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We present a theoretical model for a Kerr-like interaction between two registers of a compound
gradient echo memory (GEM). This type of interaction is known to generate cross-phase modulation
(XPM) between optical fields, an effect that is limited by the typically small values of non-linearities
in crystals. Here we show that in GEM systems the phase shift increases linearly with the interaction
time and quadratically with the strength of the field. Increasing storage (interaction) times would
then lead to stronger XPM effects even with fields with very low intensity. This interaction also
generates two other effects: entanglement between the registers, which depends on the strength
of the interaction and its spatial profile, and an interaction-induced gradient. We show that the
later produces leakage during the storage stage depending on the shape of the stored pulses, an
undesirable consequence that can be minimised by carefully designing the temporal profile of the
input fields.

PACS numbers: 42.50.Gy 42.65.-k

I. INTRODUCTION

Photons are ideal carriers of quantum information due
to their high speed and weak interactions with the envi-
ronment. Proposals [1, 2] have been made to use photons
as qubits in all-optical quantum computers. So-called
deterministic protocols for computation require control-
lable interactions between photons, typically achieved us-
ing some mediating crystal or atomic vapor. The current
limiting factor for these proposals has been generating
interactions of sufficient strength [3, 4]. In particular,
the deterministic scheme of Chuang and Yamamoto [5]
is achieved via cross-phase modulation (XPM) induced
by a cross-Kerr effect. There have been proposals on us-
ing optical fibres [6] or EIT like effects in atomic vapours
[7] to achieve XPM, and much discussion on the viability
of these approaches [8–11]. Recently, a XPM proof of
principle experiment was performed in a Gradient Echo
Memory (GEMs) where the interaction was produced us-
ing the AC-Stark effect [13]. The key to this demonstra-
tions success was recognising large phase shifts can still
be achieved with moderate interaction strengths as long
as the interaction time can be made long. GEM have ex-
perimentally demonstrated long storage times with little
loss; this makes them the ideal platform for performing
XPM investigations.

We theoretically analyse a GEM with a generic Kerr
nonlinearity. We include a kernel for our nonlinearity
which can be local or non-local. Local interactions could
be achieved with the AC-stark effect discussed in [13],
while non-local interactions could be achieved using a
Rydberg-state mediated interaction as described in [26].
By using a generic model we are able to determine what
advantages or disadvantages different realizations of the

nonlinearity may possess. We determine the scaling of
the XPM as a function of the storage bandwidth and in-
vestigate the effects of a nonlocal interaction kernel. We
furthermore investigate the presence of spatial entangle-
ment in the memory due to the interactions. Lastly we
discuss a problem we observed while performing XPM
with a GEM, namely the presence of interaction-induced
gradients that can lead to unwanted loss. We discuss
potential ways to ameliorate these issues.

Our model is based on an input-output approach [16]
derived in [15]. It is equivalent to the Maxwell-Bloch
equations [12] which have also been used to analyse
GEMs. We divide the whole process into three stages:
write, interaction, and read. The write and read stages
are described by quadratic Hamiltonians and can be
solved exactly. However the interaction stage involves
nonlinear quantum Langevin equations that must be ap-
proximated. We use a Gaussian approximation, which re-
duces the problem to a set of numerically solvable partial
differential equations and allows for the use of convenient
measures of entanglement like logarithmic negativity.

The paper is organized as follows: In Section II we
describe our model, derive the dynamical equations and
discuss the numerical approach. In Section III we anal-
yse some interesting phenomena induced by the Kerr-like
interaction. First, we discuss the creation and propaga-
tion of entanglement between the memories in Sec. III A.
Second, we determine the scaling of the XPM with differ-
ent physical parameters in Section III B. In particular,
the results of this Section reveal that the phase shift of
the Gaussian-shape pulse is proportional to the strength
and duration of the other pulse. We also show, for the
same maximum value of the interaction, that nonlocal
profiles induce larger phase shift in the XPM as com-
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FIG. 1. In the write stage, the gradient is turned on and the
two memory components M1 and M2 store the input pulses
b1,in(t) and b2,in(t), respectively. After storage, the gradient
is turned off and the interaction is turned on. Finally the
gradient is flipped and the output pulses b1,out(t) and b2,out(t)
are retrieved.

pared to local ones. Lastly, in Section III C, we discuss
how the interactions can act like a gradient, which affects
the storage. Details of the Gaussian approximation and
calculations of the energy balance are presented in the
Appendices.

II. MODEL OF THE INTERACTING
COMPOUND GEM

A. Overview of the memory stages

Our model involves a memory consisting of two compo-
nents, denoted by M1 and M2, as illustrated in Figure 1.
Physically, these components could correspond to atomic
ensembles, where different pulses are stored either in dif-
ferent atoms or into different atomic spin coherences as
in [13]. The whole process can be described by the three
stages shown in Figure 1:

• The write stage: The gradient is initially turned on
and during the time interval [0, t1] the information
contained in two independent input fields b1,in(t)
and b2,in(t) are stored into M1 and M2, respec-
tively.

• The interaction stage: In the interval [t1, t2] the
gradient is turned off and the two registers inter-
act with each other through a Kerr-like interaction
Hamiltonian.

• The read stage: during the interval [t2, t3] the in-
teraction is turned off and the gradient of each
memory is flipped. Two output fields b1,out(t) and
b2,out(t) are then retrieved.

B. Mathematical description of individual stages

We will now present the theoretical modelling for the
three memory stages described above using the approach
developed in [15]. First of all, for completeness, let us in-
troduce some basic notations regarding the input-output
model and algebraic descriptions of quantum networks of
open quantum systems necessary to describe our system.

An open quantum system can be characterized by the
parameter list G = (S,L,H) [17], where S is the matrix
describing the scattering of the bosonic field over different
channels, L is the coupling operator to the environment,
and H is the Hamiltonian of the system. For systems
where there is no scattering of the bosonic field (as will
be the case for our compound GEM) the operator S will
be the identity and the system can be described by the
parameters G = (I, L,H). In this case, the quantum
Langevin equation for an arbitrary operator X can be
written as

∂tX = −i[X,H] +
1

2
(L†[X,L]− [X,L†]L)

+ b†in(t)[X,L]− [X,L†]bin(t), (1)

where bin(t) is the input field driving the system. The
corresponding output field is given by [16]

bout(t) = L(t) + bin(t). (2)

In [15], this formalism was used to derive a GEM model
as the continuum limit of a cascade network of oscillators.
Since in the write and read stages our memory compo-
nents M1 and M2 are decoupled, we can simply use the
results from [15] to describe them. Both stages can be
written in the same form, with the triple Gj = (I, Lj , Hj)
for the memory component j given by

Lj =

∫ η

−η
dξ i
√
βaj(ξ, t), (3)

Hj = ±
∫ η

−η
dξ ξa†j(ξ, t)aj(ξ, t)

+
β

2i

∫ η

−η
dξ

∫ ξ

−η
dξ′
(
a†j(ξ, t)aj(ξ

′, t)− a†j(ξ
′, t)aj(ξ, t)

)
.

(4)

Here aj(ξ) is the annihilation operator satisfying

[aj(ξ), a
†
i (ξ
′)] = δijδ(ξ − ξ′), β is the coupling coefficient

of the oscillators with the bath (assumed to be the same
for both components), and [−η, η] is the frequency band-
width of the memory. The sign of the first term in the
Hamiltonian depends on the gradient, being positive for
the write stage and negative for the read stage.

When describing open quantum systems connected in
a quantum network, we employ the algebraic tools intro-
duced in [17]. For the compound GEM model depicted
in Fig. 2, we have two open quantum systems given by
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G1 = (I, L1, H1) and G2 = (I, L2, H2). Their concatena-
tion is denoted as G1 �G2 with parameters given by

G1 �G2 =

((
I 0
0 I

)
,

(
L1

L2

)
, H1 +H2

)
. (5)

For the write and read stages Lj and Hj are simply given
by Eqs.(3) and (4). In the interaction phase, the Hamil-
tonian for the compound system can be expressed as

H(t) = H1(t) +H2(t) +Hxpm(t),

where

Hxpm(t) =∫ η

−η

∫ η

−η
dξ1dξ2χ(ξ1, ξ2, t)a

†
1(ξ1, t)a1(ξ1, t)a

†
2(ξ2, t)a2(ξ2, t)

represents the Kerr-like Hamiltonian for the interacting
memories. The entire process can then be described by

the parameters G = (I, L,H(t)), with L =

(
L1

L2

)
, and

H(t) given as follows:

H(t) =

∫ η

−η
dξg(ξ, t)(a†1(ξ, t)a1(ξ, t) + a†2(ξ, t)a2(ξ, t))

+

∫ η

−η

∫ η

−η
dξ1dξ2χ(ξ1, ξ2, t)a

†
1(ξ1, t)a1(ξ1, t)a

†
2(ξ2, t)a2(ξ2, t)

+
β

2i

∫ η

−η
dξ

∫ ξ

−η
dξ′
(
a†1(ξ, t)a1(ξ′, t)− a†1(ξ′, t)a1(ξ, t)

)
+
β

2i

∫ η

−η
dξ

∫ ξ

−η
dξ′
(
a†2(ξ, t)a2(ξ′, t)− a†2(ξ′, t)a2(ξ, t)

)
.

(6)

The different stages of the process can be included under
the same form by defining the time-dependent gradient

g(ξ, t) =

 ξ, t ∈ [0, t1]
0, t ∈ (t1, t2)
−ξ, t ∈ [t2, t3]

(7)

and Kerr-coefficient

χ(ξ1, ξ2, t) =

 0, t ∈ [0, t1]
A exp (−K(ξ1 − ξ2)2), t ∈ (t1, t2)
0, t ∈ [t2, t3]

(8)

where A represents the maximum strength of the inter-
action and K determines the spatial range of the interac-
tion. With current experiments the most likely candidate
to create such non-local interaction would be a Rydberg
system. Using the off-resonant Rydberg states similar
to that in Ref. [26], the effective interaction distance
can be tuned using a combination of the detuning and
the orbital number of the particular Rydberg state tar-
geted. From Eq. (8), we can see that as K increases,
the interaction becomes more localized in the sense that
only when |ξ1 − ξ2| is small enough can mode a1(ξ1, t)
interact with mode a2(ξ2, t). We discuss this in detail in
Section III B 3.

G2 = (I, L2, H2)

G1 = (I, L1, H1)b1,in(t)

b2,in(t) b2,out(t)

b1,out(t)

FIG. 2. Schematics of the compound GEM. The model corre-
sponds to the concatenation of the two memory components
given by G1 and G2.

C. Dynamical Equations

Given the triple G = (I, L,H(t)), we can employ the
quantum Langevin equation (1) and the input-output
equation (2) to derive the following equations for the
whole process:

∂ta1(ξ, t) = −ig(ξ, t)a1(ξ, t)− β
∫ ξ

−η
dξ′a1(ξ′, t)

−i
∫ η

−η
dξ′χ(ξ, ξ′, t)a†2(ξ′, t)a2(ξ′, t)a1(ξ, t)

+i
√
βb1,in(t) (9)

b1,out(t) = i
√
β

∫ η

−η
dξa1(ξ, t) + b1,in(t), (10)

∂ta2(ξ, t) = −ig(ξ, t)a2(ξ, t)− β
∫ ξ

−η
dξ′a2(ξ′, t)

−i
∫ η

−η
dξ′χ(ξ′, ξ, t)a†1(ξ′, t)a1(ξ′, t)a2(ξ, t)

+i
√
βb2,in(t) (11)

b2,out(t) = i
√
β

∫ η

−η
dξa2(ξ, t) + b2,in(t), (12)

where bi,in(t)(i = 1, 2) are the input light fields for the
two registers.

Note that these Langevin equations are identical to
the model of a GEM using the Maxwell-Bloch equations
[12]. The a1 and a2 operators physically correspond
to the coherence of the atomic ensemble. The b1,out(t)
and b2,out(t) operators correspond to the strength of the
electric-magnetic field at the end of the memory. Hence
our model includes coupling between the atomic ensem-
ble and the light field along the propagation direction
of the GEM. Thus loss is included in our model due to
spontaneous emission, but this is typically suppressed in
the operation of a GEM due to destructive interference
of the atomic coherence due to different rotating phases
along the gradient. We do not include atomic dephasing
due to diffusion, or spontaneous emission of light in di-
rections perpendicular to the applied magnetic gradient.
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The rates of these other processes are typically very small
on the time scale of the GEMs operation [12].

D. Numerical model: Gaussian approximation

Note that the dynamical equations (9-12) are nonlin-
ear. The equation for the expectation value 〈a1(ξ, t)〉,
for example, depends on 〈a1(ξ, t)a†2(ξ, t)a2(ξ, t)〉, which
depends on even higher-order terms. This generates an
infinite number of coupled differential equations which
not only prevents an analytical approach as done in [15],
but requires some approximation for a numerical solution
as well.

Our approach is to assume that the states of the oscil-
lators representing the memories are Gaussian. This is
a sort of a semiclassical approximation that allows us to
write all higher order expectation values only in terms of
first and second-order moments. This simplifies the prob-
lem which now requires the numerical solution of only 8
coupled equations. A detailed derivation of the remaining
equations and the Gaussian approximation are presented
in Appendix A.

In our simulations, done using the XMDS package [18],
we consider coherent input fields with a Gaussian pulse
shape for M1 and a rectangular pulse shape for M2,
therefore the expectations of the two input fields read

〈b1,in(t)〉 =

 α1(t), t ∈ [0, t1]
0, t ∈ (t1, t2)
0, t ∈ [t2, t3]

with α1(t) being a Gaussian-shape pulse, and

〈b2,in(t)〉 =

 α, t ∈ [0, t1]
0, t ∈ (t1, t2)
0, t ∈ [t2, t3]

with α being a constant.

For these simulations, we express the parameters in
terms of the memory bandwidth, a crucial property of the
GEM determined by the value of η, and set all the param-
eters to be dimensionless. The pulse α1(t), for example,
is chosen so that its width in the frequency domain fits
well within the memory bandwidth. Write, read, and
interaction times are all set to τ = 100/η, much longer
than the pulse width in time. For the interaction term,
we set A/η = 0.005 and Kη2 = 10. A is the smallest
frequency of the problem, but still big enough for nonlin-
earity effects to be appreciable in the timescales of our
simulations. The parameter Kη2 = 10 corresponds to a
fairly nonlocal interaction, also chosen to highlight this
effect. Note, however, that for the cross-phase modula-
tion described in the next section, K is varied so that
we can investigate the effect of the spatial extent of the
interactions.

III. EFFECTS OF INTERACTION

In this section, we investigate three interesting and im-
portant phenomena generated under the dynamics, which
are the entanglement formation, the cross-phase modu-
lation and the interaction-induced gradient.

A. Entanglement between memory registers

Interactions can generate nonclassical correlations be-
tween two systems. It is interesting to look at the non-
classical correlations generated between the registers un-
der the interaction Hamiltonian (Eq.(6) for t ∈ (t1, t2)).
Although the interaction Hamiltonian is not quadratic in
the canonical operators, which means we cannot guaran-
tee that the state will remain Gaussian, we expect the
approximation to be quantitatively valid for short in-
teraction time and qualitatively informative for longer
time. In the following, we employ Logarithmic negativ-
ity as a measure of entanglement for two-mode Gaus-
sian states [21–23] and study the entanglement gener-
ated in the interaction stages. Recall that for a two-
mode Gaussian state ρAB , Logarithmic negativity is a
measure of entanglement based on the violation of the
PPT (positive partial transpose) criterion. It is defined

as EN (ρAB) := log(‖ρTA

AB‖) where ‖O‖ is the trace dis-
tance, i.e. the sum of the absolute values of the operator
O. EN (ρAB) depends only on the symplectic eigenval-

ues ṽk of the partial transposed state ρTA

AB which can be
smaller than 1. Explicitly

EN (ρAB) =

{
0, if ṽk ≥ 1 ∀ k,
−
∑
{k:ṽk<1} log ṽk.

(13)

We study the entanglement generated between modes
of different registers during the interaction phase. For
mode a1(ξ1, t) of M1 and mode a2(ξ2, t) of M2, we nu-
merically calculate the 4 × 4 covariance matrix σ(ξ1, ξ2)
and apply partial transposition to obtain σ̃(ξ1, ξ2), from
which we can further calculate the symplectic eigenval-
ues ṽk(ξ1, ξ2). The logarithmic negativity corresponding
to the two mode state can be calculated by Eq.(13) and
plotted in Figure 3 as a function of ξ1 and ξ2. We can see
entanglement can be generated between different modes
corresponding to different spatial variables. This is be-
cause the chosen value for K corresponds to a nonlin-
ear interaction that spreads across most of the memory,
letting modes a1(ξ1, t) and a2(ξ2, t) interact as long as
|ξ1 − ξ2| is not too large.

B. Cross-phase modulation

In the experiment performed in [13], heterodyne de-
tection was used to observe the phase shift. Mathemat-
ically, if we express the output pulse bout(t) as bout(t) =
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FIG. 3. Logarithmic negativity between two modes a1(ξ1, t)
and a2(ξ2, t) near the end of the interaction stage (t =
187.5/η. ξi/η (i=1,2) are dimensionless parameters denoting
two modes.

<(bout(t)) + i=(bout(t)) = ‖bout(t)‖eiθ(t) and set the fre-
quency of the local oscillator to be ω, then

<(bout(t)e
iωt)

= <(bout(t)) cos(ωt)− i=(bout(t)) sin(ωt)

= ‖bout(t)‖
(
<(bout(t))

‖bout(t)‖
cos(ωt)− =(bout(t))

‖bout(t)‖}
sin(ωt)

)
= ‖bout(t)‖ cos(θ(t) + ωt).

The phase shift can be calculated by looking into the
fluctuation component of <(bout(t)e

iωt) which is a cosine
function. We can calculate the corresponding phase shift
by comparing the cosine functions under different situa-
tions. Since the strength of the second pulse α and the
interaction duration τ = t2 − t1 are two key factors in
the study of XPM [13], in the following subsections we
set ω/η = 0.5 and ran several simulations, mainly to in-
vestigate the dependence of the phase shift with respect
to these two factors. Also we did a numerical investiga-
tion into the effect of local and nonlocal interactions in
the XPM.

1. Phase shift v.s. pulse strength

We investigate the influence of the strength of the
rectangular-shape pulse α on the phase of the first
Gaussian-shape pulse by fixing the interaction duration.
In our simulation we set τ = 100/η, numerical results
are given in Figure 4 which reveals that the phase shift
will increase as α increases. Similar results have been
demonstrated in previous work [13, 19].
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FIG. 4. Numerical results demonstrating the phase shift of
the first output pulse as a quadratic function of the strength
of the second pulse. Here ‘+’ denotes the points calculated
numerically, the solid line is the fitting curve obtained, and
α2/η is a dimensionless parameter quantifying the squared
amplitude of the second pulse.

2. Phase shift v.s. interaction duration

Now we fix the strength of the second input pulse to be
α2 = 0.025η and look into the dependence of the phase
shift on the interaction duration τ . In Figure 5, we nu-
merically calculate the phase shift as ητ increases from 10
to 100. We can observe an increase in the phase shift of
the output pulse as τ grows. In practice, this phase shift
increase would eventually stop when dephasing processes
in the system become relevant. The quality of the quan-
tum memory will determine the maximum phase shift
that can be reliably produced.

3. Phase shift v.s. local/nonlocal interactions

The parameter K in Eq. (8) can be used to adjust
the interaction range between the two registers. Larger
K means narrower interaction range, which correspond
to more local interactions, while smaller K means wider
interaction range, which correspond to more nonlocal in-
teraction. As has been demonstrated before, nonlocal in-
teractions create entanglement between different modes.
In the following, we numerically investigate the effect of
local and nonlocal interactions on the phase shift. The
numerical results are shown in Figure 6, from which we
can infer that with the same maximum interaction value
A, nonlocal interaction range would perform better com-
pared to local interaction range in the sense that the
induced phase shift is larger.
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FIG. 5. Numerical results demonstrate a linear increase in the
phase shift of the output pulse as a function of the interaction
duration τ . The squares ‘�’ correspond to the points calcu-
lated numerically, the solid line is the fitting curve obtained
and ητ is a dimensionless time parameter.
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FIG. 6. Numerical results demonstrate that nonlocal inter-
action range would induce larger phase shift, therefore would
perform better compared to the local interactions. Here Kη2

is a dimensionless parameter which affects the interaction
range.

C. Interaction-induced gradient

From the dynamical equations (9) and (11), we can
see that the interaction Hamiltonian arises in the equa-
tions of motion in the same place as the time-dependent

gradient. More explicitly, if we define

g1(ξ, t) =

∫ η

−η
dξ′χ(ξ, ξ′, t)a†2(ξ′, t)a2(ξ′, t),

g2(ξ, t) =

∫ η

−η
dξ′χ(ξ′, ξ, t)a†1(ξ′, t)a1(ξ′, t),

then the dynamical equations can be rewritten as

∂ta1(ξ, t) = −i(g(ξ, t) + g1(ξ, t))a1(ξ, t)

−β
∫ ξ

−η
dξ′a1(ξ′, t) + i

√
βb1,in(t), (14)

∂ta2(ξ, t) = −i(g(ξ, t) + g2(ξ, t))a2(ξ, t)

−β
∫ ξ

−η
dξ′a2(ξ′, t) + i

√
βb2,in(t). (15)

From the first term on the right-hand side of equations
(14) and (15), we can see that g1(ξ, t) and g2(ξ, t) actually
appear in the same place in the equation as g(ξ, t).

In certain cases the shape of g1(ξ, t) and/or g2(ξ, t)
can look very similar to the gradient normally used to
read out the excitation stored in the memory, leading
to unwanted loss. For example, we plot g1(ξ, t) and
g2(ξ, t) in Figure 7 for a local interaction with a gaussian-
shape pulse for M1 and rectangular-shape pulse for M2.
g2(ξ, t) happens to be larger in this case, and thus has a
stronger effect compared with g1(ξ, t). If we look at at
g2(ξ, t) past ξ/η = 0 it looks similar to a downward slop-
ing gradient, much like the gradient used during the read-
out stage. This results in the excitation past ξ/η = 0 in
M1 leaking from the memory. The same also happens
to the excitation in M2, however the effect is less pro-
nounced as the gradient is less steep. We demonstrate
this effect numerically in figures 8 and 9 where the in-
put, output, and stored energy of M1 and M2, respec-
tively, are plotted (a detailed discussion about the energy
balance is in Appendix B.) We found this unwanted loss
due to the interaction-induced gradient was common for
generic pulse shapes.

There are two ways to ameliorate the effects of an
interaction-induced gradient:

1. Pulse shape engineering If the waveform of the
input pulses are shaped such that the functions
g1(ξ, t) and g2(ξ, t) are flat, there will be no gra-
dient and thus no additional loss.

2. Non-local interactions If the interactions are highly
nonlocal, then g1(ξ, t) and g2(ξ, t) will be approx-
imately independent of ξ. As χ(ξ, ξ′, t) ≈ 1 over
the region between −η and η for very small Kη2.
As g1(ξ, t) and g2(ξ, t) will be flat, there will be no
loss.

Careful pulse engineering and/or nonlinearity design will
be an important part of implementing XPM in practice
and will be examined in future work.
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FIG. 7. Plot of effective gradient generated by a square pulse
shape g1(ξ, t) and a gaussian pulse shape g2(ξ, t). The plot
was given for a dimensionless parameter ξ/η denoting the
frequence (or spatial position) of the memory at ηt = 150
and Kη2 = 10.
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IV. CONCLUSIONS

We have presented a theoretical model of interactions
in a compound GEM and derived the dynamical equa-
tions for the write, interaction and read stages. We
have demonstrated the formation of entanglement, XPM
and interaction-induced gradients. We applied a Gaus-
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FIG. 9. Input, output and stored energies versus a dimen-
sionless time parameter ηt for GEM2.

sian approximation to numerically simulate its dynamics.
The numerical results showed that entanglement could be
generated between the two registers. We explored the
XPM phenomena, the numerical results demonstrated
are in accordance with both theoretical and experimen-
tal results in the literature. It was shown that the phase
shift of the Gaussian-shape pulse relies quadratically on
the strength of the rectangular-shape pulse, and linearly
on the interaction duration. Also nonlocal interactions
between the registers would perform better than local
interactions in the XPM, assuming the maximum inter-
action strength is the same. For the interaction-induced
gradient, we showed that it is an important factor to be
considered and careful engineering of the pulse shapes
is an important part of implementing XPM. Our model
serves as a useful toolbox in the study of photon interac-
tions in a compound GEM and could be used to develop
memory-based quantum computing gates.
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APPENDIX A. PDES AND GAUSSIAN
APPROXIMATIONS

The 8 coupled partial differential equations are given
as follows:

∂t〈a1(ξ, t)〉 = −i
∫ η

−η
dξ2χ(ξ, ξ2, t)〈a1(ξ, t)a†2(ξ2, t)a2(ξ2, t)〉

−ig(ξ, t)〈a1(ξ, t)〉 − β〈
∫ ξ

−η
dξ′a1(ξ′, t)〉〉+ i

√
β〈b1,in(t)〉.

∂t〈a2(ξ, t)〉 = −i
∫ η

−η
dξ1χ(ξ1, ξ, t)〈a†1(ξ1, t)a1(ξ1, t)a2(ξ, t)〉

−ig(ξ, t)〈a2(ξ, t)〉 − β〈
∫ ξ

−η
dξ′a2(ξ′, t)〉+ i

√
β〈b2,in(t)〉.

∂t〈a†1(ξ1, t)a1(ξ2, t)〉 =

−i
∫ η

−η
dξχ(ξ2, ξ, t)〈a†1(ξ1, t)a1(ξ2, t)a

†
2(ξ, t)a2(ξ, t)〉

+i

∫ η

−η
dξχ(ξ1, ξ, t)〈a†1(ξ1, t)a1(ξ2, t)a

†
2(ξ, t)a2(ξ, t)〉

−i (g(ξ2, t)− g(ξ1, t)) 〈a†1(ξ1, t)a1(ξ2, t)〉

−β〈
∫ ξ1

−η
dξa†1(ξ, t)a1(ξ2, t) +

∫ ξ2

−η
dξa†1(ξ1, t)a1(ξ, t)〉

+i
√
β〈b1,in(t)〉〈a†1(ξ1, t)〉 − i

√
β〈b1,in(t)〉∗〈a1(ξ2, t)〉.

∂t〈a†2(ξ1, t)a2(ξ2, t)〉 =

−i
∫ η

−η
dξχ(ξ, ξ2, t)〈a†1(ξ, t)a1(ξ, t)a†2(ξ1, t)a2(ξ2, t)〉

+i

∫ η

−η
dξχ(ξ, ξ1, t)]〈a†1(ξ, t)a1(ξ, t)a†2(ξ1, t)a2(ξ2, t)〉

−i (g(ξ2, t)− g(ξ1, t)) 〈a†2(ξ1, t)a2(ξ2, t)〉

−β〈
∫ ξ1

−η
dξa†2(ξ, t)a2(ξ2, t) +

∫ ξ2

−η
dξa†2(ξ1, t)a2(ξ, t)〉

−i
√
β〈b2,in(t)〉∗〈a2(ξ2, t)〉+ i

√
β〈b2,in(t)〉〈a†2(ξ1, t)〉.

∂t〈a1(ξ1, t)a1(ξ2, t)〉 =

−i
∫ η

−η
dξχ(ξ2, ξ, t)〈a1(ξ1, t)a1(ξ2, t)a

†
2(ξ, t)a2(ξ, t)〉

−i
∫ η

−η
dξχ(ξ1, ξ, t)〈a1(ξ1, t)a1(ξ2, t)a

†
2(ξ, t)a2(ξ, t)〉

−i (g(ξ2, t) + g(ξ1, t)) 〈a1(ξ1, t)a1(ξ2, t)〉

−β〈
∫ ξ1

−η
dξa1(ξ, t)a1(ξ2, t) +

∫ ξ2

−η
dξa1(ξ, t)a1(ξ1, t)〉

+i
√
β〈b1,in(t)〉〈a1(ξ1, t)〉+ i

√
β〈b1,in(t)〉〈a1(ξ2, t)〉.

∂t〈a2(ξ1, t)a2(ξ2, t)〉 =

−i
∫ η

−η
dξχ(ξ, ξ2, t)〈a†1(ξ, t)a1(ξ, t)a2(ξ1, t)a2(ξ2, t)〉

−i
∫ η

−η
dξχ(ξ, ξ1, t)〈a†1(ξ, t)a1(ξ, t)a2(ξ1, t)a2(ξ2, t)〉

−i (g(ξ2, t) + g(ξ1, t)) 〈a2(ξ1, t)a2(ξ2, t)〉

−β〈
∫ ξ1

−η
dξa2(ξ, t)a2(ξ2, t) +

∫ ξ2

−η
dξa2(ξ, t)a2(ξ1, t)〉

+i
√
β〈b2,in(t)〉〈a2(ξ1, t)〉+ i

√
β〈b2,in(t)〉〈a2(ξ2, t)〉.

∂t〈a1(ξ1, t)a2(ξ2, t)〉 =

−i
∫ η

−η
dξχ(ξ, ξ2, t)〈a†1(ξ, t)a1(ξ, t)a1(ξ1, t)a2(ξ2, t)〉

−i
∫ η

−η
dξχ(ξ1, ξ, t)〈a†2(ξ, t)a2(ξ, t)a1(ξ1, t)a2(ξ2, t)〉

−iχ(ξ1, ξ2, t)〈a1(ξ1, t)a2(ξ2, t)〉
−i (g(ξ2, t) + g(ξ1, t)) 〈a1(ξ1, t)a2(ξ2, t)〉

−β〈
∫ ξ1

−η
dξa1(ξ, t)a2(ξ2, t) +

∫ ξ2

−η
dξa1(ξ1, t)a2(ξ, t)〉

+i
√
β〈b1,in(t)〉〈a2(ξ2, t)〉+ i

√
β〈b2,in(t)〉〈a1(ξ1, t)〉.

∂t〈a1(ξ1, t)a
†
2(ξ2, t)〉 =

i

∫ η

−η
dξχ(ξ, ξ2, t)〈a†1(ξ, t)a1(ξ, t)a1(ξ1, t)a

†
2(ξ2, t)〉

−i
∫ η

−η
dξχ(ξ1, ξ, t)〈a†2(ξ, t)a2(ξ, t)a1(ξ1, t)a

†
2(ξ2, t)〉

+iχ(ξ1, ξ2, t)〈a1(ξ1, t)a
†
2(ξ2, t)〉

−i (g(ξ1, t)− g(ξ2, t)) 〈a1(ξ1, t)a
†
2(ξ2, t)〉

−β〈
∫ ξ1

−η
dξa1(ξ, t)a†2(ξ2, t) +

∫ ξ2

−η
dξa1(ξ1, t)a

†
2(ξ, t)〉

+i
√
β〈b1,in(t)〉〈a†2(ξ2, t)〉 − i

√
β〈b2,in(t)〉∗〈a1(ξ1, t)〉.

We approximate the third-order terms and fourth-
order terms in the above PDEs using first-order and
second-order expressions employing Gaussian approxi-
mations, which is termed as Isserlis’ theorem in proba-
bility theory [24, 25]. More explicitly, the approximation
equations are given below:

〈O1O2O3〉 ≈ 〈O1O2〉〈O3〉+ 〈O1O3〉〈O2〉
+〈O2O3〉〈O1〉 − 2〈O1〉〈O2〉〈O3〉,

〈O1O2O3O4〉 ≈ 〈O1O2〉〈O3O4〉+ 〈O1O3〉〈O2O4〉
+〈O1O4〉〈O2O3〉 − 2〈O1〉〈O2〉〈O3〉〈O4〉.

Here Oi can be either the annihilation operator or the
creation operator.
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APPENDIX B. ENERGY BALANCE

Here, we show that the energy is balanced for M1 and
M2 in the XPM model.

Recall that for the memory model in [15], the energy
balance equation is stated as below:

∫ t

0

dτb†in(τ)bin(τ)

=

∫ t

0

dτb†out(τ)bout(τ) +

∫ η

−η
dξa†(ξ, t)a(ξ, t).

For the XPM model, the energy balance equation for
M1 can be stated as below:

∫ t

0

dτb†1,in(τ)b1,in(τ) (A16)

=

∫ t

0

dτb†1,out(τ)b1,out(τ) +

∫ η

−η
dξa†1(ξ, t)a1(ξ, t),

which is equivalent to the following one:

b†1,in(t)b1,in(t) = b†1,out(t)b1,out(t)+

∫ η

−η
dξ
∂a†1(ξ, t)a1(ξ, t)

∂t
.

From the input-output equation (10)

b1,out(t) = i
√
β

∫ η

−η
dξa1(ξ, t) + b1,in(t)

and the dynamical equation for a†1(ξ, t)a1(ξ, t) which
can be derived as below

∂a†1(ξ, t)a1(ξ, t)

∂t

= −β
∫ ξ

−η
dξ′a†1(ξ, t)a1(ξ′, t)− β

∫ ξ

−η
dξ′a†1(ξ′, t)a1(ξ, t)

−i
√
βb†1,in(t)a1(ξ, t) + i

√
βa†1(ξ, t)b1,in(t),

we can easily derive equation (A16). The above proof
goes along similarly for M2, therefore for the XPM
model, the energy is balanced, also there is no energy
flow between M1 and M2.

REFERENCES

[1] Yoran, N. and Reznik, B., Deterministic linear optics
quantum computation with single photon qubits. Physi-
cal review letters, 91(3), 037903,(2003).

[2] Knill, E., Laflamme, R., and Milburn, G. J. , A scheme
for efficient quantum computation with linear optics. Na-
ture, 409(6816), 46-52, (2001).

[3] Milburn, G. J. Quantum optical Fredkin gate. Physical
Review Letters, 62(18), 2124,(1989).

[4] Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowl-
ing, J. P. and Milburn, G. J. Linear optical quantum com-
puting with photonic qubits. Reviews of Modern Physics,
79(1), 135, (2007).

[5] Chuang, I. L. and Yamamoto, Y., Simple quantum com-
puter. Physical review. A, 52(5), 3489, (1995).

[6] Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H. and
Edamatsu, K., Observation of optical-fibre Kerr nonlin-
earity at the single-photon level. Nature photonics, 3(2),
95-98, (2009).

[7] Schmidt, H. and Imamoglu, A., Giant Kerr nonlinearities
obtained by electromagnetically induced transparency.
Optics letters, 21(23), 1936-1938, (1996).

[8] Shapiro, J. H., Single-photon Kerr nonlinearities do not
help quantum computation. Physical Review A, 73(6),
062305, (2006).

[9] Shen, J. T. and Fan, S. Strongly correlated two-photon
transport in a one-dimensional waveguide coupled to a
two-level system. Physical review letters, 98(15), 153003,
(2007).

[10] Gea-Banacloche, J., Impossibility of large phase shifts

via the giant Kerr effect with single-photon wave packets.
Physical Review A, 81(4), 043823, (2010).

[11] Xu, S., Rephaeli, E. and Fan, S. Analytic properties of
two-photon scattering matrix in integrated quantum sys-
tems determined by the cluster decomposition principle.
Physical review letters, 111(22), 223602,(2013).

[12] Hétet, G., Longdell, J. J., Alexander, A. L., Lam, P.
K. and Sellars, M. J., Electro-optic quantum memory
for light using two-level atoms. Physical review letters,
100(2), 023601,(2008).
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