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Proposal to directly observe the Kondo effect through enhanced photo-induced

scattering of cold fermionic and bosonic atoms

Bhuvanesh Sundar and Erich J. Mueller
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca NY 14850

We propose an experimental protocol to directly observe the Kondo effect by scattering ultracold
atoms. We propose using an optical Feshbach resonance to engineer Kondo-type spin-dependent
interactions in a system with ultracold 6Li and 87Rb gases. We calculate the momentum transferred
from the 87Rb gas to the 6Li gas in a scattering experiment and show that it has a logarithmically
enhanced temperature dependence, characteristic of the Kondo effect and analogous to the resistivity
of alloys with magnetic impurities. Experimentally detecting this enhancement will give a different
perspective on the Kondo effect, and allow us to explore a rich variety of problems such as the
Kondo lattice problem and heavy-fermion systems.

PACS numbers: 67.85.Pq, 72.10.Fk, 72.15.Qm

I. INTRODUCTION

Ultracold atomic gases provide a platform to engi-
neer model Hamiltonians relevant for condensed matter
physics phenomena. One such intriguing phenomenon
is the Kondo effect [1, 2]. In this paper we propose an
experimental protocol to engineer and measure the scat-
tering properties of Kondo-like interactions between ul-
tracold atoms. Such an experiment would give a new
perspective on an iconic problem.

The Kondo effect is a transport anomaly that arises
when itinerant electrons have spin-dependent interac-
tions with magnetic impurities. The source of the phe-
nomenon is a spin-singlet many body bound state formed
between the Fermi sea and an impurity. This bound state
leads to resonant scattering of itinerant electrons off the
screened impurities. As the temperature is lowered, this
resonant scattering dominates over other scattering pro-
cesses and leads to a characteristic logarithmic tempera-
ture dependence of the resistivity of the material. When
the interactions between the electrons and the impurity
are spin-independent, no such bound state is formed, and
the scattering is not enhanced.

Despite intense research, some questions about the
Kondo effect remain unresolved and some of the key the-
oretical predictions have never been directly seen. For
example, the electron cloud which screens the spin on the
impurity has never directly been imaged [3–6]. More im-
portantly the analogous problem with an array of inter-
acting impurities (the Kondo lattice) has aspects which
are not well understood [7]. Exploring the Kondo lat-
tice problem is of paramount importance to the under-
standing of heavy fermion systems and quantum critical-
ity [8, 9].

In this paper we propose using cold atoms to directly
observe enhanced Kondo scattering. We envision a sys-
tem consisting of a spin-1/2 Fermi gas and a dilute Bose
gas with spin S, where bosonic atoms play the role of
magnetic impurities and fermionic atoms play the role of
electrons. To strengthen the analogy with immobile spin
impurities in the Kondo model, we consider bosons which

are much heavier than the fermions. Fermion-boson pairs
such as 6Li-87Rb 7Li-85Rb or 6Li-133Cs are good candi-
dates with large mass ratios. Alkali earth and rare-earth
atoms are also promising.

We consider a rotationally symmetric interaction be-
tween the ultracold atoms, which includes both density-
density and spin-dependent interactions. We present an
experimental protocol to produce such an interaction us-
ing an optical Feshbach resonance. For this general in-
teraction, we calculate that the scattering cross-section
is strongly enhanced by the Kondo effect. We propose
directly measuring this enhancement by launching the
Bose gas into the Fermi gas with a small velocity. One
would then measure the momentum transferred to the
Fermi gas. A number of related experiments have been
used to probe atomic scattering in the past [10–13]. We
show that at temperatures smaller than the Fermi tem-
perature, the final momentum of the Fermi gas varies
logarithmically with temperature, analogous to the resis-
tance of electrons in an alloy with magnetic impurities.
The temperature dependence of the transferred momen-
tum, depicted in Fig. 1, has a minimum which is a sig-
nature of the Kondo effect, and this minimum can be
detected at experimentally accessible temperatures. Al-
ternatively, the enhanced scattering could be seen in the
damping of collective modes of the atomic clouds in a
trap [14].

This paper is organized as follows. In Sec. II we in-
troduce our atomic system and the model we consider.
In Sec. III we explain how an optical Feshbach reso-
nance can be used to produce the interactions consid-
ered in our model. In Sec. IV we calculate the mo-
mentum exchanged in a scattering experiment between
atomic clouds. We calculate the momentum transferred
as a function of temperature perturbatively up to third
order in the interaction strength. We explicitly describe
all parts of our calculation in the Appendix. We summa-
rize in Sec. V.
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FIG. 1: Temperature dependence of the momentum ~P trans-
ferred from bosons to fermions in a scattering experiment with
photo-induced interactions. Both ~P and temperature have
been rescaled to dimensionless quantities. P0 denotes the
momentum transferred to the Fermi gas at zero termpature
when the interactions are spin-independent (gs = 0). Solid
line: spin-dependent interactions between spin-1/2 fermions
and spin-1 bosons with gs = −1

3
gn = 0.1ǫF

N/v
, dashed line: spin-

independent interactions (gs = 0 and gn = −3× 0.1ǫF
N/v

). The

minimum in ~P is a signature of the Kondo effect, and may be
detected experimentally. In Sec. III we estimate experimen-
tal parameters to achieve the interaction strength used here.
Inset shows a cartoon of the collision.

II. MODEL

In this section we describe our model. In Sec. III we
describe how to experimentally implement our model.
We build our system out of spin-1/2 fermions and

spin-S bosons. In our implementation these will be hy-

perfine spins. We let the operators ˆ̃a†rα and
ˆ̃
b†rµ create

fermionic and bosonic atoms at position ~r and spin pro-
jection α =↑, ↓ or µ = −S, .., S along the z-axis. Their
Fourier transforms,

â†kα =
1√
V

∫

d3~r ˆ̃a†rαe
i~k·~r,

b̂†kµ =
1√
V

∫

d3~r ˆ̃b†rµe
i~k·~r,

(1)

create particles in momentum eigenstates. Above, V is
the volume of the system.
We explore a model with a Hamiltonian Ĥ = Ĥ0+Ĥint.

The first term models the kinetic energy of the fermions
and bosons,

Ĥ0 =
V

(2π)3

∫

d3~k

(

∑

α

(ǫk − µ)â†kαâkα +
∑

µ

Ek b̂
†
kµb̂kµ

)

,

ǫk =
h̄2k2

2ma
, Ek =

h̄2k2

2Mb
, (2)

For the interactions modeled by Ĥint, we consider a
generic form of local spherically symmetric pairwise
Bose-Fermi interactions. Since the fermions have spin-
1/2, the most general such interaction has the form

Ĥint =

∫

d3~r
∑

αβµν

ˆ̃a†rαˆ̃arβ
ˆ̃b†rµ

ˆ̃brν

(

gs~σ
(a)
αβ · ~σ(b)

µν + gnδαβδµν

)

.

(3)
We denote the vector of spin matrices for the fermions
and bosons by ~σ(a) and ~σ(b), and δ refers to the Kro-
necker delta function. It is important to note that Ĥint

contains terms where α 6= β and µ 6= ν. This encodes
the fact that the atoms exchange spin when they collide.
We point out that spherical symmetry of the Hamilto-
nian is not a necessary feature to observe Kondo physics.
Any Hamiltonian which allows spin exchange processes at
third order of interaction strength would produce an en-
hanced scattering cross-section at low temperatures. We
restrict ourselves to interactions modeled by Eq.(3), and
we show in Sec. III that this has a simple experimental
realization.
It is useful to rewrite Ĥint in momentum space as

Ĥint =
V 2

(2π)9

∫

d3~k

∫

d3~p

∫

d3~q
∑

αβµν

(4)

â†k+q,αâk+p,β b̂
†
k−q,µb̂k−p,ν

(

gs~σ
(a)
αβ · ~σ(b)

µν + gnδαβδµν

)

.

Our model in Eq. (4) differs from the one in the spin-
S Kondo model [1] in two respects. The bosonic atoms,
which play the role of impurities, are mobile. Due to their
large mass however, the recoil of the bosonic atoms can be
neglected, and formally the physics is equivalent to that
of immobile spin impurities. In addition to the regular
spin-S Kondo-like interaction, Eq.(4) contains a density-
density interaction. We show that in spite of such an ad-
ditional interaction term, the momentum transferred to
the Fermi gas in a scattering experiment still has a mini-
mum at a certain temperature, albeit at a lower temper-
ature than the case with no density-density interaction.
The interaction we have considered in Eq.(3) does not

occur in typical cold atom experiments in which inter-
action strengths are tuned using a magnetic Feshbach
resonance. In a typical magnetic Feshbach resonance,
spin-exchange collisions are off-resonance and will not be
observed. In the following section we propose using an
optical Feshbach resonance to produce the interaction in
Eq.(3) .

III. AN EXPERIMENTAL SETUP

In this section we describe our proposal to experimen-
tally implement the model introduced in Sec. II using
6Li and 87Rb atoms as our itinerant fermions and spin
impurities. As we will show, producing a strong inter-
action between 6Li and 87Rb using an optical Feshbach
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resonance requires a large matrix element for photoas-
sociation. Experiments [15] show 7Li and 85Rb to have
the highest photoassociation rate coefficient among all
the bialkalis. We expect their isotopes 6Li and 87Rb to
have similar photoassociation rates, and we chose 6Li and
87Rb in our proposal to produce the Kondo model be-
cause they are readily available in ultracold atomic exper-
iments. The 6Li and 87Rb atoms have quantum numbers
S = 1/2, L = 0 and I = 1 and 3/2.

In an optical Feshbach resonance, a laser beam pro-
vides a coupling between the open scattering channel and
a closed channel containing a bound state [16–19]; here
the open channel is an electronic spin-singlet of 6Li and
87Rb, and the bound state is a highly excited LiRb molec-
ular state. When the laser is far detuned from resonance
with the bound state, the bound state can be adiabati-
cally eliminated, and we are left with an AC Stark shift
for the 6Li-87Rb singlet. The triplet state see no Stark
shift. This provides a mechanism for spin-exchange.
While this optically induced spin-exchange has not yet
been experimentally observed, there have been extensive
studies of both elastic and inelastic scattering proper-
ties near heteronuclear optical Feshbach resonances of
7Li and 85Rb [15, 20]. Thus the transition frequencies
for forming 7Li85Rb molecules are well known. We ex-
pect that the linewidths, transition matrix elements and
spectral densities for other alkali combinations such as
6Li87Rb molecules will be similar.

Below we provide a mathematical framework to model
the optical Feshbach resonance and obtain an effective
interaction between the 6Li and 87Rb atoms. All the
physics described in this section is local, and we have
dropped the index labeling the position of the atoms from
the second-quantized operators.

The energy density for the relevant electronic and nu-
clear degrees of freedom in each atom and molecule is of
the form

ˆ̃H = ĤLi
HF + ĤRb

HF + Ĥmol + ĤFesh. (5)

Ĥmol models the binding energy of the molecule:

Ĥmol =
∑

mm′

Ebγ̂
†
mm′ γ̂

,
mm′ (6)

where γ̂†
mm′ creates a molecule with an electronic spin

S = 0 and electronic orbital angular momentum J = 1.
The indices m and m′ label the nuclear spins of the 6Li
and 87Rb atoms. If the quantization axis of the electronic
orbital angular momentum is chosen along the direction
of angular momentum of the laser photon inducing the
Feshbach resonance, then only one of the molecular states
in the J = 1 triplet is coupled via the laser to the atomic
singlet. We denote the binding energy of this molecular
state by Eb.

The hyperfine Hamiltonians for the atoms are

ĤLi
HF = hALi

∑

mS ,m′

S

mI ,m
′

I

â†mSmI
âm′

S
m′

I
~σ
(1/2)
mSm′

S
· ~σ(1)

mIm′

I

ĤRb
HF = hARb

∑

mS ,m′

S

mI ,m
′

I

b̂†mSmI
b̂m′

S
m′

I
~σ
(1/2)
mSm′

S
· ~σ(3/2)

mIm′

I

(7)

where h is Planck’s constant, ALi = 152MHz and ARb =
3.4GHz are the hyperfine coupling constants of 6Li and
87Rb[21], ~σ(S) is the vector of spin-S matrices, and

â†mSmI
and b̂†mSmI

create a 6Li and 87Rb atom in the
state |mSmI〉. In terms of the hyperfine eigenstates,

|mS ,mI〉 =
∑

F,mF

CFmF
mSmI

|F,mF 〉 (8)

where CFmF
mSmI

are Clebsch-Gordan coefficients.

The terms in ĤFesh describe the interactions between
the photo-association laser and the atoms. We model
this photo-induced molecular formation by

ĤFesh =
∑

mm′

Ωei(
~k·~r−ωt)γ̂†

mm′

â 1
2m

b̂− 1
2m

′ − â− 1
2m

b̂ 1
2m

′

√
2

+ h.c. (9)

where ~r is the position of the atoms, and h̄~k and ω are the
momentum and frequency of the laser photon inducing
molecule formation. The detuning between the atomic
and molecular states is h̄ω − Eb, and Ω is the transition
matrix element from the atomic to the molecular state.
For large detuning, the occupation in the molecular

state will be small. Therefore we can adiabatically elim-
inate the molecular state and obtain an effective interac-
tion between the 6Li and 87Rb atoms using second order
perturbation theory:

ˆ̃Hint =
∑

mm′

Ω2

Eb − h̄ω
× (10)

(

â 1
2m

b̂− 1
2m

′ − â− 1
2m

b̂ 1
2m

′

√
2

)†(
â 1

2m
b̂− 1

2m
′ − â− 1

2m
b̂ 1

2m
′

√
2

)

.

Using Eq.(8), the operators â†mSmI
and b̂†mSmI

can be
projected into the hyperfine eigenstate basis. Assuming
that the chemical potential is set such that the F = 3/2

and F = 2 manifolds are unoccupied, we project ˆ̃Hint

into the F = 1/2 and F = 1 manifolds. We obtain an
effective interaction

ˆ̃̃
Hint =

Ω2

Eb − h̄ω

∑

αβµν

â†αâβ b̂
†
µb̂ν

(

− 1

12
~σ
(a)
αβ · ~σ(b)

µν +
1

4
δαβδµν

)

.

(11)
The first term in Eq.(11) is of the form of Kondo-like

interactions with gs = −1
12

Ω2

Eb−h̄ω , and the second term
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a density-density interaction with gn = 1
4

Ω2

Eb−h̄ω , where

gs and gn were defined in Eq.(3). Generally, in addition
there would also be intrinsic interactions which modify
the values of gs and gn in the experiment. To explore
Kondo physics, gs should be positive.
If one wanted to exactly produce the Kondo model

(where gn = 0), one could add more photo-association
lasers, for example, coupling the electronic spin-triplet
atomic states. However as we show in Sec. IV, the pres-
ence of a non-zero gn does not change the physics.

A. Experimental and model parameters

In this section we estimate our model parameters gs
and gn for a typical experiment performing optical Fesh-
bach resonance. We also discuss the issue of atom losses
in optical Feshbach resonances.
Experiments implementing optical Feshbach reso-

nances typically suffer from high atom loss rates because
lasers bring the atomic states close to resonance with
a bound molecular state. The excited molecular states
have a finite linewidth, and either dissociate into free
atoms with large kinetic energies or spontaneously de-
cay to ground molecular states. The effect of a finite
linewidth can be incorporated by making the AC Stark
shift obtained in Eq.(10) complex:

g =
Ω2

Eb − h̄ω + ih̄γ
. (12)

The real part of g, Re(g) = Ω2 Eb−h̄ω
(Eb−h̄ω)2+(h̄γ)2 , is a

measure of the interaction strength, and determines
the magnitude of the model parameters gs and gn.
The magnitude of the imaginary part of g, KPA =
Ω2 h̄γ

(Eb−h̄ω)2+(h̄γ)2 , is the inelastic collision rate co-

efficient.
In experiments in which 7Li and 85Rb atoms are res-

onantly coupled to a molecular state, the inelastic col-
lision rate co-efficient typically has a value |KPA| ≃
Ω2

h̄γ ∼ 4 × 10−11h̄cm3/s for a moderate laser intensity

of 100W/cm2 [20]. Typical linewidths are γ ∼ 10MHz.
We expect that γ and KPA would have similar values for
any other alkali combination, and in particular for 6Li
and 87Rb as well. We note that Ω2 is proportional to the
laser intensity. The inelastic collision rate can be reduced
by increasing the detuning of the laser. If the laser de-
tuning is 10 times the linewidth (|Eb− h̄ω| = 10h̄γ), then
KPA ∼ 4 × 10−13h̄cm3/s and Re(g) ∼ 4 × 10−12h̄cm3/s
for a laser intensity of 100W/cm2.
The relevant quantities for estimating the temperature

scale for observing Kondo physics are gsN
V ǫF

and gnN
V ǫF

where
N
V is the density of fermions. We find in Sec. IV that for
this minimum to occur at a temperature of O(0.05TF ),
|gs,n|N
V ǫF

should be O(0.1). This can be achieved with a

density of N
V ∼ 1013cm−3 and an interaction strength

|gs,n| ∼ 2×10−9h̄cm3/s, which requires roughly 500 times

larger intensity than that in [20]. A judicious choice of
the resonance may significantly reduce the intensity re-
quired.

IV. KONDO-ENHANCED SCATTERING

BETWEEN 87RB AND 6LI

Here we calculate the momentum transfer in a colli-
sion between a fermionic cloud and a bosonic cloud. We
show that spin-exchange collisions lead to a logarithmic
temperature dependence of the momentum transferred.
This logarithm is characteristic of the Kondo effect, and
analogous to the behavior of electrical resistance of mag-
netic alloys. As shown in Fig. 1, it leads to a minimum
in the momentum transferred. The most naive way to
measure this momentum exchanged would be to launch
the Bose gas into a stationary Fermi gas and measure the
final momentum of the Fermi gas. We briefly consider an
alternative method in Section IVA.
The duration of interaction between a boson and the

Fermi gas in the experiment described above is t = L/v
where L is the size of the Fermi cloud. We calculate the
momentum transferred from the Bose gas to the Fermi
gas at time t to zeroth order in 1/Mb, first order in ~v
and third order in the interaction parameters gs and gn.
We perform this calculation for general values of gs and
gn that are independent of each other. At the end of
our calculation we specialize to the values of gs and gn
produced by our proposal in Sec. III. Since L is a macro-
scopic quantity and we work in the small v limit, we make
a long time approximation wherever possible. We assume
that the Bose gas is dilute, and neglect events involving
scattering of a fermion with more than one boson. Equiv-
alently we calculate the momentum transferred by one
boson with momentum Mb~v, and sum over all bosons.
The Fermi surface will play an important role.
We consider the collision of the Fermi gas with one

boson with spin projection m at time 0. The mo-

mentum of the Fermi gas at time t is then ~Pm =
V

(2π)3

∫

d3~k
∑

α h̄~knkαm(t), where

nkαm(t) = 〈b̂Mbv,m(0)â†kα(t)âkα(t)b̂
†
Mbv,m

(0)〉 (13)

is the occupation of fermions with momentum ~k and
spin projection α at time t. In Eq.(13) the expecta-
tion value is taken over a thermal ensemble of fermions,
with no bosons present. The bosonic creation opera-
tor preceding the ket state in Eq.(13) ensures that we
calculate the occupation nk after the collision of one

boson with the Fermi gas. Since the bosons are spin-
unpolarized, the average momentum imparted by a bo-

son is ~Pav = V
3(2π)3

∫

d3~k
∑

αm h̄~knkαm(t). Multiplying

by Nb, the number of bosons, the net momentum of the
Fermi gas is

~P (t) =
NbV

3(2π)3

∫

d3~k
∑

αm

h̄~knkαm(t). (14)
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In Appendix A we describe our diagrammatic pertur-
bation theory approach for calculating nkαm(t). We find
that

1

3

∑

m

nkαm(t) = fk −
4t~k · ~vρ(ǫk)

V 2

∂fk
∂ǫk

(15)

×
(

S(S + 1)

4
g̃2s + g̃2n − g̃3sS(S + 1)

4(2π)3

∫

d3~p
fp

ǫk − ǫp

)

,

plus terms which scale as t0, v2 or 1/Mb. Due to our use
of point interactions, the interaction parameters gs and

gn are renormalized to g̃s and g̃n. These renormalized
(physical) coupling constants are the ones appearing in
Eq.(15). This renormalization of the interaction strength
occurs at all orders of perturbation theory.

To calculate ~P (t), we sum the contributions due
to all momentum states, and include the temperature
dependence of the fermionic chemical potential, µ =

ǫF

(

1− π2

12

(

kBT
ǫF

)2
)

+O
(

kBT
ǫF

)4

. We find that at long

times,

~P = 3S(S+1)Nb

8

(

J
ǫF

)2

(kFL) h̄kF×
((

1 + 4
S(S+1)

(

g̃n
g̃s

)2
)(

1 + π2

6

(

kBT
ǫF

)2
)

− 3J
2ǫF

(

1.13 +
(

2.6− π2

48

)(

kBT
ǫF

)2

+ 1
2 log

kBT
4ǫF

(

1 + 5π2

12

(

kBT
ǫF

)2
)))

,

(16)

where J = g̃s
N
V , and N

V is the density of fermions. In

Eq.(16) we have neglected terms which scale as t0, v2, 1
Mb

or T 4. According to our proposal in Sec. III, g̃n
g̃s

= −3

and S = 1. The result of Eq.(16) is plotted in Fig. 1
using these parameters and J = 0.1ǫF . For comparison,
we also plot the momentum transferred to the Fermi gas
for spin-independent interactions with the same value of
g̃n = −3 × 0.1ǫF

N/V and g̃s = 0. The logarithmic tempera-

ture dependence of ~P for spin-dependent interactions is
characteristic of Kondo physics. Equation (16) breaks
down when J

ǫF
log kBT

ǫF
≃ O(1). Below this temperature,

the logarithmic increase saturates to a constant. Calcu-
lation of this saturation is the subject of the Kondo prob-
lem and can be addressed with renormalization group or
Bethe ansatz methods. Equation (16) also breaks down
when v ≃ kBT

h̄kF
.

The momentum transferred |~P | has a minimum at a

temperature Tmin ∼ 3
2πkB

√

JǫF

1+
4g̃2n

g̃2sS(S+1)

. For the parame-

ters g̃n
g̃s

= −3, S = 1 and J = 0.1ǫF , this minimum occurs

at a temperature T
TF

≃ O(0.05). At this temperature and
interaction strength, the momentum imparted by one bo-

son to the Fermi gas is |~P |
Nb

≃ 3
4 h̄kF

(

J
ǫF

)2

(kFL). For a

20µm long Fermi cloud at a density of 1013cm−3, the mo-
mentum imparted per boson is nearly 1.2h̄kF . We esti-
mated in Sec. III that achieving J = 0.1ǫF would require
high intensity lasers and tight trapping of the fermions.
The observation of this minimum will be a direct exper-
imental confirmation of Kondo physics.

A. Alternative methods to measure enhanced

Kondo scattering

Here we briefly explain an alternative method to mea-
sure the enhanced Kondo scattering between a Fermi
cloud and a Bose cloud. We consider inducing dipole
oscillations of a Bose cloud and a Fermi cloud in a har-
monic trap of frequency ω. The clouds will collide ev-

ery half-cycle and exchange momentum ~P . As a result
the amplitude of oscillations of the Fermi cloud will re-
duce each half cycle. Conservation of momentum implies
that the maximum fermion displacement X will reduce

each half cycle by δX ≃ |~P |
Namaω

where Na is the number
of fermions; the Bose cloud’s amplitude will not change
very much because of the bosons’ heavy mass. The Bose-
Fermi interaction interval is longer for a smaller relative
momentum, and vice versa. Thus the momentum ex-

changed |~P | is independent of the relative velocities of the
cloud, leading to a linear decay of the amplitude rather

than exponential; dδX
dt ∼ |~P |

Namaπ
. If the Bose-Fermi in-

teractions are Kondo-like, the damping rate of amplitude
of oscillations will have a minimum at the same tempera-

ture as |~P | does, Tmin ∼ 3
2πkB

√

JǫF

1+
4g̃2n

g̃2sS(S+1)

. For a typical

amplitude of oscillation X ≃ 100µm in a trap of fre-
quency ω = 2π × 10 Hz, and if Na

Nb
= 200, the amplitude

will decay to zero in about 12 oscillations at T = Tmin.
The observation of a minimum in the damping rate will
also be an experimental confirmation of Kondo physics.

V. SUMMARY

We considered scattering between a spin-1/2 Fermi
gas and a dilute spin-unpolarized Bose gas. As an
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example we considered 6Li and 87Rb as our itinerant
fermions and bosonic magnetic impurities. We proposed
using an optical Feshbach resonance to produce rotation-
ally symmetric interactions between the 6Li and 87Rb
atoms, which included both spin-dependent Kondo-like
and spin-independent density-density interactions. We
argued that these interactions would give rise to en-
hanced Fermi-Bose scattering. We perturbatively cal-
culated the temperature-dependence of the momentum
transferred to the Fermi gas in a scattering experiment,
up to third order in the Bose-Fermi interaction strength.
We showed that the temperature dependence of the mo-
mentum transferred has a minimum at a characteris-
tic temperature and is logarithmic at low temperatures,
characteristic of the Kondo effect and analogous to the
behavior of electrical resistance in magnetic alloys.

Our proposal to implement spin-dependent interac-
tions requires overcoming significant experimental chal-
lenges such as using high intensity lasers to achieve large
interaction strengths. However, overcoming these chal-
lenges enable the possibility of exploring exotic phe-
nomena due to Kondo physics. The ground state of a
Bose-Fermi mixture with Kondo-type spin-dependent in-
teractions should display interesting correlations, with
each boson surrounded by a screening cloud of fermions
with opposite spin [4]. These clouds may be observable
through various imaging techniques [22–24]. Similar ex-
periments with bosons confined to a lattice would probe
an analog of the Kondo lattice problem.

One can explore other techniques to experimentally
produce Kondo-type interactions. For example, optically
coupling the electronic triplet states of 6Li-87Rb with ex-
cited molecular states will lead to a rotationally asym-
metric interaction which also displays Kondo physics.
Alternatively, one can realize the Anderson model and
Kondo-like situations by trapping impurities in deep po-
tentials [25–28].
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Appendix A: Calculation of the momentum

transferred

Here we calculate nkαm(t) in Eq.(13) and ~P (t) in
Eq.(14). The standard way to calculate quantities like

t

0

0

Time

FIG. 2: In our integrals, time begins at 0, passes through t,
then returns to 0. Our perturbation theory requires ordering
operators along this path.

nkαm(t) is using the S-matrix [29]:

nkαm(t) = 〈T Ŝb̂Mbv,m(0)â†kα(t)âkα(t)b̂
†
Mbv,m

(0)〉0,

Ŝ = e−i
∫
dτĤint(τ),

(A1)

where T orders the operators along a path shown in Fig.
2 which starts at time 0, passes through time t, and re-
turns to time 0. All our integrals over time follow this
path. The notation 〈〉0 implies that all operators inside
〈〉0 evolve according to

âkα(t) = eiĤ0t/h̄âkαe
−iĤ0t/h̄,

b̂kµ(t) = eiĤ0t/h̄b̂kµe
−iĤ0t/h̄,

(A2)

and states are weighted by e−βĤ0 . Since Ĥ0 is quadratic

in âkα and b̂kµ, the right hand side of nkαm(t) in Eq.(A1)
can be contracted using Wick’s theorem. As a result,
nkαm(t) can be expressed diagrammatically as a sum of
Feynman’s diagrams. We calculate these Feynman’s di-
agrams up to O(g3s ) and O(g3n) in the long time limit.

1. Feynman rules

We denote the propagator for fermions,

〈T âkα(t1)â†kα(t2)〉0, by a solid line, and the propa-

gator for bosons, 〈T b̂kµ(t1)b̂†kµ(t2)〉0, by a dotted line,

depicted in Figs. 3(a) and 3(b). Their values are

〈T âkα(t1)â†kα(t2)〉0 = e−iǫk(t1−t2) (Θ(t1 − t2)− fk) ,

〈T b̂kµ(t1)b̂†kµ(t2)〉0 = e−iEk(t1−t2)Θ(t1 − t2).

(A3)

In Eq.(A3), Θ(t1 − t2) = 1 if t1 is after t2 along the path
in Fig. 2, and 0 otherwise.
We perturbatively expand nkαm(t) in the vertex de-

picted in Fig. 3(c), whose value is

k2, α
k4, µ

k1, β
k3, ν =

(2π)3

V 2
δ(k1 + k3 − k2 − k4)×

(

gs~σ
(1/2)
αβ · ~σ(S)

µν + gnδαβδµν

)

.

(A4)
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(a)

kαt2 t1

(b)

kµt2 t1 (c)

k2, α

k4, µ

k1, β

k3, ν
t

FIG. 3: Diagrammatic representation of vertex and propaga-
tors. a) Solid line denotes a fermion propagator which prop-
agates a fermion with momentum k and spin projection α
from time t2 to t1. b) Dashed line denotes a boson propa-
gator which propagates a boson with momentum k and spin
projection µ from time t2 to t1. c) A vertex denotes the ma-
trix element for a Bose-Fermi scattering event. Mathematical
expressions are given in Eqs.(A3) and (A4).

The vertex denotes a scattering event between a
fermion and a boson. The time at which this scattering
event occurs is integrated over the path in Fig. 2. All
momenta and spin projections are summed/integrated
over, with the constraint that momenta and spin are con-
served at each vertex. The diagrams which contribute
to Eq.(A1) have four external propagators. There is an
incoming and outgoing fermion propagator evaluated at

time t, and carrying momentum h̄~k and spin projection
α. There is also an incoming and outgoing boson propa-
gator evaluated at time 0, and carrying momentum Mb~v
and spin projection m. All lines and vertices in a Feyn-
man diagram can be labeled using the rules described
above. Therefore we omit labels. Finally, each diagram
carries a multiplicity, which is the number of times it ap-
pears in the expansion of Eq.(A1) in powers of gs and
gn.

2. Calculation of nkαm(t)

Terms of O(gns,n) in the perturbative expansion of
nkαm(t) contain 2n + 2 pairs of operators leading to
(n+1)!2 contractions. The resulting number of diagrams
increases exponentially with n. We explicitly consider
each order and evaluate the non-zero diagrams.

a. Zeroth order

The expression for the zeroth order term in the expan-
sion of nkαm(t) is

n
(0)
kαm(t) = 〈T b̂Mbv,m(0)â†kα(t)âkα(t)b̂

†
Mbv,m

(0)〉0. (A5)

FIG. 4: Zeroth order diagram in the expansion for nkαm(t).

(a) (b)

(c) (d)

FIG. 5: First order diagrams in the expansion of nkαm(t).

Using Wick’s theorem,

n
(0)
kαm(t) = 〈b̂Mbv,m(0)b̂†Mbv,m

(0)〉0〈â†kα(t)âkα(t)〉0
= fk.

(A6)

The corresponding Feynman diagram is shown in Fig.
4. Since the bosons and fermions do not interact at this
order, n

(0)
kαm does not contribute to any momentum trans-

fer.

b. First order

The first order term in the expansion for nkαm(t) is

n
(1)
kαm(t) = −i

∫

dτ1

〈T Ĥint(τ1)b̂Mbv,m(0)â†kα(t)âkα(t)b̂
†
Mbv,m

(0)〉0. (A7)

By Wick-contracting the above expression, we find that

n
(1)
kαm(t) is the sum of the four diagrams shown in Fig. 5,

all of which evaluate to zero. For example

=

∫

dτ

(

1

2
gsm+ gn

)

= 0. (A8)

Due to the same reason, Figs. 5(b), (c) and (d) are also
zero. Therefore

1

3

∑

m

n
(1)
kαm(t) = 0. (A9)

Moreover, the same reasoning implies that all higher or-
der diagrams in which a fermion or boson loop begins
and ends at the same vertex are also zero.
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(a) (b)

FIG. 6: Two of the diagrams that are zero at second order.

(a) (b)

FIG. 7: Non-zero diagrams at O(g2) in the expansion for
nkαm(t).

c. Second order

The second order term,

n
(2)
kαm(t) = −1

2

∫

dτ1dτ2 (A10)

〈T Ĥint(τ1)Ĥint(τ2)b̂Mbv,m(0)â†kα(t)âkα(t)b̂
†
Mbv,m

(0)〉0,

can be contracted into Wick pairs in 36 ways, which give
rise to 20 different diagrams. Most of these diagrams
are zero because of reasons explained in Sec. A 2b. In
addition, the diagrams shown in Fig. 6 also evaluate to
zero. For example, since we work in the dilute boson
limit, there can only be one boson line in any time slice,
implying that Fig. 6(a) is zero. The only two non-zero
diagrams are shown in Fig. 7.

Using our Feynman rules,

1

3

∑

m

=
2

V (2π)3

∫

d3~p (1− fk)fp
sin2 δǫt/h̄

δǫ2

×
(

g2s
S(S + 1)

2
+ 2g2n

)

(A11)

and

1

3

∑

m

=− 2

V (2π)3

∫

d3~p fk(1− fp)
sin2 δǫ′t/h̄

δǫ′2

×
(

g2s
S(S + 1)

2
+ 2g2n

)

, (A12)

where δǫ = 1
2

(

ǫk − ǫp − 1
2Mbv

2 + (h̄~k−h̄~p−Mb~v)
2

2Mb

)

and

δǫ′ = 1
2

(

ǫk − ǫp +
1
2Mbv

2 − (h̄~k−h̄~p+Mb~v)
2

2Mb

)

. Ne-

glecting terms of order 1/Mb, δǫ = δǫ′ =
1
2

(

ǫk−mav/h̄ − ǫp−mav/h̄

)

. The resulting second order

contribution is

1

3

∑

m

n
(2)
kαm(t) =− g2s

S(S+1)
2 + 2g2n
V (2π)3

×
∫

d3~p (fk − fp)
sin2 tδǫ/h̄

δǫ2
.

(A13)

Since the bosons are much heavier than the fermions,
they have nearly the same velocity ~v before and after
scattering. Therefore, it is easier to work in the bosons’
rest frame. For small ~v,

1

3

∑

m

n
(2)

k+mav
h̄

,αm
(t) = −g2s

S(S+1)
2 + 2g2n
V (2π)3

∫

d3~p

(

fk − fp + h̄~k · ~v ∂fk
∂ǫk

− h̄~p · ~v ∂fp
∂ǫp

)

× sin2(t(ǫk − ǫp)/2h̄)

((ǫk − ǫp)/2)2
+O(v2, 1/Mb)

(A14)

where O(v2, 1/Mb) refers to terms which scale as v2 or
1/Mb. The first two terms in Eq.(A14) have negligible
contribution near ǫk = ǫp. At long times, any signifi-

cant contribution comes from the tail of
sin2(t(ǫk−ǫp)/2h̄)

((ǫk−ǫp)/2)2
,

where sin2(t(ǫk − ǫp)/2h̄) can be approximated by its av-
erage, 1/2. Hence their contribution saturates to a con-
stant at long times. For the last two terms in Eq.(A14),
which are significant near ǫk = ǫp, we approximate
sin2(t(ǫk−ǫp)/2h̄)

((ǫk−ǫp)/2)2
≃ 2tδ(ǫk−ǫp)

h̄ . Hence at long times,

1

3

∑

m

n
(2)

k+mav
h̄

,αm
(t) = −2(g2s

S(S+1)
2 + 2g2n)t

V (2π)3
(A15)

∫

d3~p

(

~k · ~v ∂fk
∂ǫk

− ~p · ~v ∂fp
∂ǫp

)

δ(ǫk − ǫp) +O

(

t0, v2,
1

Mb

)

= −4
g2s

S(S+1)
4 + g2n
V 2

t~k · ~v ∂fk
∂ǫk

ρ(ǫk) +O

(

t0, v2,
1

Mb

)

,

where ρ(ǫk) is the 3D density of states for a single spin
projection. In the lab frame,

1

3

∑

m

n
(2)
kαm(t) =− 4

g2s
S(S+1)

4 + g2n
V 2

t~k · ~v ∂fk
∂ǫk

ρ(ǫk)

+O

(

t0, v2,
1

Mb

)

. (A16)

d. Third order

The third order term

n
(3)
kαm(t) =

i

6

∫

dτ1dτ2dτ3〈T Ĥint(τ1) (A17)

Ĥint(τ2)Ĥint(τ3)b̂Mbv,m(0)â†kα(t)âkα(t)b̂
†
Mbv,m

(0)〉0
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(a) (b)

(c) (d)

(e) (f)

FIG. 8: Non-zero diagrams at O(g3) in the expansion for
nkαm(t).

can be contracted into Wick pairs in 576 ways. However
due to reasons explained in Secs. A 2 b and A2 c all dia-
grams except the ones shown in Fig. 8 are zero. After a
treatment similar to the one at second order, we calculate
the third order contribution to be

1

3

∑

m

n
(3)
kαm(t) =

1

V 2(2π)3

∫

d3~p t~v · ~kρ(ǫk)
∂fk
∂ǫk

1

ǫk − ǫp

×
(

fpg
3
sS(S + 1)− g3s

S(S + 1)

2
− 3g2sgnS(S + 1)− 4g3n

)

+O

(

t0, v2,
1

Mb

)

. (A18)

The right hand side of Eq.(A18) consists of an ultraviolet
divergent term arising from

∫

d3~p 1
ǫk−ǫp

, and a finite term
∫

d3~p
fp

ǫk−ǫp
which will ultimately give rise to a logarith-

mic temperature dependence. The ultraviolet divergence
is an artefact of choosing a contact potential between the
fermions and bosons which is non-zero only when they
are at the same location in space. In reality, the interac-
tion between the fermions and bosons has a finite range,
which removes the ultraviolet divergence by introducing
an upper cutoff on the limits on the integral over mo-

menta. The exact details are unimportant if we express
our results in terms of physical quantities. To this effect,
we define effective coupling constants g̃s and g̃n where

g̃2s = g2s

(

1 +
gs + 6gn
2(2π)3

∫

d3~p
1

ǫk − ǫp

)

,

g̃2n = g2n

(

1 +
gn

(2π)3

∫

d3~p
1

ǫk − ǫp

)

.

(A19)

The result for nkαm(t) has no ultraviolet divergences
when expressed in terms of g̃s and g̃n.
The resulting nkαm(t) at long times is

1

3

∑

m

nkαm(t) = fk −
4t~k · ~vρ(ǫk)

V 2

∂fk
∂ǫk

(A20)

×
(

S(S + 1)

4
g̃2s + g̃2n − g̃3sS(S + 1)

4(2π)3

∫

d3~p
fp

ǫk − ǫp

)

.

3. Final momentum of the Fermi gas

The total momentum ~P of the Fermi gas (defined in
Eq.(14)) will be along the direction of ~v. Its magnitude
is

|~P | = ~v · ~P
v

= − 8th̄Nb

vV (2π)3

∫

d3~k
(

~k · ~v
)2 ∂fk

∂ǫk
ρ(ǫk)

×
(

S(S + 1)

4
g̃2s + g̃2n − g̃3sS(S + 1)

4(2π)3

∫

d3~p
fp

ǫk − ǫp

)

.

(A21)

After integrating out the angular co-ordinates of ~k and ~p
and performing a change of variables,

|~P | =− 16maLNb

3h̄V 2

∫

dǫ ǫ
∂f(ǫ)

∂ǫ
ρ2(ǫ) (A22)

×
(

S(S + 1)

4
g̃2s + g̃2n − g̃3sS(S + 1)

4V

∫

dǫp
ρ(ǫp)f(ǫp)

ǫ− ǫp

)

.

We evaluate the second order terms using a Sommer-
field expansion,

|~P2| ≃
3maLNb

4h̄ǫF
J2S(S + 1)(1 + α2)

(

1 +
π2

6

(

kBT

ǫF

)2
)

+O

(

kBT

ǫF

)4

. (A23)

where J = g̃s
N
V and α = g̃n

g̃s
2√

S(S+1)
.

The third order terms are

|~P3| =
4S(S + 1)maLNb

3h̄

(

g̃s
V

)3 ∫

dǫ ǫ
∂f(ǫ)

∂ǫ
ρ2(ǫ)×

∫

dǫp
ρ(ǫp)f(ǫp)

ǫ− ǫp

= −9S(S + 1)maLNb

16h̄ǫ
9/2
F

J3

∫ ∞

0

dǫ ǫ2
∂f(ǫ)

∂ǫ

∫ ∞

0

dǫp
√
ǫp

f(ǫp)

ǫ − ǫp
.

(A24)
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We simplify the above expression by performing integration by parts,

|~P3| =
9S(S + 1)maLNb

8h̄ǫ
9/2
F

J3

∫ ∞

0

dǫ ǫ2
∂f(ǫ)

∂ǫ
×
∫ ∞

0

dǫpf(ǫp)
∂

∂ǫp

(

√
ǫp +

√
ǫ

2
log

∣

∣

∣

∣

√
ǫ−√

ǫp√
ǫ+

√
ǫp

∣

∣

∣

∣

)

= −9S(S + 1)maLNb

8h̄ǫ
9/2
F

J3

∫ ∞

0

dǫ ǫ2
∂f(ǫ)

∂ǫ
×
∫ ∞

0

dǫp
∂f(ǫp)

∂ǫp

(

√
ǫp +

√
ǫ

2
log

∣

∣

∣

∣

β(ǫ − ǫp)

β(
√
ǫ+

√
ǫp)2

∣

∣

∣

∣

)

.

(A25)

We split Eq.(A25) into two terms. We evaluate one of these terms numerically,

∫ ∞

0

dǫ ǫ5/2
∂f(ǫ)

∂ǫ

∫ ∞

0

dǫp
∂f(ǫp)

∂ǫp
log(β(ǫ − ǫp)) ≃ ǫ

5/2
F

(

0.26 + 5.2

(

kBT

ǫF

)2
)

+O

(

kBT

ǫF

)4

. (A26)

We use a Sommerfield expansion for the remaining term. The result is

|~P3| ≃ −9S(S + 1)maLNb

8h̄ǫ2F
J3

(

1.13 +

(

2.6− π2

48

)(

kBT

ǫF

)2

+
1

2
log

kBT

4ǫF

(

1 +
5π2

12

(

kBT

ǫF

)2
))

+O

(

kBT

ǫF

)4

.

(A27)
The final momentum of the Fermi gas is

~P =P0v̂

(

1 +
π2

6

(

kBT

ǫF

)2

− 3J

2(1 + α2)ǫF

(

1.13 +

(

2.6− π2

48

)(

kBT

ǫF

)2

+
1

2
log

kBT

4ǫF

(

1 +
5π2

12

(

kBT

ǫF

)2
)))

,

(A28)

where P0 = 3S(S+1)Nb

8 (1 + α)2
(

J
ǫF

)2

(kFL) h̄kF , and as before, we neglect terms of O
(

t0, v2, 1
Mb

, T 4
)

.
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