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We propose a pump-probe signal, whereby the sample is excited by a classical pulse, and - after a variable
time delay - probed by a photon from an entangled pair, which is finally detected in coincidence with its twin.
This setup offers an improved time and frequency resolution compared to a classical pump-probe signal, and
can be used to enhance or suppress selected resonances.
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I. INTRODUCTION

Quantum light is gaining attention as a possible tool in
(nonlinear) spectroscopy, where its nonclassical quantum
fluctuations [1], its linear scaling behavior [2–4] or its non-
classical bandwidth properties [5–8] may be exploited to en-
hance frequency or time resolution beyond classically achiev-
able limits. Here, we focus on the latter case, where it has been
shown that the nonclassical bandwidth properties of entan-
gled photons allow the control of two-exciton states in molec-
ular aggregates [9, 10] or of vibrational states in molecules
[11, 12]. The two-photon wavefunction further offers new
control parameters for the manipulation of optical signals [8].

Entangled photons have already been employed success-
fully in linear “biphoton spectroscopy”, whereby they are de-
tected in coincidence [13–16]. This technique has been shown
to suppress background in noisy samples. In contrast to di-
rect two-photon absorption measurements [4], only one of the
two photons interacts with the sample. The idle photon serves
as a reference for the arrival of its twin, making use of the
strong correlations in the arrival time of the two photons, and
the other photon is detected in a monochromator, exploiting
the spectral correlations of the two photons [5, 6]. As shown
in Ref. [17], the combined time-frequency entanglement of
the photons may be put to use in nonlinear spectroscopy by
enhancing the resolution, and selecting specific pathways in
stimulated Raman spectroscopy. This Article extends these
ideas to simulate a pump-probe measurement combined with
two-photon counting (TPC) detection. Utilizing a simple toy
model, we explore how the two-photon counting setup may
be used to filter the signal, and enhance or suppress selected
features.

In section II, we introduce the setup, and derive formal ex-
pressions for the TPC signal, as well as the classical pump-
probe signal. This will enable us to simulate the nonlinear
optical response of the two state jump (TSJ) model in section
III.
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II. THE SETUP AND SIGNAL

We consider a system consisting of the light field, and a
material system, which is surrounded by a dissipative envi-
ronment. Hence, the total Hamiltonian is given by

Htotal = Hsystem + Hbath + HBS + Hfield + Hint. (1)

The five terms represent the system, the bath, their interac-
tion, the field, and the field-matter interaction Hamiltonian in
the dipole approximation, respectively. Here, we work in the
interaction picture with respect to Hsystem +Hbath +HBS +Hfield,
such that the interaction Hamiltonian reads

Hint(t) = E(t)V†(t) + E†(t)V(t), (2)

where E(t) (E†(t)) denotes the positive-(negative-)frequency
component of the sum of all the fields considered, and V(t)
(V†(t)) the sample de-excitation (excitation) operator. The
quantum field operator is given by

E(t) =

∫
dω
√

2π
e−iωta(ω), (3)

with a(ω) being the photon annihilation operator at fre-
quency ω, which satisfies the bosonic commutation relation
[a(ω), a†(ω′)] = δ(ω − ω′). For clarity in our definition of
the electromagnetic field (3), we have omitted the field nor-
malization, which has been absorbed into the (de-)excitation
operators.

We consider the setup depicted in Fig. 1a): A pair of entan-
gled photons, that has been created, e.g., by parametric down-
conversion in a birefringent crystal, hits a beam splitter. One
photon is sent through the sample, which has previously been
excited by a classical ultrafast laser pulse, and then detected.
The other photon serves as a reference (ancilla), and is de-
tected in coincidence. To provide a new window for the sig-
nal, we exploit the quantum correlations shared between the
two photons.

The two-photon counting signal is spectrally dispersed, and
our signal is given by the change to this two-photon counting
rate [18, 19] 〈

E†2(ωr)E
†

1(ω)E1(ω)E2(ωr)
〉

(4)

due to the interaction with the sample. Here, ω/ωr denotes
the detected frequency of the respective beam, and the brack-
ets 〈· · · 〉 represent the expectation value with respect to the

mailto:frank.schlawin@physik.uni-freiburg.de


2

t0

t

⌧

Ea E⇤
a

E†
1

E1

Sample
E1

E2

E1

Ea

b)a)

|gi

|fi

|e, "i
|e, #i

k

c)

FIG. 1. (Color online) a) The proposed TPC setup: the entangled photon pair in beams E1 and E2 are split on a beam splitter. A classical,
actinic, ultrafast pulse Ea excites the sample, and E1 is employed as a probe in a pump-probe measurement, while E2 is spectrally dispersed,
and detected in coincidence. b) The level scheme for the two-state jump (TSJ) model considered in this work. The g − e transition is driven
by the actinic pulse (blue arrow). It is far off-resonant from the spectral range of the entangled photon wavepacket (red arrows), which only
couples to the e − f transition. c) Diagram representing the pump-probe measurement.

transmitted fields. As shown in appendix A, the change is
given by

S TPC(Γ) =
2
~
=

∫
dt eiω(t−t0)tr

{
E†2(ωr)E

†

1(ω)V(t)E2(ωr)%(t)
}
,

(5)

where Γ denotes the set of control parameters of the fields (to
be specified later). %(t) represents the density matrix of the
combined matter + field system, and is given by the Dyson
series

%(t) = T exp
[
−

i
~

∫ t

t0
dτHint,−(τ)

]
%initial, (6)

and the initial density matrix

%initial = |g〉〈g| ⊗ %field, (7)

where %field is specified in appendix B. Here, T is the time-
ordering operator, and Hint,− the Liouville Superoperator, de-
fined by Hint,−X = HintX − XHint. The trace in Eq. (5) is taken
with respect to the full (molecule + field) Hilbert space, given
by Htot.

To obtain the pump-probe signal in a three-level system, we
expand the exponential in Eq. (6) to third order. The first two
interactions are with the classical pump pulse, which is taken
to be impulsive, Ea(t) = Eaδ(t), and the third is with the probe.
Assuming E1 to be far off-resonant from the e − g transition,
we obtain only the single diagram shown in Fig. 1c), which
reads

S TPC(Γ) = −
2
~
=

(
−

i
~

)3

|Ea|
2
∫ ∞

0
dt eiω(t−t0)

∫ t

0
dτ F(t − τ, τ)

×
〈
E†2(ωr)E

†

1(ω)E1(τ)E2(ωr)
〉
. (8)

We have defined the matter correlation function,

F(t − τ, τ) =
〈
|µge|

2|µe f |
2G f e(t − τ)Gee(τ)

〉
env, (9)

where µge and µe f denote the dipole moments connecting
ground state with the single exciton manifold, as well as sin-
gle with two-exciton manifold, respectively. 〈· · · 〉env denotes
the average with respect to environmental degrees of freedom,
obtained from tracing out the bath. Decomposing the field op-
erator spectrally,

E1(τ) =

∫
dωb
√

2π
e−iωb(τ−t0)E1(ω), (10)

we can carry out the time integrations in Eq. (8) to obtain

S TPC(ω,ωr; t0) =
2
~4 |Ea|

2<

∫
dωb
√

2π
F̃(ωb, ω; t0)

×
〈
E†2(ωr)E

†

1(ω)E1(ωb)E2(ωr)
〉
, (11)

with

F̃(ωb, ω; t0) ≡
∫ ∞

0
dt

∫ t

0
dτ F(t − τ, τ) eiω(t−t0)e−iωb(τ−t0).

(12)

Here, we also specified the control parameters we employ in
this Article: the two frequencies ω and ωr, at which the two
photons are detected, and the time delay t0.

For comparison, we present the classical pump-probe sig-
nal (i.e. change in transmission of a classical probe pulse),
which will serve as a reference for the two-photon counting
signal. The change in transmission is obtained by measuring
the intensity of a classical probe pulse〈

E†pr(ω)Epr(ω)
〉
. (13)

Its change induced by the interaction with the sample is given
by [20]

S PP(t0, ω) =
2
~
=E∗pr(ω)

〈
V(ω)

〉
, (14)

where we have already replaced the field operator by the clas-
sical field envelope Epr, and taken it out of the expectation
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value. By comparison with Eq. (8), we can see that we
may obtain the classical pump-probe signal by replacing the
field correlation function

〈
E†2(ωr)E

†

1(ω)E1(ωb)E2(ωr)
〉

with
the classical field envelope of the probe pulse. Hence, we
arrive at

S PP(t0, ω) =
2
~
=

(
−

i
~

)3

|Ea|
2
∫ ∞

0
dt eiωt

∫ t

0
dτ

× E∗pr(ω)Epr(τ)F(t − τ, τ), (15)

which can be recast in the frequency domain

S PP(t0, ω) =
2
~4 |Ea|

2<

∫
dωb
√

2π
E∗pr(ω)Epr(ωb)F̃(ωb, ω; t0).

(16)

Comparison of Eqs. (11) and (16) reveals that the classical
pump-probe signal has precisely the same matter information
as the TPC signal. However, as we will show in the following
- the four-point correlation function in Eq. (8) offers a novel
window for filtering the signal, which can enhance desired
features.

III. SIMULATIONS OF CLASSICAL AND QUANTUM
PUMP-PROBE SIGNALS BY THE STOCHASTIC

LIOUVILLE EQUATIONS

We do not treat the bath explicitly, but rather average our
final expressions over bath realizations to obtain an effective
master equation for the system evolution. This level of the-
ory is known as the stochastic Liouville equation [21]. Here,

we employ the two-state jump (TSJ) model: A ground state
g is dipole-coupled to an electronic excited state e, which is
connected to two spin states ↑ and ↓ undergoing relaxation
[22]. We additionally consider a two-exciton state f , which
is dipole-coupled to both |e, ↑〉 and |e, ↓〉 [see Fig. 1b)]. The
electronic states are damped by a dephasing rate γ. We only
consider the low-temperature limit of this model, where only
the decay process from ↑ to ↓ is allowed [23]. The decay
process is entirely incoherent, such that the description may
be restricted to the two spin populations | ↑〉〈↑ |=̂(1, 0)T and
| ↓〉〈↓ |=̂(0, 1)T . The propagator in the e-population is then
given by [23]

Gee(t) = Θ(t)
(

e−kt 0
1 − e−kt 1

)
, (17)

where k denotes the decay rate of the spin relaxation. The
coherence between f and e reads

G f e(t) = Θ(t)
(

e−(k+iω−)t 0
k

k+2iδ

[
e−iω+t − e−(k+iω−)t

]
e−iω+t

)
, (18)

with δ the energy difference between the two spin states, and
ω± = ω f e±δ. Note that, since we monitor the f − e transition,
the detected frequency will increase in time, from ω− to ω+.
The field correlation function (9) is then given by

F(t2, t1) = 〈〈Id||µge|
2|µe f |

2G f e(t2)Gee(t1)| ↑〉〉

= |µge|
2|µe f |

2e−γ(t1+2t2)

×

(
e−iω+t2 +

2iδ
k + 2iδ

e−kt1
[
e−(k+iω−)t2 − e−iω+t2

])
. (19)

Its counterpart in frequency domain is then given by

F̃(ωb, ω; t0) = |µge|
2|µe f |

2
( e−i(ω−ωb)t0

ωb − ω+ − iγ

[
1

ω − ωb + 2iγ
−

1
ω − ω+ + iγ

]
+

2iδ
k + 2iδ

e−i(ω−ωb)t0

ωb − ω− − iγ

[
1

ω − ωb + i(k + 2γ)
−

1
ω − ω− + i(k + γ)

]
−

2iδ
k + 2iδ

e−i(ω−ωb)t0

ωb − ω+ − i(k + γ)

[
1

ω − ωb + i(k + 2γ)
−

1
ω − ω+ + iγ

] )
. (20)

The field correlation function in Eq. (11), which will be used
below, is derived in appendix B.

In the following, we use these results to first simulate the
classical pump-probe signal, and then the two-photon count-
ing signal with entangled photons. For the former case, we
consider a classical probe pulse in our simulations with a
Gaussian envelope,

Epr(ω) =
1

√
2πσ2

exp
[
−(ω − ω0)2/2σ2

]
. (21)

We chose the following system parameters: ω f e = 11, 000
cm−1, δ = 200 cm−1, k = 120 cm−1, and γ = 100 cm−1.

Fig. 2 depicts the classical pump-probe signal vs. the dis-
persed frequency ω and the time delay t0, where we have nor-
malized each plot to its maximal peak.

The center frequency ω0 is fixed at the transition frequency
ω f e, and we vary the probe bandwidth. Panel a) shows the sig-
nal for σ = 1, 000 cm−1. Two peaks at ω f e ± δ correspond to
the detected frequency, when the system is either in the upper
state (atω f e−δ), or in the lower state (ω f e+δ). Due to the spec-
trally dispersed detection of the signal, the resonance widths
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FIG. 2. (Color online) The classical pump-probe signal, Eq. (16), displayed vs. the time delay to the pump pulse t0 (in fs), and the dispersed
frequency ω (in cm−1) with a probe bandwidth of a) σ = 1, 000 cm−1 (i.e. 5.6 fs), b) 800 cm−1, c) 600 cm−1, d) 400 cm−1, e) 200 cm−1, and f)
50 cm−1 (111 fs). The center frequency of the probe beam is fixed at ω0 = 11, 000 cm−1.

are given by the linewidth γ, and not the much broader probe
pulse bandwidth σ. For very short time delays t0, both reso-
nances increase, until the probe pulse has fully passed through
the sample. Then the resonance at 10, 800 cm−1, i.e. the state

|e, ↑〉, starts to decay rapidly, while the resonance at 11, 200
cm−1 peaks at longer delay times due to its initial population
by the upper state. For longer delays, both resonance decay
due to the additional dephasing. With decreasing bandwidth
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[panels b) - f)], the temporal resolution decreases as well. This
can be seen from the fact that the primary resonance at ω f e−δ
loses relative intensity, and may no longer be observed for
σ ≤ 400 cm−1. Furthermore, the two resonances merge into a
single resonance at the unperturbed transition frequency ω f e,
since the fast decay process connecting the two resonances
may no longer be resolved (motional narrowing) [21].

We now discuss how the frequency correlations between the
entangled photons may filter the classical pump-probe signal.

The two-photon counting signal with entangled photons
offers several novel control parameters: The dispersed fre-
quency ω of beam 1, the pump frequency ωp and its band-
width σp loosely correspond to the classical control parame-
ters, i.e. the central frequency ω0 and bandwidth σ. In addi-
tion, we may vary the entanglement time T and the detected
frequency of the reference beam ωr.

Fig. 3 shows S TPC(ω,ωr; t0) vs. the dispersed frequency
ω and the time delay t0. The pump bandwidth is set to
σp = 1, 000 cm−1 (corresponding to a 5.6 fs pulse) in the
top row, and to 2, 000 cm−1 in the bottom row. The central
frequency of the photon beams is fixed on resonance with the
electronic transition, i.e. ωp/2 = ω f e. In the four panels, we
vary the entanglement time T and the reference frequency ωr.
In the left column [panels a) and c)], the reference frequency
ωr is set to 10, 400 cm−1, close to the lower-energy resonance
ω f e−δ. Because of the frequency correlations of the entangled
photon pair, this setup enhances the low-energy resonance,
and suppresses the high-energetic one. Similarly, in the right
column [panels b) and d)], the reference frequency is changed
to 11, 400 cm−1, thus enhancing ω f e + δ, and suppressing the
other one.

The remaining new control parameter - the entanglement
time T - is varied in the two rows in Fig. 3. The upper row
[panels a) and b)] depicts the signal obtained from entangled
photons with T = 90 fs, and the bottom row [panels c) and
d)] with T = 358 fs. The longer entanglement time can select
a very narrow frequency window from the total signal, and to
investigate the relaxation dynamics of this part of the signal
separately. In panel d), we identify a build-up of the maxi-
mal signal, and its ensuing decay. Panel c) can only resolve
the decay of the signal. However, we also observe that - even
though we increased the pump bandwidth compared to panels
a) and b) - (to σp = 2, 000 cm−1) the larger entanglement time
results in the loss of time resolution: Even though the maxi-
mum in panel d) can be attributed to the intermediate decay
| ↑〉 → | ↓〉, the signal is widely stretched along the t0-axis,
and the real time constants cannot be read off in this plot.

Fig. 4 depicts slices of panels a) and b) of Fig. 3 for dif-
ferent time delays t0. For comparison, we show the classical
pump-probe with bandwidth σ = 1, 000 cm−1 in the left col-
umn, and with 100 cm−1 in the right column. The TPC signals
are normalized with respect to the maximum value of the sig-
nal at t0 = 3 fs and ωr = 11, 400 cm−1. The classical signal is
normalized to its peak value at zero time delay, and the TPC
signals to the signal with ωr = 11, 400 cm−1 at zero delay. As
discussed before, the panels show that a broadband classical
probe pulse (left column) cannot excite specific states, such

that the two resonances merge into one band. A narrowband
probe (right column), on the other hand, cannot resolve the
fast relaxation at all, and only shows the unperturbed reso-
nance at ω f e. TPC spectroscopy, however, can target the re-
laxation dynamics of the individual states.

IV. CONCLUSIONS

We have shown that TPC spectroscopy with entangled pho-
tons provides a novel spectroscopic tool, and demonstrated
how it may be used to simplify congested spectra. This fea-
ture may be understood by investigating the field correlation
functions in Fig. 5b): We depict the ωr − ωb plot of the en-
tangled photon field correlation function that creates the sig-
nal. Clearly, we observe strong positive frequency correla-
tions, and by tuning ωr, we may select a specific frequency
window, from which the signal is created. Conversely, the
classical product of field amplitudes in panel a) shows no such
correlations, and cannot be used to filter the signal.

Our results add a new angle to the already demonstrated
enhanced signal-to-noise ratio of TPC spectroscopy in noisy
samples [16].
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Appendix A: Derivation of TPC signal

To evaluate the change of the two-photon counting signal
caused by the interaction with the sample, we start with the
full signal,

S ′TPC(Γ) =

∫
dt

∫
dt′ eiω(t−t′)tr

{
E†2(ωr)E

†

1(t)E1(t′)E2(ωr)

× T exp
[
−

i
~

∫ ∞

−∞

dτHint,−(τ)
]
%initial

}
, (A1)

where, in the second line, we have rewritten the field oper-
ators E†1(ω)E1(ω) in their time representation. Note that the
two interactions at t and t′ are not time-ordered, but only the
Dyson series of the interaction Hamiltonian. The Dyson se-
ries is propagated to infinity, which may seem contradictory
at first glance. However, the interaction Hamiltonian can only
create a contribution to the measured coincidence rate, if the
last interaction predates either t or t′.

Expanding the exponential in the Dyson series to leading
order yields
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The classical signal is normalized, such that its maximum value at t0 = 0 is equal to one. Similarly, the TPC signal are normalized to the
maximum value of the signal with ωr = 11, 400 cm−1 at t0 = 0.

S ′TPC(Γ) = tr
{
E†2(ωr)E

†

1(ω)E1(ω)E2(ωr)%initial

}
−

i
~

∫
dt

∫
dt′

∫ ∞

−∞

dτ eiω(t−t′)tr
{
E†2(ωr)E2(ωr)E

†

1(t)E1(t′)THint,−(τ) exp
[
−

i
~

∫ τ

−∞

dτ′Hint,−(τ′)
]
%initial

}
. (A2)

The first term in this expansion represents the two-photon counting rate in the absence of any interaction with the sample system,
and may therefore be neglected. Our signal - the change of the count rate due to the interaction with the sample - is given by the
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FIG. 5. (Color online) a) Absolute value of the product of uncorrelated classical light envelopes, E∗pr(ω)Epr(ωb), with σ = 100 cm−1. b)
Absolute value of the coherent correlation function, Eq. (B5), of degenerate, entangled photon pairs with σp = 400 cm−1, T = 900 f s.

second term, which can be rewritten as

S TPC(Γ) = −
i
~

∫
dt

∫
dt′

∫ ∞

−∞

dτ eiω(t−t′)tr
{
E†2(ωr)E2(ωr)T

[
E†1(t)E1(t′),Hint(τ)

]
%(τ)

}
. (A3)

The commutator may be evaluated to[
E†1(t)E1(t′),Hint(τ)

]
=E†1(t)

[
E1(t′), E†1(τ)V(τ)

]
+

[
E†1(t), E1(τ)V†(τ)

]
E1(t′) (A4)

=E†1(t)V(τ)δ(t′ − τ) − V†(τ)δ(t − τ)E1(t′), (A5)

which allows us to write the final signal as

S TPC(Γ) = −
i
~

∫
dt

∫
eiω(t−t′)

× tr
{
E†2(ωr)E2(ωr)

(
E†1(t)V(t′)%(t′) − E1(t′)V†(t)%(t)

) }
,

(A6)

and the two terms can be combined to Eq. (5).

Appendix B: The entangled-photon correlation function

This appendix summarizes the light field created by para-
metric downconversion. We start with the form [7]

%field = UPDC|0〉〈0|U
†

PDC, (B1)

where the transformation U is created by the effective down-
conversion Hamiltonian

UPDC = exp
[
−

i
~

HPDC

]
, (B2)

with HPDC =

∫
dωa

∫
dωb Φ(ωa, ωb)a†1(ωa)a†2(ωb) − h.c.

(B3)

We only work in the weak downconversion limit, in which we
can approximate the exponential by

UPDC ≈ I −
i
~

HPDC + · · · . (B4)

In this situation, the four-point field correlation functions we
need to evaluate take a particularly simple form〈

E†1(ωr)E
†

2(ω)E2(ωb)E1(ωr)
〉

=

(
−

i
~

)4

Φ∗(ωr, ω)Φ(ωr, ωb). (B5)

1. The two-photon amplitude

The so-called two-photon amplitude is given by

Φ(ωa, ωb) = αAp(ωa + ωb) exp
[
−γ

(
∆k(ωa, ωb)L

)2
]
, (B6)

where Ap denotes the normalized envelope of the pump pulse,
which we chose to be a Gaussian around the central pump
frequency ωp, i.e.

Ap(ω) =
1

√
2πσp

e−(ω−ωp)2/(2σ2
p). (B7)

α is a constant containing the second-oder susceptibility of
the crystal, the quantization area of the fields, the dielec-
tric constant, as well as the crystal length. The second term
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exp[−γ(∆kL)2] is the so-called phase-matching function with
∆k(ωa, ωb) = kp(ωa+ωb)−k1(ωa)−k2(ωb) the phase mismatch
between the wavevectors of the involved field. γ = 0.04822
is a numerical constant to fit the spectrum to observed band-
widths [7]. In type-II downconversion, the phase mismatch
may be approximated linearly around the central frequencies
of the two beams,

∆k(ωa, ωb) =
(
ωa − ωp/2

)
T1 +

(
ωb − ωp/2

)
T2. (B8)

The two timescales T1 and T2 are determined by the differ-
ences between the group velocities of the downconverted pho-

tons in beams 1 and 2, and the one of the pump pulse times
the length of the crystal [6]. We consider the following pa-
rameters,

T1 = −0.00007(T/ f s) cm, (B9)
T2 = 0.00025(T/ f s) cm, (B10)

which have been parametrized with respect to the so-called
entanglement time T = T2 − T1 (in fs) [24]. We finally note
that in contrast to most applications of these entangled pho-
tons, our simulations work in the regime of positive frequency
correlations [19]. Here, the bandwidth of the pump pulse is
much larger than the inverse entanglement time, σp � 1/T .

[1] M. Kira, S. W. Koch, R. Smith, A. E. Hunter, and S. Cundiff,
Nature Phys. 7, 799 (2011).

[2] J. Javanainen and P. L. Gould, Phys. Rev. A 41, 5088 (1990).
[3] B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys.

Rev. Lett. 94, 043602 (2005).
[4] D.-I. Lee and T. Goodson, J. Phys. Chem. B 110, 25582 (2006),

http://pubs.acs.org/doi/pdf/10.1021/jp066767g.
[5] Y. Shih, Reports on Progress in Physics 66, 1009 (2003).
[6] W. P. Grice and I. A. Walmsley, Phys. Rev. A 56, 1627 (1997).
[7] A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Sil-

berhorn, New Journal of Physics 13, 033027 (2011).
[8] O. Roslyak and S. Mukamel, Phys. Rev. A 79, 063409 (2009).
[9] F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel,

Nature Communications 4, 1782 (2013).
[10] M. G. Raymer, A. H. Marcus, J. R. Widom, and D. L. P. Vitullo,

The Journal of Physical Chemistry B 117, 15559 (2013).
[11] H. Oka, The Journal of Chemical Physics 134, 124313 (2011).
[12] H. Oka, The Journal of Chemical Physics 135, 164304 (2011).
[13] A. Yabushita and T. Kobayashi, Phys. Rev. A 69, 013806

(2004).
[14] A. Kalachev, D. Kalashnikov, A. Kalinkin, T. Mitrofanova,

A. Shkalikov, and V. Samartsev, Laser Physics Letters 4, 722
(2007).

[15] A. Kalachev, D. Kalashnikov, A. Kalinkin, T. Mitrofanova,
A. Shkalikov, and V. Samartsev, Laser Physics Letters 5, 600
(2008).

[16] D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivit-
sky, Phys. Rev. X 4, 011049 (2014).

[17] K. E. Dorfman, F. Schlawin, and S. Mukamel, The Journal of
Physical Chemistry Letters 5, 2843 (2014).

[18] P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B.
U’Ren, C. Silberhorn, and I. A. Walmsley, Phys. Rev. Lett.
100, 133601 (2008).

[19] Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, Phys. Rev.
Lett. 113, 063602 (2014).

[20] S. Mukamel and S. Rahav, in Advances in Atomic, Molecular,
and Optical Physics, Advances In Atomic, Molecular, and Op-
tical Physics, Vol. 59, edited by P. B. E. Arimondo and C. Lin
(Academic Press, 2010) pp. 223 – 263.

[21] Y. Tanimura, Journal of the Physical Society of Japan 75,
082001 (2006).
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