a scatterer (the decay rate and
energy level shift) are determined by evaluation of the
dyadic Green’s function at the source point r = r′ [45].
However, for z = z′ we cannot close the contour. Instead,
we expand the resonant denominator in Eq. (8) with the
poles moved to yield the retarded (causal) response,

1

(ω0+iε)2−ω2(β)
=

1

2ω(β)

[
1

ω0+iε−ω(β)
− 1

ω0+iε+ω(β)

]
,

and employ the usual distribution identities [42],

lim
ε→0+

1

ω0+iε∓ω(β)
= P

[
1

ω∓ω(β)

]
+iπδ(ω0∓ω(β)). (10)

Only the positive-frequency component contributes to
the δ-function, and it follows that the imaginary part
of the Green’s function at r = r′ that determines the res-
onant Purcell enhancement of spontaneous emission into
the guided modes is [41, 45, 57]

Im
[↔
G(+)
g (r′, r′;ω0=ωeg)

]
=π

ωeg
vg

∑
b,p

ub,p(r
′
⊥)u∗b,p(r

′
⊥), (11)

where ωeg is resonance frequency of the atomic scatterer.
The energy level shift of the scatterer due to its proximity
to the dielectric is found from the real part of the Green’s
function at r = r′. To find the total modified sponta-
neous emission rate and energy level shift one must in-
clude the unguided radiation modes [49] or employ other
representations of the Green’s function [43].

Equation (9) is the central result from which we can
calculate the dispersive response. Consider a forward-
propagating input field in the guided modes with fre-

quency ω0, positive-frequency amplitude F (+)
0 , and ar-

bitrary polarization, E
(+)
in (r) = F (+)

0 uin(r⊥)eiβ0z disper-
sively coupled to an atom at position r′. The effective
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mode area at the atom’s position is determined from
the total cycle-averaged power transported along the

nanofiber, Pin,z = (vg/2π)
∫
d2rn2(r⊥)|E(+)

in (r)|2, and

the intensity at the atom, Iin(r′) = (c/2π)|E(+)
in (r′)|2,

via the relation [58],

Ain ≡
Pin

Iin(r′)
=

1

ng|uin(r′⊥)|2
, (12)

where ng ≡ c/vg is the group index of refraction.
Substitution of the guided-mode Green’s function,

Eq. (9), into the Lippman-Schwinger equation, Eq. (2b),
yields the transmitted (forward-scattered) and re-
flected (backward-scattered) output fields, Eout(r) =

F (+)
0

[
u+,out(r⊥)eiβ0z + u−,out(r⊥)e−iβ0z

]
,

u+,out(r⊥) =
∑
p,p′

cptpp′u+,p′(r⊥) (13a)

u−,out(r⊥) =
∑
p,p′

cprpp′u−,p′(r⊥), (13b)

where we have decomposed the input into the polariza-
tion eigenmodes, uin(r⊥) =

∑
p cpu+,p(r⊥). For z > z′,

the transmission and reflection matrices are

tpp′ =δp,p′ + 2πik0ng u
∗
+,p(r

′
⊥) ·α↔ · u+,p′(r

′
⊥), (14a)

rpp′ =2πik0ng u
∗
−,p(r

′
⊥) ·α↔ · u+,p′(r

′
⊥)e2iβ0z

′
, (14b)

We focus here on the transmitted fields whose interfer-
ence with the input field for z > z′ results in a phase shift
and a polarization transformation. For weak scattering
the diagonal terms, tpp ≈

√
1−Rpeiδφp , determine the

phase shift and attenuation induced on each polarization
mode,

δφp =
2πk0

Ain
Re(αpp), (15a)

Rp =
4πk0

Ain
Im(αpp). (15b)

Here, the {p, p′}-element of the tensor polarizability is
given by, αpp′ ≡ e∗p′ · α

↔ · ep, with unit vectors for
each of the forward-propagating mode functions, ep ≡
u+,p(r

′
⊥)/|u+,p(r

′
⊥)|.

The phase shift per atom, Eq. (15a), is modified over
free space in two ways, both of which are captured
by the effective mode area Ain. First, although mate-
rial dispersion in an optical fiber is negligible over the
distances we consider, additional waveguide dispersion
can lead to a significant reduction in the group veloc-
ity [8, 14]. Such “slow light” enhances the atom-photon
coupling strength. In the nanofiber geometry this ef-
fect is moderate – we calculated the group index to be
ng ≈ 1.40. Second and more importantly, the tight spa-
tial confinement as measured by OD/NA significantly in-
creases the coupling strength over free space for every
atom along the nanofiber, which yields strong coopera-
tivity. In contrast, in free space diffraction restricts the

collective phase shift for an ensemble of atoms [15, 59].
For a Gaussian beam with beam waist w0, the total phase
shift induced by a collection of polarizable atoms will be
δφ = Neff2πk0Re(α)/A, where A = πw2

0/2 is the beam
area at the focus and Neff is the effective number of atoms
that radiate into this mode. One can couple strongly to
few atoms at the center by tightly focusing the beam or
couple weakly to many atoms by choosing a larger focal
volume, but hence, smaller cooperativity per atom.

The off-diagonal terms in the transmission matrix,
Eq. (14a), describe the polarization transformation. For
example, if we take the polarization of the modes to be
the quasilinear, p = {H,V } as defined in Eq. (A4), then
tHV ≡ χFar is the rotation angle of the Stokes vector on
the Poincaré sphere corresponding to the Faraday effect
[60, 61]. The phase difference in that basis, δφH − δφV ,
corresponds to birefringence induced on the guided mode
and tHV to Faraday rotation. Analyzed in the quasicir-
cular polarization modes (p = ±), given in Eq. (A3), the
differential phase δφ+ − δφ− corresponds to Faraday ro-
tation and t+− to birefringence. We make use of such po-
larization transformations as a means to nondestructively
measure the atoms and generate collective spin squeez-
ing.

III. HEISENBERG-LANGEVIN-PICTURE
SOLUTION AND ATOMIC RESPONSE

The Lippmann-Schwinger solution, Eq. (2b), deter-
mines the input-output relation for linear atomic re-
sponse given by the polarizability tensor α↔. In this sec-
tion we connect this with the fully quantum mechani-
cal description of dispersive atomic response and input-
output relations for the quantized guided modes. Follow-
ing Ref. [49], we use a Heisenberg-Langevin approach for
one-dimensional systems.

The positive frequency component of the quantized
electric field operator decomposes into guided and ra-

diation (unguided) modes, Ê(+) = Ê
(+)
g + Ê

(+)
r , where

Ê(+)
g (r) =

∑
b,p

∫ ∞
0

dω

√
h̄ω

vg
âb,p(ω)uµ(r⊥)eibβ(ω)z, (16a)

Ê(+)
r (r)=

∑
m,p

∫ ∞
0

dω

∫ kn2

−kn2

dβ
√
h̄ω âm,p(ω, β)uν(r⊥)eiβ(ω)z. (16b)

The HE11 guided modes are specified by µ = (ω, b, p),
where ω is the mode frequency, p is the polarization,
and the propagation direction b = ± corresponds to
wavenumber bβ(ω). The radiation modes are specified
by ν = (ω, β,m, p), where m is the azimuthal (an-
gular momentum) quantum number, p labels the two
orthogonal polarizations, and longitudinal propagation
constant β can vary continuously from −kn2 to kn2,
with k = ω/c [42, 49]. The creation/annihilation op-
erators satisfy the usual continuous-mode commutation
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relations, [âµ, â
†
µ′ ] = δb,b′δp,p′δ(ω − ω′) and [âν , â

†
ν′ ] =

δm,m′δp,p′δ(ω − ω′)δ(β − β′).
The Hamiltonian for the system is

Ĥ = ĤF + ĤA + Ĥint, (17)

where the free-field Hamiltonian decomposes into guided
and unguided modes,

ĤF =
∑
b,p

∫ ∞
0

dω h̄ωâ†µâµ+
∑
m,p

∫ ∞
0

dω

∫ kn2

−kn2

dβ h̄ωâ†ν âν . (18)

We consider here alkali atoms with ground and excited
levels, {|g〉 = |nS1/2, f,mf 〉}, {|e〉 = |nPj′ , f ′,mf ′〉},
where |f,mf 〉 denotes the hyperfine sublevels. The free
atomic Hamiltonian is

ĤA =
∑
g

Egσ̂gg +
∑
e

Eeσ̂ee, (19)

where σ̂ij ≡ |i〉〈j|. In the rotating wave approximation,
the atom-field interaction Hamiltonian is

Ĥint =−d̂·Ê = −
∑
e,g

[
d̂eg·Ê(+)(r′)+d̂ge·Ê(−)(r′)

]
, (20)

where the atomic dipole operator is projected between

excited and ground subspaces, d̂eg = P̂ed̂P̂g. The inter-
action Hamiltonian then takes the form,

Ĥint = −
∑
e,g

∑
b,p

∫ ∞
0

dω h̄gµ,e,g âµ σ̂eg

+
∑
m,p

∫ ∞
0

dω

∫ kn2

−kn2

dβ h̄gν,e,g âν σ̂eg

)
+H.c., (21)

where the coupling constants for guided/radiation modes
are

h̄gµ,e,g =

√
h̄ω

vg
〈e|d̂|g〉 · uµ(r′⊥)eibβ(ω)z, (22a)

h̄gν,e,g =
√
h̄ω 〈e|d̂|g〉 · uν(r′⊥)eiβ(ω)z. (22b)

The Heisenberg equations of motion are

dâµ
dt

= −iωâµ + i
∑
e,g

g∗µ,e,gσ̂ge, (23a)

dâν
dt

= −iωâν + i
∑
e,g

g∗ν,e,gσ̂ge, (23b)

dσ̂ge
dt

=−iωegσ̂ge+i

∫ ∞
0

dω
∑
e′,g′

[(
δee′ σ̂gg′−δgg′ σ̂e′e

)
{∑

b,p

gµ,e′,g′ âµ+
∑
m,p

∫ kn2

−kn2

dβ gν,e′,g′ âν

}]
. (23c)

Integrating the field equations,

âµ(t) = âµ(t0)e−iω(t−t0)

+ i
∑
e,g

g∗µ,e,g

∫ t

t0

dt′e−iω(t−t′)σ̂ge(t
′), (24a)

âν(t) = âν(t0)e−iω(t−t0)

+ i
∑
e,g

g∗ν,e,g

∫ t

t0

dt′e−iω(t−t′)σ̂ge(t
′), (24b)

substituting into Eq. (23c), and making the usual Markov
approximation [49] gives an expression for the ground-
excited coherences. This yields

dσ̂ge
dt

=−iωegσ̂ge−
∑
e′

Γee′

2
σ̂ge′ +i

∑
e′,g′

[
(δe,e′ σ̂gg′−δg,g′ σ̂e′e)

∫ ∞
0

dω

{∑
b,p

gµ,e′,g′ âµ(t0)+
∑
m,p

∫ kn2

−kn2

dβgν,e′,g′ âν(t0)

}
e−iω(t−t0)

]
,

where the decay rates of excited-populations and coher-
ences are given by

Γee′ = 2π
∑
µ,g

gµ,e,gg
∗
µ,e′,g|ω=ωeg

+ 2π
∑
m,p,g

∫ kn2

−kn2

dβ gν,e,gg
∗
ν,e′,g|ω=ωeg , (25)

and the small energy shift is absorbed into the transition
frequency ωeg = (Ee−Eg)/h̄. Equation (25) captures the
modification of the spontaneous emission rate due to the
nanofiber. The first sum describes decay into the guided
modes and the second into the unguided radiation modes
[43, 49, 62–64]. The decay rate of a given excited state
into all guided modes is given by

Γ1D
e =2π

∑
b,p,g

|gµ,e,g|2ω=ωeg
=

2π

h̄

ωeg
vg

∑
b,p,g

∣∣〈e|d̂|g〉·ubp(r′⊥)∣∣2. (26)

This is in agreement with the expected expression from
the guided-mode contribution to the dyadic Green’s func-
tion in Eq. (11),

Γ1D
e =

2

h̄

∑
g

〈g|d̂|e〉·Im
[↔
G(+)
g (r′, r′;ωeg)

]
·〈e|d̂|g〉, (27)

which is enhanced over the free-space rate by the Purcell
factor.

Here we are interested in linear response for excitation
far from resonance. We follow Ref. [65] and consider an
atom sufficiently far from the fiber surface such that the
modification of the spontaneous emission rate is small. In
this case the decay rate is approximated as Γee′ ≈ δe,e′Γe,
where Γe is the total decay rate from excited state |e〉,
given by the diagonal elements of Eq. (25). In steady
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state, the dipole operator in the linear regime (σ̂ee′ → 0)
is approximately

σ̂ge≈−
∑
g′

σ̂gg′

∫ ∞
0

dω

(∑
b,p

gµ,e,g′

ω−ωeg+iΓe/2
âµ(t0)

+
∑
m,p

∫ kn2

−kn2

dβ
gν,e,g′

ω−ωeg+iΓe/2
âν(t0)

)
e−iω(t−t0). (28)

By substituting this into Eq. (24a) and defining asymp-
totic modes, âin(ω) = limt0→−∞ â(t0)eiωt0 , âout(ω) =
limt→+∞ â(t)eiωt [51], we obtain the input-output rela-
tionship for the guided modes,

âout
µ (ω)= âin

µ (ω)−2πi
∑
b′,p′

∑
e,g,g′

σ̂gg′
g∗µ,e,ggµ′,e,g′

ω−ωeg+iΓe/2
âin
µ′(ω)

−2πi
∑
m,p

∑
e,g,g′

∫ kn2

−kn2

dβ σ̂gg′
g∗µ,e,ggν′,e,g′

ω−ωeg+iΓe/2
âin
ν (ω). (29)

This input-output relation contains the phase shift on
forward scattered modes as well as attenuation due to
elastic scattering into all other modes. For a probe with
frequency ω0, Eq. (29) agrees with the expected form
given by the Lippmann-Schwinger equation in the first
Born approximation [66],

Ê
(+)
out,g(r, ω0) = Ê

(+)
in,g(r, ω0)

+
↔
G(+)
g (r, r′, ω0)·α̂↔·

[
Ê

(+)
in,g(r

′, ω0)+Ê
(+)
in,r(r

′, ω0)
]
, (30)

by noting that for the guided-mode dyadic Green’s func-
tion given in Eq. (9),∫

d2r⊥ u∗µ(r⊥) ·
↔
G(+)
g (r, r′, ω0) · α̂↔ · uµ′(r′⊥)

=i
2πω0

vg
u∗b,p(r

′
⊥) · α̂↔ · ub′,p′(r′⊥). (31)

Here, the atomic polarizability operator [61, 67, 68], is
given by

α̂
↔

= − 1

h̄

∑
e,g,g′

|g〉 〈g|d̂|e〉〈e|d̂|g
′〉

∆eg + iΓe/2
〈g′|, (32)

and ∆eg = ω0−ωeg is the laser detuning from the atomic
transition. For an atom in ground state |g〉 and polariza-
tion p, the phase shift can be expressed as [65]

δφp,g = 2π
ω0

vg
u∗+,p(r

′
⊥) · Re

[
〈g|α̂↔|g〉

]
· u+,p(r

′
⊥)

= −ω0

vg

∑
e

2π|〈e|d̂|g〉 · u+,p(r
′
⊥)|2

h̄∆eg
. (33)

We employ this dispersive response for QND measure-
ment of atoms, as we describe in the next section.

probe

trapped atoms

a)

b) c)

-4 -3 -2 -1 1 2 3 40

pro
be

polarimeter

nano�ber

FIG. 2. Quantum interface for spin-polarization coupling of
two 1D lattices of cold, trapped atoms and the guided modes
of an optical nanofiber. a) Schematic of the interface. A lin-
early polarized probe is launched into the nanofiber and the
output light is analyzed in a polarimeter. The atoms (green
circles), trapped in the x-z plane, couple to the evanescent
portion of the guided H- and V -modes. Contours of the H-
and V -mode intensities in b) the x-direction and c) the trans-
verse x-y plane show the mode anisotropy at the atomic po-
sitions.

IV. QND MEASUREMENT OF ATOMS

The dispersive interface between the atoms and
nanofiber guided photons provides the entangling mech-
anism necessary to perform a QND measurement on
the atoms. We restrict here to the quasilinear modes,
p = {H,V }, of a single HE11 guided mode at frequency
ω0, whose form is given explicitly in Eq. (A4). In typical
experimental configurations, two one-dimensional arrays
of atoms are trapped on either side of the nanofiber, see
Fig. 2. We define coordinate axes (x, y, z) with z ori-
ented along the fiber axis for forward propagation, and
the two chains of atoms lie in the x-z plane at azimuthal
angles φ′ = {0, π}. In the evanescent region, the H-mode
is purely ex-polarized at φ = ±π/2 and the V -mode is
purely ey-polarized at φ = {0, π}. At other azimuthal
angles the electric field is generally rotating along an el-
lipse in the x-z plane. The atoms at φ′ = 0 experience
H and V fields,

ub,H(r⊥, φ = 0) =
√

2
[
exur(r⊥) + ibezuz(r⊥)

]
(34a)

ub,V (r⊥, φ = 0) =
√

2eyuφ(r⊥), (34b)

where the real-valued functions uα(r⊥), given in
Eq. (A5), depend only on the radial coordinate. On the
opposite side of the fiber at φ′ = π, atoms experience
the same transverse electric field, but the z-component
changes sign. This broken symmetry has been used to
selectively address and separately control the two atomic
arrays [30, 32, 36].

We consider quasi-monochromatic fields at carrier fre-
quency ω0 that are sufficiently narrowband, ∆ω � ω0.
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For each guided mode we define input propagating,
continuous-mode field operators in the interaction pic-
ture [46, 47, 50],

âb,p(z, t) =
1√
2π

∫ ∞
0

dω âb,p(ω)ei[bβ0z−(ω−ω0)t], (35)

that satisfy the free-field commutation relations,[
âb,p(z, t), â

†
b′,p′(z

′, t′)
]

= δb,b′δp,p′δ(t−t′−(z−z′)/vg). (36)

In terms of these propagating modes the quantized elec-
tric field operator, Eq. (16a), becomes

Ê(+)(r⊥, φ, z; t)=
∑
b,p

√
2πh̄ω0

vg
ub,p(r⊥, φ)âb,p(z, t)e

ibβ0z, (37)

Considering here only the forward-propagating guided
modes (b = +), we drop the b index. The propagating
electric field, Eq. (37), interacts with the trapped atoms
via the dispersive light-shift Hamiltonian [61, 68, 69],

ĤLS = −
NA∑
n=1

Ê(−)(r′n; t) · α̂↔(n) · Ê(+)(r′n; t), (38)

where α̂
↔(n) is the atomic tensor polarizability operator,

given in Eq. (32), for the nth atom trapped near the
nanofiber surface at position r′n. We ignore here any
effects of atomic motion and treat the atoms as localized
at fixed positions in space.

The Lippmann-Schwinger scattering equation,
Eq. (30), follows in the time domain as the evolution
of coarse-grained input-ouput modes [46, 51, 65]. Since
multiple scattering is negligible and the propagation
time across the ensemble is small compared to the
atomic dynamics, we drop the position label z and index
the propagating fields by time alone; âb,p(z, t) → âb,p(t)
as is standard in input-output theory [46, 70] . It
follows that the effects of retardation can be ignored, in
which case each term in the sum over atoms contributes
equally for all atoms (for details see [50, 69]). The
forward-propagating output fields are then given by the
Fourier transform of Eq. (29), yielding [50]

âout
p (t) = âin

p (t) + i
2πω0

vg

∑
p′

[
N0u

∗
p(r
′
⊥, 0) · α̂↔ · up′(r′⊥, 0)

+Nπu
∗
p(r
′
⊥, π) · α̂↔ · up′(r′⊥, π)

]
âin
p′(t), (39)

where {N0, Nπ} are the total number of atoms trapped
at φ′ = {0, π}. The quantum effects from the first term
give rise to shot noise in the transmitted field at the de-
tector. The second term represents scattering into the
guided modes, as described by the dyadic Green’s func-
tion, Eq. (27).

We introduce the vector Stokes operators that describe
the polarization of the propagating fields in the quasilin-

ear HV -basis,

Ŝ1(t) = 1
2

[
â†H(t)âH(t)− â†V (t)âV (t)

]
, (40a)

Ŝ2(t) = 1
2

[
â†H(t)âV (t) + â†V (t)âH(t)

]
, (40b)

Ŝ3(t) = 1
2i

[
â†H(t)âV (t)− â†V (t)âH(t)

]
, (40c)

that satisfy equal-z commutation relations following from
Eq. (36), [

Ŝi(t), Ŝj(t
′)
]

= iεijkδ(t− t′)Ŝk(t). (41)

These, along with the total photon flux operator,

Ŝ0(t) = 1
2

[
â†H(t)âH(t) + â†V (t)âV (t)

]
, (42)

are used to reexpress the Hamiltonian, Eq. (38), in the
HV -basis,

ĤLS =− 2πh̄k0ng
∑
φ′=0,π

Nφ′

{ [
K̂HH(φ′) + K̂V V (φ′)

]
Ŝ0(t)

+
[
K̂HH(φ′)− K̂V V (φ′)

]
Ŝ1(t)

+
[
K̂HV (φ′) + K̂V H(φ′)

]
Ŝ2(t)

+ i
[
K̂HV (φ′)− K̂VH(φ′)

]
Ŝ3(t)

}
, (43)

The atomic couplings to the {H,V } modes,

K̂pp′(φ
′) ≡ |u∗p(r′⊥, φ′)||up′(r′⊥, φ′)| α̂pp′(φ′), (44)

are determined by components of the quantum mechan-
ical tensor operator weighted by the transverse mode

functions at the atomic position, α̂pp′(φ
′) = e∗p′(φ

′) · α̂↔ ·
ep(φ

′), whose classical analog appeared in Eq. (15a).
We explore a QND measurement of 133Cs atoms in

the electronic ground state, 6S1/2, via polarization spec-
troscopy based on the collective atom-light coupling
described by the dispersive light-shift Hamiltonian in
Eq. (43). Polarization transformations occur due to the
tensor nature of the atomic response,

α̂
↔

=
∑
f,f ′

α0(∆ff ′)
∑
i,j

↔̂
A(f, f ′), (45)

where the operator
↔̂
A(f, f ′) =

∑
i,j Âij(f, f

′)ei ⊗ ej
decomposes into irreducible components within each
ground hyperfine multiplet f for light detuned near ex-
cited multiplet f ′,

Âij(f,f
′)=C

(0)
ff ′δi,j+iC

(1)
ff ′ εijkf̂k

+C
(2)
ff ′

[
1
2 (f̂if̂j+f̂j f̂i)− 1

3 f̂· f̂δi,j
]
. (46)

Here, α0(∆ff ′) = − σ0

8πk0
Γ

∆ff′+iΓ/2
is the characteristic

dynamic polarizability where σ0 = 3λ2/2π is the resonant

scattering cross section, f̂ is the atomic spin operator
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in hyperfine multiplet f , and C
(K)
ff ′ are coefficients for

irreducible rank-K components defined in [61].
In addition to the atomic tensor response, the

nanofiber geometry gives rise to unique features of po-
larization spectroscopy not present in free space. The
spatial anisotropy of the intensity for the quasilinearly
polarized guided modes leads to unequal scattering of
the H and V modes, producing intrinsic birefringence
even for a purely scalar atomic polarizability. In partic-
ular, atoms trapped on the quasi-H axis leads to a phase
delay of this mode relative to the fast quasi-V axis. This
birefringence was exploited by Dawkins et al. [33] as
a mechanism for implementing a dispersive QND mea-
surement of the number of atoms trapped around the
nanofiber, as we treat in the next section.

A. Dispersive atom number measurement

The anisotropy of the guided modes provides a mech-
anism for counting the number of atoms trapped around
the nanofiber based on polarization spectroscopy. We
consider NA atoms, each in a completely mixed hyperfine
spin state. In this case the atomic polarizability tensor

in Eq. (46) reduces to 〈Âij(f, f ′)〉 = C
(0)
ff ′δi,j , and the

collective interaction is determined entirely by the the
scalar (rank-0) terms. With the atoms trapped along the

quasi-H axis, while 〈K̂HH〉 6= 〈K̂V V 〉, the off-diagonal
elements in Eq. (43) do not contribute to the Birefrin-
gent interaction we are interested in and actually vanish
(〈K̂HV 〉 = 〈K̂V H〉 = 0) when x−, y− or z−axis is chosen
as the quantization axis which includes the one close to
the optimal choice of quantization axis for spin squeezing
we will discuss in the next section. Atoms on either side
of the nanofiber experience the same scalar light shift
yielding from Eq. (43) the Hamiltonian for QND mea-
surement of atom number,

ĤN = −2πh̄k0ng
∑

φ′={0,π}

Nφ′
[
〈K̂HH(φ′)〉 − 〈K̂V V (φ′)〉

]
Ŝ1(t)

= h̄χNNAŜ1(t). (47)

This birefringent interaction induces a rotation of the
Stokes vector around the S1-axis on the Poincaré sphere
through an angle,

χN =
σ0

AN

∑
f,f ′

C
(0)
ff ′

Γ

2∆ff ′
, (48)

characterized by an effective area, A−1
N ≡

(ng/2)
(
|uH(r′⊥)|2−|uV (r′⊥)|2

)
.

Dawkins et al. [33] used this interaction to make
a dispersive measurement of NA via birefringence po-
larimetry in the usual way: launching linearly polarized
light at 45◦ to the quasi-H axis, uin = (uH + uV )/

√
2,

and measuring the differential power between the guided
right-and left-circularly polarized photons. Thus, the

integrated measurement is described by the operator

M̂ ≡
∫ T

0
dt′Ŝout

3 (t′). The shot-noise variance of the po-

larimeter, ∆M2|SN = χ2
N ṄLT for integration time T ,

determines the fundamental resolution of the polarime-
ter. The smallest detectable atom number using this dis-
persive measurement is thus, δNA ∼ (χ2

N ṄLT )−1/2 [71].
In an ideal setting, δNA can always be reduced by in-
creasing the integration time, but in practice this time is
limited by atom loss. As a coarse approximation we take
this time to be T = γ−1

s , where γs is the photon scatter-
ing rate in free space, and assume perfect quantum effi-
ciency of the detectors. For detuning ∆ large compared
to the excited hyperfine splitting on the D1- or D2-line
(j′ = 1/2 or 3/2), the unit-oscillator scattering rate is

γs = σ0

Ain

(
Γ

2∆

)2
ṄL, with effective area determined by

the probe at the atomic position, Eq. (12). In this limit,

the rotation angle χN = C
(0)
j′ (σ0/AN )(Γ/2∆), Eq. (48),

yields a shot noise-limited atom number resolution,

δNA ∼
1

C
(0)
j′

√
A2
N

Ainσ0
, (49)

where C
(0)
j′ =

∑
f,f ′ C

(0)
ff ′ are the far-detuned, rank-0 co-

efficients on a j → j′ transition [61]. Using the param-
eters reported by Dawkins et al. [33], we find the shot-
noise limited minimum detectable atom-number δNA ∼
10 for atoms trapped at 1.8a ∼ 2.0a from the fiber axis
with a D2-line probe light.

In practice, loss and decoherence limit the atom-
number resolution [33, 72]. The experimental implemen-
tation reported by Dawkins et al. [33] implies a resolution
of a few tens of atoms for 200 ∼ 1000 trapped atoms. A
similar experiment based on a two-color QND measure-
ment in a nanofiber geometry was recently carried out
by Béguin et al. [34] to squeeze the uncertainty in the
number of trapped atoms. They achieved an atom num-
ber uncertainty of δNA = 8 for NA ∼ 2500 atoms, well
below standard quantum limit, δNA =

√
NA.

B. Collective spin squeezing via QND
measurement

The same birefringent interaction, Eq. (43), can be
utilized in a QND measurement to squeeze the pro-
jection noise of the collective atomic spin. We con-
sider squeezing of the uncertainty associated with the
“clock states” of cesium, |↑〉 = |6S1/2, f = 4,mf = 0〉
and |↓〉 = |6S1/2, f = 3,mf = 0〉, which define a pseu-
dospin within each atom and associated Pauli operators
{σ̂1, σ̂2, σ̂3}. The quantum uncertainty in the collective
pseudospin,

Ĵ3 =
1

2

NA∑
n=1

σ̂
(n)
3 , (50)
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fundamentally limits the precision of atomic clocks [73].
For atoms prepared in a spin coherent state (SCS) the
projection noise, ∆J2

3

∣∣
SCS

=NA/4, sets the standard quan-
tum limit for spin measurements. A spin squeezed state
(SSS) exhibits reduced fluctuations, ∆J2

3

∣∣
SSS

<NA/4, due

to negative pairwise correlations between the atoms [74].
Spin squeezing is typically quantified with the metrolog-
ical squeezing parameter defined by Wineland et al. [73],

ξ2 ≡ NA
∆J2

3

〈Ĵ||〉2
, (51)

where 〈Ĵ||〉 is the mean collective spin along the direction
of spin polarization.

The clock states are defined to have zero projection of
angular momentum with respect to a bias magnetic field
that defines a quantization axis, ez̃. Within the clock-
state subspace the rank-1 vector light shift in the dis-

persive Hamiltonian, Eq. (43), vanishes since 〈↑|f̂k|↑〉 =

〈↓|f̂k|↓〉 = 0 for any direction of the spin, k, and any
quantization axis, ez̃. Furthermore, as shown below,
atoms on either side of the nanofiber experience the same
birefringent coupling. The resulting Hamiltonian, re-
stricted to the clock subspace, couples the guided field
of the nanofiber to the J3-component of the collective
pseudospin. The interaction has contributions from both
the scalar and tensor light shifts,

ĤJ3 = h̄
{[(

χH,↑ + χV,↑
)
−
(
χH,↓ + χV,↓

)]
Ĵ3Ŝ0(t) (52)

+
[(
χH,↑ − χV,↑

)
−
(
χH,↓ − χV,↓

)]
Ĵ3Ŝ1(t)

}
,

where the coupling strength between an atom in the clock
subspace and a photon with polarization p = {H,V } is

χp,f ≡ −2πk0ng|up(r⊥)|2〈f, 0|α̂pp|f, 0〉, (53)

and f = {4, 3} labels {↑, ↓}. The diagonal terms in the
polarizability tensor are the same for atoms at positions
above and below the nanofiber, and thus all atoms con-
tribute equally. In addition, a constant birefringence pro-
portional to Ĵ0Ŝ1 is neglected here as it can be canceled
with a compensating waveplate. Finally, the first term
in Eq. (52) does not affect polarization spectroscopy, but
will act to rotate the pseudo-spin around the J3-axis
of the generalized Bloch sphere proportional to classi-
cal intensity fluctuations. While this does not affect the
squeezing of projection noise in Ĵ3, it affects the metro-
logically relevant squeezing by adding uncertainty to the
direction of the mean spin. By choosing a “magic fre-
quency” at which the light shifts on the two clock states
are equal,

χH,↑ + χV,↑ = χH,↓ + χV,↓, (54)

this term can be canceled [75], where we have ignored the
imaginary part of the coupling strengths in the dispersive
regime. Using the D1-line of 133Cs atoms as the probe

a)

c)b)

200

100

300

400

500

1

2

3

FIG. 3. Parameters of the atom-light interface using the
clock states of 133Cs. (a) Energy level structure for atoms
probed with one of two magic frequencies on the D1-line. (b)
Magnitude of the magic detunings at which the clock states
are equally light-shifted, |∆̃f |/2π ≡ |ω0 − ω̃f |/2π (in units
of MHz). There are two solutions shown as blue (dashed)
and red lines. (c) The coupling strength, as measured by the
magnitude of the polarization rotation angle on the Poincaré
sphere, |χJ3

|, for an atom trapped in the x-z plane at a dis-

tance r′⊥ = 1.8a from the fiber center. In both (b) and (c) we
plot the parameter as the direction of the clock-state quan-
tization axis is varied in the x-y plane, for the two possible
choices of magic detunings. See text for details.

light, there are two magic-frequency solutions, ω̃3 and ω̃4,
shown in Fig. 3(a).

Because the guided probe light at the position of the
atom will generally be elliptical, the light-shift interac-
tion coherently couples different magnetic sublevels in a
given manifold f , and thus does not conserve Ĵ3. For
example, the ellipticity of the probe light leads to a ficti-

tious magnetic field proportional to iE
(−)
in (r′)×E

(+)
in (r′)

that causes a precession of the spin within hyperfine man-
ifold f . This can be mitigated by a sufficiently strong bias
magnetic field compared to the fictitious field [76].

The remaining QND interaction Hamiltonian is

ĤJ3 = h̄χJ3
Ĵ3Ŝ1(t), (55)

where the rotation angle on the Poincaré sphere at the
magic wavelength is,

χJ3
=
(
χH,↑−χV,↑

)
−
(
χH,↓−χV,↓

)
= 2(χH,↑−χH,↓). (56)

In the standard way, squeezing the uncertainty in Ĵ3 by
QND measurement can be generated by preparing the
atoms in a SCS along Ĵ1, passing a probe prepared along
Ŝ2 with photon flux ṄL, and continuously monitoring the
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S3-component of the guided light in a polarimeter. The
measurement strength,

κ ≡ |χJ3
|2ṄL, (57)

quantifies the rate at which we squeeze projection noise,
with χJ3

given in Eq. (56). In the absence of any deco-
herence, such a QND measurement for integration time
T squeezes the initial uncertainty in Ĵ3 according to
(∆J2

3 )out = (∆J2
3 )in/(1 + r), where

r = κT (∆J2
3 )in (58)

is the integrated measurement strength [15, 60].
The strength of the birefringent interaction arises from

two fundamental sources. The anisotropy of the H and
V polarized modes leads to a polarization-dependent in-
dex of refraction, as described in Sec. IV A. In addition
there is a dependence of the atom-photon coupling on the
internal spin state of the atom due to the atomic tensor
polarizability. In particular, we are interested in the de-
pendence on the two clock states of the atom. This spin-
dependent coupling will depend on the choice of quan-
tization axis that defines the clock state with projection
mf = 0.

We combine these two effects and obtain a compact
expression for the coupling strength χJ3

using the irre-
ducible tensor decomposition of the atomic polarizability,
Eq. (46). Let {ex̃, eỹ, ez̃} be a space-fixed Cartesian co-
ordinate system, where ez̃ defines the quantization axis
of the atom, set by the magnetic field. Because of the
azimuthal symmetry of clock state around the ez̃-axis,
the polarizability tensor is diagonal in that basis. Noting

that 〈f, 0|f̂z̃|f, 0〉 = 0 and 〈f, 0|f̂2
x̃ |f, 0〉 = 〈f, 0|f̂2

ỹ |f, 0〉 =

〈f, 0|f̂2|f, 0〉/2 = f(f + 1)/2, it follows that the expec-
tation value of the irreducible rank-2 component of the
atomic polarizability is

〈f,0|α̂↔(2)|f,0〉=
∑
f ′

α0(∆ff ′)C
(2)
ff ′
f(f+1)

6

(
I
↔
−3ez̃⊗ez̃

)
. (59)

The combined scalar and tensor light shifts yield a cou-
pling strength, Eq. (53),

χp,f = ngσ0

(
af |up(r′⊥)|2 − bf |ez̃ · up(r′⊥)|2

)
, (60)

with coefficients that depend on detunings and atomic
structure,

af =
∑
f ′

(
C

(0)
ff ′ +

f(f + 1)

6
C

(2)
ff ′

) Γ

4∆ff ′
, (61)

bf =
f(f + 1)

2

∑
f ′

C
(2)
ff ′

Γ

4∆ff ′
. (62)

At the magic wavelength set by Eq. (54),

a4 − a3

b4 − b3
=
|ez̃ · uV (r′⊥)|2 + |ez̃ · uH(r′⊥)|2

|uH(r′⊥)|2 + |uV (r′⊥)|2
, (63)

which depends on the choice of quantization axis.
We write the effective rotation angle in the Hamilto-

nian, Eq. (55), as

χJ3
=

σ0

AJ3

Γ

2∆J3

, (64)

with an “effective detuning” set by the magic-wavelength
condition,

∆−1
J3
≡ 4

Γ
(b4−b3) =

∑
f ′

(
C

(2)
4f ′

10

∆4f ′
−C(2)

3f ′
6

∆3f ′

)
, (65)

and an effective area given by

A−1
J3

=ng
|ez̃ ·uV (r′⊥)|2|uH(r′⊥)|2−|ez̃ ·uH(r′⊥)|2|uV (r′⊥)|2

|uH(r′⊥)|2 + |uV (r′⊥)|2
. (66)

We see here the explicit dependence of the coupling
strength on both the anisotropy of the modes and on the
tensor atomic response, which in turn depends on a par-
ticular choice of clock states. The quantization axis that
maximizes χJ3

is that which minimizes AJ3 at a given
magic detuning. Since the z-component of the guided
modes is 90◦ out-of-phase with the transverse compo-
nents, the quantization axis maximizing the atom-light
coupling is specified by an angle in the transverse x-y
plane, ϕ,

ez̃ = cosϕex + sinϕey. (67)

The dependence of the magic detunings on the direc-
tion of quantization axis is shown in Fig. 3(b) for atoms
trapped at a typical distance of r′⊥ = 1.8a on the x-
axis. In typical operating regimes, the magic frequencies
are hundreds of MHz from resonance with either excited
state, placing the interaction in the off-resonant, disper-
sive regime. Using these magic detunings, in Fig. 3(c) we
show the variation in χJ3

as a function of ϕ. This sug-
gests that, based solely on the strength of the coherent
interaction, the x-axis is the optimal quantization axis.
As we will see in the next section, the optimal quantiza-
tion axis is significantly modified when decoherence due
to optimal pumping is included.

C. Decoherence due to optical pumping

The treatment above considers an idealized QND in-
teraction. The coupling of the atoms to the probe, how-
ever, will always lead to scattering of photons into modes
other than the forward-scattered guided mode. This is
accompanied by optical pumping that destroys the en-
tanglement associated with spin squeezing. In addition
it reduces the metrologically useful signal. The maxi-
mum achievable metrologically relevant squeezing is de-
termined by the balance of this decoherence with the
QND measurement.
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We model this using a first-principles stochastic master
equation description (SME) [15, 77],

dρ̂ = s

√
κ

4
H[ρ̂]dW +

κ

4
L[ρ̂]dt+

∑
n

Dn[ρ̂]dt, (68)

where s = sign(χJ3
) and ρ̂ is the collective atomic state.

The measurement strength κ = |χJ3
|2ṄL determines the

rate of the spin squeezing in the absence of decoher-
ence. The first two terms describe the QND measure-
ment, where dW is a stochastic Weiner increment satis-
fying dW 2 = dt. The conditional dynamics that result
from the measurement are generated by the superopera-
tor

H[ρ̂] = Ĵ3ρ̂+ ρ̂Ĵ3 − 2〈Ĵ3〉ρ̂, (69)

and the collective Lindblad map is

L[ρ̂] = − 1
2

(
ρ̂Ĵ2

3 + Ĵ2
3 ρ̂
)

+ Ĵ3ρ̂Ĵ3. (70)

The final term in Eq. (68) describes the effect of optical
pumping acting locally on each atom along the nanofiber.

The optical pumping map is governed by a standard
master equation [61]. Restricting to the two-dimensional
subspace associated with the clock states, the action on
the nth atom is

Dn[ρ̂] =
∑
f=3,4

{
− γf

2

[
ρ̂(|f,0〉〈f,0|)(n)+(|f,0〉〈f,0|)(n)ρ̂

]
+
∑
f̃=3,4

γf→f̃ (|f̃ ,0〉〈f,0|)(n)ρ̂(|f,0〉〈f̃ ,0|)(n)
}
. (71)

Here, γf is the total rate of photon scattering by atoms
in state |f, 0〉 and γf→f̃ is the rate of optical pumping be-

tween the clock states, |f, 0〉 → |f̃ , 0〉 (see Appendix B).
Expressed in terms of Pauli operators on the clock-state
pseudospin, the map acts as

Dn[ρ̂] =−
[

2(γ↑ + γ↓)− γ↑→↑ − γ↓→↓
4

]
ρ̂

− γ↑ − γ↓ − γ↑→↑ + γ↓→↓
4

(
σ̂

(n)
3 ρ̂+ ρ̂σ̂

(n)
3

)
+
γ↑→↑ + γ↓→↓

4
σ̂

(n)
3 ρ̂σ̂

(n)
3

+ γ↑→↓σ̂
(n)
− ρ̂σ̂

(n)
+ + γ↓→↑σ̂

(n)
+ ρ̂σ̂

(n)
− . (72)

There are three important features of this map that are
not typical in a QND measurement of ideal spin- 1

2 par-
ticles. First, the map is not trace preserving because
atoms can be pumped out of the clock states. Second,
unequal rates of optical pumping for |↑〉 and |↓〉 polarize

the mean 〈Ĵ3〉 towards a value different from that found
in the QND measurement. Third, owing to the large
ground hyperfine splitting, photons arising from optical
pumping of f → f̃ = 3 and f → f̃ = 4 are distinguish-
able, thus these processes destroy coherences between |↑〉
and |↓〉.

We calculate the squeezing parameter as a function of
time based on the evolution of atomic correlation func-
tions, where operators evolve according to the adjoint
form of the SME in Eq. (68). The collective atomic vari-
ables obey the following stochastic equations of motion
(see Appendix C),

dNC = −γ00NCdt+ 2γ03〈Ĵ3〉dt (73a)

d〈Ĵ1〉 = −γ11〈Ĵ1〉dt (73b)

d〈Ĵ3〉 = s
√
κ∆J2

3dW − γ33〈Ĵ3〉dt+ 1
2γ30NCdt (73c)

d∆J2
3 = −κ

(
∆J2

3

)2
dt− 2γ33∆J2

3dt

+ 1
4

(
2γ33−γ00

)
NCdt+

1
2

(
γ03−2γ30

)
〈Ĵ3〉dt, (73d)

where the decay and feeding rates are given in Eq. (C4).
The total number of atoms in the clock-state subspace
is given by NC , which primarily decays at rate γ00. The
final term in Eq. (73d), proportional to 〈Ĵ3〉, is typically

negligible since in most applications 〈Ĵ3〉 � NC . We re-
tain this small correction since unbalanced optical pump-
ing acts to polarize the atoms and alters the rate of atom
loss.

To find the peak squeezing in the presence of optical
pumping, we numerically integrate Eqs. (73a–73d) and
then use Eq. (51) to calculate the metrological squeezing
parameter, ξ2, as a function of time. We choose here the
magic frequency close to the f = 4 ↔ f ′ = 4 transition,
ω̃4, which is furthest from resonance with both excited
hyperfine transitions. Typical time evolution is shown in
Fig. 4 for 2500 atoms trapped a distance r′⊥ = 1.8a from
the center of the nanofiber, where time is scaled to the
characteristic scattering rate,

γs ≡
σ0

Ain

Γ2

4∆2
J3

ṄL. (74)

We study the dynamics for two choices of quantization
axis: (i) along the x-axis and (ii) along the numerically
determined optimal axis. Figure 4(a) shows the time evo-
lution of the squeezing parameter. We achieve a maxi-
mum squeezing of 4.7 dB when the clock states are chosen
along the optimal axis; ϕopt ≈ 86◦ in Eq. (67).

The peak squeezing is ultimately limited by the com-
bined effects of optical pumping on both 〈Ĵ1〉 and ∆J2

3 .
Here, as in a free-space model [15], the primary factor
that limits metrological squeezing is the decay of the col-
lective mean spin 〈Ĵ1〉. A scattered photon eliminates
the initial coherence between |↑〉 and |↓〉 within a single

atom, thus depolarizing 〈Ĵ1〉. Atoms optically pumped
to magnetic sublevels outside of the clock subspace de-
cay NC , further reducing 〈Ĵ1〉. These effects are captured

by the depolarization rate γ11 in the equation for 〈Ĵ1〉,
Eq. (73b), whose solution is plotted in Fig. 4(b).

We can gain deeper understanding in the microscopic
effects of optical pumping on spin squeezing by looking at
the evolution of the one and two-body correlation func-
tions. In terms of its constituent pseudospins, the collec-
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FIG. 4. Squeezing on the clock states as a function of time in units of the scattering rate γs for 2500 atoms trapped in the
x-z plane at a distance r′⊥ = 1.8a from the axis of the nanofiber. The optimal quantization axis (red) is compared to the
quantization along the x-axis (blue). Dashed lines indicate simulations without optical pumping; i.e. no decoherence. (a)

Metrological spin squeezing parameter ξ−2, Eq. (51), in dB. (b) Collective mean spin 〈Ĵ1〉 and decaying atom number in the
clock states, NC (inset). (c) Conditional squeezed variance ∆J2

3 . The inset shows the decomposition at the optimal quantization

axis of ∆J2
3 (red dashed) into the single-body variance, NA(∆j

(1)
3 )2 (green) and the two-body covariance, NA(NA−1)

〈
∆j

(1)
3∆j

(2)
3

〉
(black), as given by Eq. (75).

tive variance takes the form

∆J2
3 = NA

(
∆j

(1)
3

)2
+NA(NA − 1)〈∆j(1)

3 ∆j
(2)
3 〉 (75)

for permutationally symmetric states considered here,
where (1) and (2) label any two atoms in the ensem-
ble. Loss of atoms affects the first (single-body) variance
term, which scales as NA. The two-body correlations
which contribute as N2

A to the collective fluctuations,

〈∆j(1)
3 ∆j

(2)
3 〉 ≡ 1

4

(
〈σ̂(1)

3 ⊗ σ̂(2)
3 〉 − 〈σ̂

(1)
3 〉2

)
. (76)

have a much larger influence on the total variance.
Spin-spin correlations at the heart of spin squeezing,

〈σ̂(1)
3 ⊗ σ̂(2)

3 〉, rapidly generated by the measurement
backaction decohere by optical pumping according to
Eqs. (C2–C3),

d

dt
〈σ̂(1)3 ⊗σ̂

(2)
3 〉
∣∣∣
op
=−2γ33〈σ̂(1)3 ⊗σ̂

(2)
3 〉+γ30〈1̂(1)

C⊗σ̂
(2)
3 +σ̂

(1)
3⊗1̂

(2)
C 〉, (77)

where 1̂
(n)
C ≡

(
|↑〉〈↑|+|↓〉〈↓|

)
(n) is the single-body projec-

tor onto the clock states. In addition, atoms that return
to the clock subspace after scattering a photon inject ad-
ditional noise into ∆J2

3 . All of these effects are included
in the equation for ∆J2

3 , Eq. (73d), whose overall and de-
composed dynamical evolutions are shown in Fig. 4(c).

With our model, we explore optimal conditions for gen-
erating spin squeezing. The choice of quantization axis
ez̃ that defines clock states affects both the measurement
strength and the relative rates of optical pumping. We
plot the peak squeezing as a function of the direction of
ez̃ in the x-y plane in Fig. 5(b). We gain insight into the
tradeoffs between QND entangling interaction and deco-
herence by independent inspection of the measurement
strength and optical pumping rates. First, the rate of
squeezing is determined by the effective optical density
per atom on resonance,

OD/NA ≡
κ

γs
=
σ0Ain

A2
J3

, (78)
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FIG. 5. Dependence of the parameters that determine metro-
logical squeezing on the direction of the quantization axis that
defines the clock states, ez̃. In all cases we consider 2500
atoms trapped in the x-z plane at distance r′⊥ = 1.8a from
the axis of the nanofiber. In (b–d) ez̃ is confined to the x-y
plane, where the optimal peak squeezing occurs. (a,b) Peak
achievable squeezing at the maximum time, measured in dB,
as a function of the direction of ez̃. (c) OD/NA=σ0Ain/A

2
J3 ,

Eq. (78). (d) Rates of atom loss, γ00, and depolarization, γ11
relative to the characteristic scattering rate γs. See Eqs. (C4a)
and (C4e).

which peaks when ez̃ is along the y-axis, as seen in
Fig. 5(c). Choosing ez̃ along y, the OD/NA is about
50% larger than along x-axis. The various forms of deco-
herence similarly vary with quantization axis, as seen in
Fig. 5(d), where we plot the dominant rate of atom loss,
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γ00, and the depolarization rate of the mean pseudospin
〈Ĵ1〉, γ11. Because the magic frequency ω̃4 is nearly
equidistant from f ′ = 3 and f ′ = 4 when the quanti-
zation axis is near the y-axis (see Fig. 3(b)) this choice of
quantization axis provides more protection from decoher-
ence. While the decoherence rates in Fig. 5(d) are largest
near the y-axis, the increase in κ more than compensates
to provide optimal peak squeezing.

Finally, we explore the optimal conditions as a func-
tion of the trapping geometry. The dispersive entangling
interaction is based on the collective atomic coupling to
the evanescent guided-mode fields, which decay exponen-
tially away from the nanofiber surface, as seen in OD/NA
plotted in Fig. 6(a). From Eq. (73d), the optimal choice
of quantization axis depends not only on distance from
the fiber but also weakly on the atom number, Fig. 6(b)
because of the competition between squeezing and deco-
herence. At the optimal quantization axis, the strong de-
pendence of peak achievable squeezing on distance from
the fiber is as seen in Fig. 6(c) along with the expected
increase as more atoms contribute to the atom-light in-
terface.

Several effects limit the reliability of the simulations
for atoms trapped very near the fiber surface as r′⊥→ a.
First, strong van der Waals interactions modify the light
shifts and magic frequencies [22, 78]. Second, the optical
pumping model used here breaks down when the local
density of states is significantly modified by the presence
of the dielectric nanofiber [49, 79]. At distances r′⊥>1.5a
the atoms’ local environment is roughly that of unmodi-
fied vacuum [49] and a free-space optical pumping model
in Eq. (72) suffices.

V. SUMMARY AND OUTLOOK

We studied the strong cooperativity in the atom-light
interface that can be achieved based on atoms trapped
in the evanescent field surrounding an optical nanofiber,
and interacting with a guided mode in the dispersive
regime. The key parameter that determines the cou-
pling is the resonant optical density per atom. Due to
the tight confinement of the guided mode over the en-
tire chain of atoms this parameter is OD/NA ∼ 10−2

for typical geometries used in current experiments, which
approaches that achieved for atomic ensembles trapped
inside optical cavities of moderate finesse [72, 80]. In con-
trast, the atom-light coupling for atoms in free space is
typically orders of magnitude smaller, OD/NA ∼ 10−6.
Under ideal conditions the atom-light interaction is en-
tirely symmetric along the nanofiber, providing a plat-
form for long-range correlations independent of distance
between the atoms. As the light is entirely guided, fiber-
or waveguide-coupled atomic ensembles can be networked
together or coupled to other physical systems in a hybrid
platform [81–84] for truly long-range entanglement gen-
eration and distribution.

We calculated the dispersive response based on a

modal decomposition of the dyadic Green’s function,
which provides a general method to calculate the induced
phase shifts and polarization rotations of the guided
modes. With this we studied the QND measurement
of atoms via polarization spectroscopy. In particular,
we studied squeezing of the collective pseudospin asso-
ciated the atomic clock states of cesium. The atoms in-
duce a birefringent index of refraction on the light, condi-
tional on the spin state, which provides a mechanism for
measuring the atomic spin projection and thus squeezing
its uncertainty. Based on our formalism we calculated
the nanofiber-enhanced measurement strength that de-
termines the rate of squeezing.

The peak squeezing one can generate depends on a
detailed balance between the reduction of spin projec-
tion noise based on QND measurement and the damage
done to the spin ensemble due to optical pumping. Both
measurement and optical pumping arise from the same
physical mechanism – scattering of photons by atoms.
The former corresponds to cooperative forward scatter-
ing into the guided mode whereas the latter corresponds
to local scattering into all other modes, primarily the un-
guided “radiation” modes. The cooperativity, specified
by the effective OD/NA, determines the ratio of these
two effects and thus the ultimate power of the quantum
atom-light interface.

We studied QND measurement using a first-principles
stochastic master equation model, which allowed us to
track the atomic correlation functions that define the
metrologically relevant squeezing parameter. These in-
clude the atomic projection noise uncertainty as well as
the length of the collective spin vector that defines the
metrological signal. We find that decoherence acts pri-
marily to depolarize the mean pseudospin and optically
pump atoms out of the clock subspace, which we treat
as loss. In addition, optical pumping decoheres the spin
correlations at the heart of spin squeezing, but at a re-
duced rate compared with the effect on the mean pseu-
dospin. The combined effect of QND measurement and
decoherence yields a peak squeezing approaching 5 dB
with ∼ 2500 atoms. Larger enhancements in atom-light
coupling and QND squeezing are possible with modest in-
creases in the number of trapped atoms and/or for atoms
trapped closer to the nanofiber surface.

Whereas we have assumed here that atoms can be pre-
pared in a desired clock state defined by a particular
quantization axis, in practice such preparation will re-
quire optical pumping that may be challenging for atoms
near the surface of the nanofiber. In addition, though
we have treated the atoms as localized at well defined
points, in practice the atoms’ thermal motion can re-
duce the strong coupling described here. Our formalism
provides a starting point for developing models neces-
sary to study the dynamics of optical pumping, including
the possibility of cooling atoms to the vibrational ground
state, where thermal motion is negligible.

Finally, though we have treated here the case of strong
coupling due solely to tight confinement of the guided
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FIG. 6. Parameters that define squeezing as a function of trapping distance r′⊥ and initial atom number NA. (a) OD/NA.
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x-y plane for different atom numbers. The line with 500 atoms terminates when the squeezing effect is too weak to be observed
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mode for atoms near the surface of the nanofiber, we
can achieve even greater enhancement by combining this
effect with longitudinal confinement provided by fiber-
based optical cavities [37, 38, 85–87]. The coupling can
be further improved under EIT conditions that substan-
tially slow the group velocity [35, 36, 88, 89]. In addi-
tion, quantum control of the internal hyperfine state [90]
can greatly enhance the entangling power of the atom-
light interface [91, 92]. For large enough coupling, QND

measurement should allow production of highly entan-
gled spin states beyond the Gaussian regime [70, 93].
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Appendix A: Guided-mode functions for the optical
nanofiber

In this Appendix we provide, for reference, the funda-
mental HE11 solutions to the homogeneous wave equa-
tion, Eq. (1) with α

↔
= 0, for a cylindrical nanofiber of

radius a and index of refraction given by Eq. (7). At a
given frequency, ω0 = ck0, the magnitudes of the longi-
tudinal and transverse wave vectors for a guided mode
are related by n2k2

0 = β2
0 +k2

⊥. The positive propagation
constant, β0 ≡ β(ω0), is determined from the eigenvalue
equation that results from enforcing physical boundary
conditions at the fiber surface [56],

J0(ha)

haJ1(ha)
= −n

2
1 + n2

2

2n2
1

K ′(qa)

qaK1(qa)
+

1

h2a2

−
[(
n2

1−n2
2

2n2
1

K ′(qa)

qaK1(qa)

)2

+
β2

0

n2
1k

2

(
1

q2a2
+

1

h2a2

)2] 1
2

. (A1)

Inside the nanofiber the transverse wavevector is real,
k⊥ = q, where q =

√
β2

0 − n2
2k

2
0, and outside the

nanofiber it is purely imaginary, k⊥ = ih, where h =√
n2

1k
2
0 − β2

0 . The vector eigenfunctions are expressed as

fµ(r) = (2π)−1/2ub,p(r⊥)eibβ0z, where the modes are in-

dexed by frequency ω0, propagation direction b = ±, and
polarization p.

A relatively simple form for the guided-mode func-
tions can be expressed in a cylindrical basis (r⊥, φ, z)
with longitudinal unit vector ez, oriented along the fiber
axis. The transverse unit vectors are related to their fixed
Cartesian counterparts via the relations

er⊥ = ex cosφ+ ey sinφ, (A2a)

eφ = −ex sinφ+ ey cosφ. (A2b)

The transverse profile for the quasicircular guided modes,
p = ±, is

ub,±(r⊥)=
[
er⊥ur⊥(r⊥)±ieφuφ(r⊥)+ibezuz(r⊥)

]
e±iφ, (A3)

and for the quasilinear guided modes, p = {H,V }, is

ub,H(r⊥) =
√

2
[
er⊥ur⊥(r⊥) cosφ

−eφuφ(r⊥) sinφ+ibezuz(r⊥) cosφ
]

(A4a)

ub,V (r⊥) =
√

2
[
er⊥ur⊥(r⊥) sinφ

+eφuφ(r⊥) cosφ+ibezuz(r⊥) sinφ
]
. (A4b)

The modes are expressed in terms of real-valued functions
that depend only on the radial coordinate r⊥,

ur⊥(r⊥) =u0

[
(1− s)K0(qr⊥) + (1 + s)K2(qr⊥)

]
(A5a)

uφ(r⊥) =u0

[
(1− s)K0(qr⊥)− (1 + s)K2(qr⊥)

]
(A5b)

uz(r⊥) =u0
2q

β0

K1(qa)

J1(ha)
J1(hr⊥), (A5c)

where u0 is set by the normalization condition,∫
d2r⊥n(r⊥)|uµ(r⊥)|2 = 1, Jn and Kn are the nth Bessel

functions of the first and second kind, f ′(x) indicates a
derivative with respect to the argument x, and

s =
1/(q2a2)2 + 1/(h2a2)2

[J ′1(ha)/haJ1(ha) +K ′1(qa)/qaK1(qa)]
. (A6)

Of particular interest is the z-component, Eq. (A5c),
which can become appreciable. Note that the phase
convention in Eqs. (A3-A5) has been chosen to em-
phasize properties of the quasilinear modes and differs
from that of Le Kien et al. – for instance in Ref. [65].
Further details about the guided-mode fields inside the
nanofiber (r⊥ ≤ a), the radiation (unguided) modes,
and the quantized form of both can be found in Refs.
[42, 49, 54, 78, 95].

Appendix B: Photon scattering and optical pumping
rates

In this Appendix we give the explicit expressions for
the photon scattering rates used in Sec. IV following the
formalism given in [61]. The total rate of photon scat-
tering by an atom in the clock state |f, 0〉 is

γf = − 2

h̄
Im
[
〈f, 0|ĥeff |f, 0〉

]
, (B1)
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where the effective non-Hermitian light-shift Hamiltonian
for one atom is

ĥeff = −Ê(−)
in (r′; t) · α̂↔ · Ê(+)

in (r′; t) (B2)

as follows from Eq. (38), where α0(∆ff ′) =

− σ0

8πk0
Γ

∆ff′+iΓ/2
is the complex polarizability and

the irreducible tensor operator
↔̂
A(f, f ′) is given in

Eq. (46).
The rate of optical pumping between clock states

|f, 0〉 → |f̃ , 0〉 is

γf→f̃ =
∑
q

∣∣〈f̃ ,0|Ŵf̃f
q |f,0〉

∣∣2, (B3)

where Ŵ f̃f
q =

∑
f ′

Ω/2
∆f′f̃+iΓ/2 (e∗q ·D̂f̃f ′)(ein ·D̂†f ′f ) are the

Lindblad jump operators for optical pumping between

ground levels f → f̃ [61]. Each jump operator Ŵ f̃f
q is

associated with absorption of the probe photon polarized
along ein followed by spontaneous emission of a photon
with polarization eq, where q = {0,±1} labels spherical
basis elements for π and σ± transitions.

To find the dependence on the input field inten-
sity, we define a characteristic photon scattering rate,

γs ≡ ΓΩ2

4∆2
J3

= σ0

Ain

Γ2

4∆2
J3

ṄL, with Rabi frequency Ω =

2〈j||d||j′〉E(+)
in /h̄, reduced optical dipole matrix ele-

ment 〈j||d||j′〉, and field amplitude E(+)
in = |E(+)

in (r′)|.
Eqs. (B1) and (B3) yield,

γ
f

=ngṄL
∑
f ′

σ(∆ff ′)u∗in(r′⊥)·〈f,0|
↔̂
A(f,f ′)|f,0〉·uin(r′⊥) (B4a)

≈γs
∑
f ′

∆2
J3

∆2
ff ′

∑
q

∣∣∣oj′f ′

jf C
f0;1q
f ′q

∣∣∣2e∗q ·(eine
∗
in)·eq, (B4b)

γ
f→f̃
≈γs

∑
f ′

∆2
J3

∆2
ff ′

∑
q

∣∣∣oj′f ′

jf̃
oj

′f ′

jfC
f̃0;1q
f ′q Cf0;1q

f ′q

∣∣∣2e∗q·(eine
∗
in)·eq, (B5)

where σ(∆ff ′) = σ0Γ2/4∆2
ff ′ is the scattering cross sec-

tion at the probe detuning, Cf0;1q
f ′q = 〈f ′q |f0; 1q〉 are the

Clebsch-Gordan coefficients, and∣∣oj′f ′

jf

∣∣2 = (2j′ + 1)(2f + 2)

{
f ′ 7/2 j′

j 1 f

}
(B6)

are the relative oscillator strengths determined by the
relevant Wigner 6-J symbol.

Appendix C: Derivation of the equations of motion
for the moments

In this Appendix we derive the equations of motion
for the correlation functions that define the metrologi-
cally relevant squeezing parameter, ξ2 = NA∆J2

3/〈Ĵ1〉2.

We seek the time evolution of the one and two-body cor-
relation functions:

〈N̂C〉 =
∑
n

〈1̂(n)
C 〉 (C1a)

〈Ĵ1〉 =
1

2

∑
n

〈σ̂(n)
1 〉 (C1b)

〈Ĵ3〉 =
1

2

∑
n

〈σ̂(n)
3 〉 (C1c)

〈Ĵ2
3 〉 =

〈N̂C〉
4

+
1

4

∑
m6=n

〈σ̂(m)
3 ⊗ σ̂(n)

3 〉, (C1d)

where 1̂C ≡ |↑〉〈↑| + |↓〉〈↓| is the single-atom projector
onto the clock states. To include optical pumping, we
apply the following equations of motion. For a collec-
tive, single-body operator, X̂ =

∑
n x̂

(n), the evolution

due to optical pumping is d〈X̂〉|op =
∑
n Tr[Dn[ρ̂]X̂]dt =∑

n〈D†n[x̂(n)]〉dt, where the map, which acts locally on
atoms along the nanofiber, is given in Eq. (72). Two-
body microscopic operators decay by optical pumping
according to [15]

d

dt
〈x̂(m)⊗ŷ(n)〉

∣∣∣
op

=〈D†m[x̂(m)]⊗ŷ(n)〉+〈x̂(m)⊗D†n[ŷ(n)]〉, (C2)

where the superscripts refer to the mth and nth atoms.
Applying the adjoint map to the single-atom operators

yields

D†[1̂C ] = −γ001̂C + γ03σ̂3 (C3a)

D†[σ̂3] = −γ33σ̂3 + γ301̂C (C3b)

D†[σ̂1] = −γ11σ̂1, (C3c)

with rates

γ00 =
γ↑ + γ↓ − γ↑→↑ − γ↑→↓ − γ↓→↓ − γ↓→↑

2
(C4a)

γ03 =
−γ↑ + γ↓ + γ↑→↑ + γ↑→↓ − γ↓→↓ − γ↓→↑

2
(C4b)

γ33 =
γ↑ + γ↓ − γ↑→↑ + γ↑→↓ − γ↓→↓ + γ↓→↑

2
(C4c)

γ30 =
−γ↑ + γ↓ + γ↑→↑ − γ↑→↓ − γ↓→↓ + γ↓→↑

2
(C4d)

γ11 =
γ↑ + γ↓

2
. (C4e)

Given Eqs. (C2, C3), the equations for the two-
body spin correlations, Eq. (77), follow. Similarly, one
can derive equations of motion for the remaining two-

body microscopic operator correlations 〈1̂(m)
C ⊗ 1̂(n)

C 〉 and

〈1̂(m)
C ⊗ σ̂(n)

3 + σ̂
(m)
3 ⊗ 1̂(n)

C 〉 when m 6= n and from these,

the macroscopic operator expectation values 〈Ĵ2
3 〉, 〈N̂2

C〉,
and 〈N̂C Ĵ3〉. As we have examined numerically, on the
time scale of the QND measurement, the correlation be-
tween atom number in the clock state subspace and the
pseudospin moment is weak, and one can thus treat the
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atom number operator in the clock state subspace as a
c-number. We therefore set 〈N̂C Ĵ3〉 − 〈N̂C〉〈Ĵ3〉 = 0 and

〈N̂2
C〉 − 〈N̂C〉2 = 0 and define NC ≡ 〈N̂C〉.
The equations of motion for the moments of Ĵ3 are now

found from the SME, Eq. (68),

d〈Ĵ3〉=s
√
κ∆J2

3 dW − γ33〈Ĵ3〉dt+ 1
2γ30NCdt, (C5a)

d〈Ĵ2
3〉=2s

√
κ〈Ĵ3〉∆J2

3 dW−2γ33〈Ĵ2
3 〉dt+ 1

4

(
2γ33−γ00

)
NCdt

+ γ30〈Ĵ3〉NCdt+ 1
2 (γ03 − 2γ30) 〈Ĵ3〉dt. (C5b)

The stochastic term in d〈Ĵ2
3 〉 was simplified by assuming

Gaussian statistics [77], 〈Ĵ3
3 〉 = 3〈Ĵ2

3 〉〈Ĵ3〉 − 2〈Ĵ3〉3. Fi-
nally, the Itō calculus governing the stochastically evolv-
ing moments requires that differentials be taken to sec-
ond order, and the evolution of the variance is given by
d∆J2

3 = d〈Ĵ2
3 〉 − 2〈Ĵ3〉d〈Ĵ3〉 − (d〈Ĵ3〉)2. The equation

of motion for the conditional variance, Eq. (73d), then
follows from Eqs. (C5).
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