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In this work we study spherical shell dark soliton states in three-dimensional atomic Bose-Einstein
condensates. Their symmetry is exploited in order to analyze their existence, as well as that of
topologically charged variants of the structures, and, importantly, to identify their linear stability
Bogolyubov-de Gennes spectrum. We compare our effective 1D spherical and 2D cylindrical com-
putations with the full 3D numerics. An important conclusion is that such spherical shell solitons
can be stable sufficiently close to the linear limit of the isotropic condensates considered herein.
We have also identified their instabilities leading to the emergence of vortex line and vortex ring
cages. In addition, we generalize effective particle pictures of lower dimensional dark solitons and
ring dark solitons to the spherical shell solitons concerning their equilibrium radius and effective
dynamics around it. In this case too, we favorably compare the resulting predictions such as the
shell equilibrium radius, qualitatively and quantitatively, with full numerical solutions in 3D.

I. INTRODUCTION

The pristine setting of atomic Bose-Einstein conden-
sates (BECs) has offered a significant playground for the
examination of numerous physical concepts [1, 2]. One
of the flourishing directions has been at the interface of
the theory of nonlinear waves and such atomic (as well
as optical) systems, concerning, in particular, the study
of matter-wave solitons [3, 4]. Such coherent nonlinear
structures have been observed in experiments and studied
extensively in theory. Prototypical examples of pertinent
studies include —but are not limited to— bright [5-7],
dark [8] and gap [9] matter-wave solitons, as well as vor-
tices [10, 11], solitonic vortices and vortex rings [12].

Among these diverse excitations, dark solitons in re-
pulsive BECs have enjoyed a considerable amount of at-
tention in effectively one-dimensional settings due to nu-
merous experiments leading (especially, more recently) to
their well-controlled creation [13-18]. Moreover, numer-
ous works considered dark solitons in higher-dimensional
settings in order to experimentally explore their instabil-
ity leading to the formation of vortex rings and vortex
lines, as illustrated, e.g., in Refs. [19-23]. More recently,
such excitations have also been observed in fermionic su-
perfluids [24, 25].

On the other hand, multi-dimensional (i.e., non-
planar) variants of dark solitons, were studied as well
—cf. e.g., Chapters 7 and 8 of Ref. [3]. Examples of
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such structures are radially symmetric solitons, such as
the ring dark solitons (RDS), initially proposed in atomic
BECs in Ref. [26] (see also Refs. [27-29] for subsequent
studies). Nevertheless, such structures were studied to a
far lesser extend, arguably due to their generic identified
instability, which was found to give rise to states such
as alternating charge vortex polygons. Notice that, as
was recently shown in Ref. [30], stabilization of RDS is
possible upon employing a proper potential barrier.

The three-dimensional non-planar generalization of
dark solitons, namely spherical shell solitons, has received
very limited attention. The analysis of Ref. [27] in the
case of box potentials (rather than the typical parabolic
trap setting of BECs) revealed their potential existence,
but did not pursue their stability analysis. Moreover, the
adiabatic dynamics of these structures was studied ana-
lytically via a variational approach in Ref. [31] without
providing, however, relevant numerical results. Never-
theless, it is important to note that in an experimental
realization of vortex ring states, the transient observation
of spherical shell solitons was reported [32]. In addition,
they were also suggested as a potential outcome of colli-
sions of vortex rings in the work of Ref. [33].

It is the purpose of the present manuscript to re-
visit these states and explore not only their existence
in isotropic traps, but also perform their systematic
Bogolyubov-de Gennes (BdG) stability analysis. This is
done by projecting perturbations onto eigenfunctions of
the linear problem in the angular directions. Using this
basis, the relevant computations are greatly simplified,
and the full 3D spectrum computation is reduced to an
effectively small set of one-dimensional problems (for the
different modes). It should be mentioned here that the
use of spherical harmonics as a basis in the angular vari-



ables for states bearing radial symmetry is rather com-
mon in terms of numerical schemes for linear and non-
linear Schrodinger (NLS) equations —see, e.g., Ref. [34]
for a a recent example. Earlier efforts along these lines in
the context of linear Schrodinger equations can be found,
e.g., in the works of Refs. [35, 36]. In 2D BECs, analo-
gous decompositions of azimuthal modes for radial states
including RDSs and vortices [27, 28, 37] have appeared,
and in 3D similar possibilities are starting to emerge [38].

In this work, we find that indeed spherical shell soli-
tons can be identified as stable 3D solutions of the Gross-
Pitaevskii equation, sufficiently close to the linear (small-
amplitude) limit of small chemical potential from which
they bifurcate, as is shown below. Moreover, we provide
a theoretical analysis of their dynamics as “effective par-
ticles”. This approach allows to characterize the opposite
limit of large chemical potential. Our numerical compu-
tations of existence and stability, complemented by di-
rect numerical simulations of the spherical shell soliton
dynamics, not only corroborate the above two limits, but
also provide a systematic way to interpolate between the
two analytically tractable regimes.

Our presentation is organized as follows. First, in
Sec. II, we introduce the model and describe the im-
plementation of the linear stability analysis. Our an-
alytical approaches for the spherical shell dark solitons
in the above mentioned analytically tractable limits are
then presented in Sec. III. Next, in Sec. IV, we present
our systematic numerical results. Finally, our conclusions
and a number of open problems for future consideration
are given in Sec. V. In the Appendix, a similar numerical
decomposition method but using cylindrical (rather than
spherical) symmetry is also discussed whose results are
also given for comparison in Sec. I'V.

II. MODEL AND COMPUTATIONAL SETUP
A. The Gross-Pitaevskii equation

In the framework of lowest-order mean-field theory,
and for sufficiently low-temperatures, the dynamics of a
3D repulsive BEC, confined in a time-independent trap
V', is described by the following dimensionless Gross-
Pitaevskii equation (GPE) [1-4]:

o= =gV Ve WP -, (1)

where ¥(x,y, z,t) is the macroscopic wavefunction of the
BEC and p is the chemical potential (subscripts denote
partial derivatives). Here, we consider a harmonic trap
of the form:

1 1
V= §w§p2 +z W 22, (2)

where p = /22 +y?, w, and w, are the trapping fre-
quencies along the (z,y) plane and the vertical direction

z, respectively. Note that the potential has rotational
symmetry with respect to the z-axis. In our numerical
simulations, we focus on the fully symmetric (isotropic,
spherically symmetric) case with w = w, = w, = 1, in
which we can benchmark our numerical methods in ef-
fective 1D and 2D against those of the fully 3D setting.

We examine the dark spherical shell solitons, hereafter
referred to as DSS. This single radial node state exists
in this isotropic case from the linear limit onwards as a
stationary state of the form ¢ (x,y, z,t) = 1¥pgs(r) where
r = /22 +y2 + 22 is the spherical radial variable. At
the linear limit, the waveform is an eigenmode of the
quantum harmonic oscillator with chemical potential p =
Tw/2, and spatial profile:

R %(|200>+|020>+|002>> (3)

x (wr2 — g) esz/Q, (4)

where the basis {|nznyn.)} denotes the 3D harmonic os-
cillator quantum states in Cartesian coordinates.

The DSS is generally expected to be unstable for
high chemical potentials due to transverse modulational
(snaking-type) instability, in a way similar to its pla-
nar and RDS counterparts, as summarized, e.g., in
Refs. [4, 8]. However, for smaller chemical potentials,
and especially near the linear limit, it is relevant to an-
alyze stability of the DSS and identify corresponding in-
stabilities and where they may arise. In what follows
(cf. Sec. IV below), we will turn to numerical computa-
tions, based on a fixed point iteration and our spherical
harmonic decomposition of the spectral stability BdG
problem, in order to efficiently identify the intervals of
existence and stability of the relevant modes.

B. The Linear Stability Problem: Spherical
Harmonic Decomposition

In this section, we discuss our analysis of the linear
stability of the DSS states utilizing their effective 1D
nature, namely their spherical symmetry. In spherical
coordinates (r,0, ¢), the Laplacian can be decomposed
into radial and angular parts, denoted by Ar and Ag
respectively, namely

V2 ASf (5)
where
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The Ag operator has eigenstates given by the spherical
harmonics {Ye, } with eigenvalues —¢(¢ 4 1), i.e

ASnm = _é(f + 1)3fém (8)



For states with spherical symmetry (¢ = 0), the Ag part
of the Laplacian is not relevant for identifying the sta-
tionary state. Thus, the stationary DSS state ¢o(r) of
Eq. (1), defined in the domain r € [0,0), satisfies the
following radial equation:

— 5Bty + V() + ol — iy =0, (9)

Now, let us consider the linear stability (BdG) spec-
trum of such a stationary state. We consider small-
amplitude perturbations expanded using the complete
basis of {Yen,} (the spherical harmonic eigen-basis) as
follows:

D(ryt) = o + Y [aem(r,)Yem + b (r, ) V5], (10)
m
where the space- and time-dependent coefficients

agm (r,t) and by, (r,t) determine the radial and tempo-
ral evolution of the perturbation. Then, substituting
Eq. (10) into Eq. (1) and retaining up to linear terms
in the expansion, one notes that all the ¢ modes are mu-
tually independent due to the spherical symmetry of the
steady state. For mode ¢, the coeflicients a and b of the
expansion obey the following evolution equations:

1Aga+“FHa+ Va+20go2a + v3b — pa,
LARD + 280 4 Vb 4 204 |2b + 952a — pb,
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where we have dropped for simplicity the subscripts
(£,m). As we are interested in the stability of the steady-
state, we now expand the coefficients using

-@= o

where ) is an eigenvalue of the following matrix

= (3 30). e
with
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One can, therefore, compute the full spectrum by com-
puting that of each mode f independently, and then
putting them all together to “reconstruct” the full spec-
trum. In what follows we use £ = 0,1, 2, ..., 10 for values
of the chemical potential up to u =~ 12. The reduction
of dimensionality with the decomposition on a complete
basis set is also available in 2D for states with rotational
symmetry up to a topological charge along the z axis.
For clarity, this is shown in the Appendix. It is worth

TABLE I: Relevant states for eigenvalues near the spectrum
of Im(A\)=0,1 and 2 for the degenerate perturbation theory.
Here |mnp) stands for eigenstates with all possible distinct
permutations with the quantum numbers m,n and p.

Im(\) “up” states “down” states
0 |002) [011) |002) [011)
1 |003) |012) [111) |001)
2 004) [013) [022) [112) 1000)

mentioning that a large class of BEC states belongs to
this class.

Finally, we discuss the application of the degenerate
perturbation method (DPM) [39] to the DSS state. This
method is employed for the determination of the DSS’
spectrum near the linear limit, and also for the identi-
fication of the nature of instabilities. The method can
be most readily understood from the 3D version of the
matrix M, where one can separate the free (linear) part
with known eigenstates and eigenvalues and the rest of
the terms can be treated as perturbations near the linear
limit. Note that there are 2x2 block matrices within M
and the complete basis consists of both “positive” and
“negative” eigenstates. This terminology is associated
with quantum harmonic oscillator eigenstates leading to
positive or negative eigenvalues for the linear analogs
of the operators M;; in Eq. (12) i.e., with |[¢|? set to
0. In DPM, the functional dependence of the eigenval-
ues on the chemical potential p is dominated by the in-
terplay of equi-energetic, degenerate states. The result
of the nonlinear perturbations (o< [tho]?) in M;; within
Eq. (12) is to cause the degenerate eigenvalues to depart
from their respective linear limit, as the norm of the so-
lution (mass) increases. The free part provides the basis
that is formed from “up” states and “down” states, of
the form (|nmnynz>> and ( 0

0 [ngnyn,
ues EInznynz> - EDSS and EDSS - EInznynz) respectively,
where F is the eigenenergy of the 3D quantum harmonic
oscillator for eigenstate A. The relevant states for eigen-
values near the spectrum of Im(A)=0, 1 and 2 are listed
in Table. I. Then, the effect of the nonlinearity on these
eigenmodes and the corresponding eigenvalue corrections
are calculated, as discussed in Ref. [39] (and originally
spearheaded in this context in Ref. [40]). Below, this is
compared to the numerical spectrum in Sec. IV.

>> , with eigenval-

IIT. THE PARTICLE PICTURE FOR THE DSS

We now turn to the limit of large chemical poten-
tial p. In this so-called Thomas-Fermi (TF) limit of
large u, the ground state of the GPE is approximated as
Yrrp = y/max(u — V,0) [1, 2]. A natural way to obtain a
reduced dynamical description of the DSS —analogously
to what is done in lower-dimensional settings— is to de-
velop an effective particle picture for the DSS in the TF
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FIG. 1: (color online) The two pairs of the top panels show
the modulus |¥| (left panels) and argument x (right panels)
of a dark soliton shell state at p = 12; the top row illustrates
the z = 0 plane, while the middle row the x = 0 plane. The
bottom panel shows two density isocontours for this state.
The inner sphere corresponds to an isocontour at high density
while another isocontour at low density corresponds to the
outer sphere (edge of the condensate) and the middle spheres
(low densities on each side next to the dark soliton shell).

limit. Here, following Ref. [30], we focus on the equi-
librium radius r. of the DSS, as a prototypical diagnos-
tic that we can compare to our numerical results. This
equilibrium radius is determined as the critical value of
the DSS radius for which the restoring force due to the
harmonic trap is counterbalanced by the effective force
exerted due to the curvature of the DSS.

The first approach (motivated also by the work of
Ref. [41]) focuses on the stationary state using the ansatz
Y(r) = Yrr(r)q(r), where one obtains an equation for the
DSS profile ¢(r) (on top of the TF ground-state ¥rr)
given by:

S0+ na(l— ) = P(r), (13)
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FIG. 2: (Color online) Top panel: a radial profile of the dark
soliton shell state in the TF limit for y = 80. Bottom panel:
number of particles as a function of chemical potential u,
showing the continuation of states from the linear limit to
the nonlinear regime.

where

3

oy _ 2, Yre  Yrp ,  Ldgp
P(r) =Vall =) T - T YTE
and primes denote derivatives with respect to r. Inspired
by the profile of the 1D and 2D equivalents of the DSS,
namely the dark soliton and the RDS, we seek a station-
ary DSS solution in the form of ¢(r) = tanh[\/u(r —r.)].
Multiplying both sides of Eq. (13) by ¢’ and integrat-
ing over r from —oco to oo (bearing in mind that the
contribution of the integral from r = —oo to r = 0 is
exponentially small), we find that the equilibrium radius
is given by

Te = @ (14)

where o = 5 — /17 ~ 0.8769. This result, as in the case
of the dark soliton ring in 2D [30], slightly overestimates
the actual value for a that, as we will see below, is accu-
rately predicted by the second particle picture approach,
which retrieves the precise value for o to be a = 4/5;
this is confirmed by the numerical results shown below,
in Sec. IV.

The second approach relies on energy conservation and
it is based on the analysis of Ref. [42]. In this approach,
it is argued that the equation of motion can be derived
by a local conservation law (i.e., an adiabatic invariant)
in the form of the energy of a dark soliton under the
effect of curvature and of the density variation associ-
ated with it. More specifically, knowing that the en-
ergy of the 1D dark soliton centered at x. is given by
E = (4/3)(u — )%/ [8], the generalization of the rele-
vant adiabatic invariant quantity in a 3D domain bearing
density modulations reads:

£ = 4 [4u -V ()~

. (15)
= dmrd [%(u —V(rog) — 7‘3)3/2} ,



where 7(t) and 7(¢) are the (radial) location and velocity
of the DSS with initial conditions rg and ry. Taking a
time derivative on both sides of Eq. (15) and assuming
that the DSS has no initial speed (79 = 0), we obtain
a Newtonian particle equation of motion for the DSS of
the following form:

10V 2 (ro

=t (Y P v (o)

From this equation, the equilibrium position for the DSS

4
yields r, = ?H Jw, a result consistent with the numeri-

cal findings of the next Section. We now proceed to test
these predictions, the stability analysis spectrum, and
the equilibrium positions for the DSS.

IV. NUMERICAL VS. ANALYTICAL RESULTS

Let us start by providing some of the basic features of
the DSS. A typical DSS state at ;1 = 12 is shown in Fig. 1,
where its spherical symmetry is apparent. A radial plot
of the wavefunction in the TF limit is depicted in the top
panel of Fig. 2. As the chemical potential is increased the
number of atoms (“mass”)

N=/|z/1|2d:cdydz:47r/ 2|2 dr, (17)
0

increases as depicted in the bottom panel of Fig. 2.

We now examine the stability of the DSS. The corre-
sponding spectra illustrating the imaginary part of the
eigenvalues [dark (blue) lines) and the real part [light
(orange) lines| are shown in Fig. 3. Panel (a) depicts
the spectrum obtained via our numerical method over a
wide range of chemical potentials. Identical results were
obtained when using the method in 2D, based on a cylin-
drical coordinate decomposition and a representation of
the azimuthal variable dependence in the corresponding
Fourier modes. For reasons of completeness, a summary
of this variant of the method is presented in the appendix.
Panels (b) and (c) depict a zoomed in region to contrast
the results between these lower dimensional methods and
the full 3D numerics. Panel (b) corresponds to the spec-
trum as computed by means of the 1D spherical coor-
dinate decomposition method using spherical harmonics
with spatial spacing of h = 0.01, while panel (c) depicts
the results from direct full 3D numerics using an spatial
spacing of h = 0.2. A close comparison between the pan-
els suggests small discrepancies of the imaginary parts
at Im(A) = 1 and Im(\) ~ 0.2, and a spurious unstable
mode with Re()\) & 0.08. These discrepancies (and their
amendment as the mesh resolution h decreases —see be-
low) are likely due to the large spatial spacing h —that
needs to be chosen such that the 3D calculations are still
“manageable”— in which case the DSS radial profile is
under-resolved. It is crucial to note that the 3D calcula-
tions are far more expensive than their lower dimensional
(1D or 2D) counterparts considered above.
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FIG. 3: (Color online) Stability spectra for the dark soliton
shell as a function of the chemical potential p. (a)-(b) Spectra
computed using our effectively 1D method (in the radial vari-
able, using a spherical harmonic decomposition in the trans-
verse directions). Identical results are obtained when using
the 2D variant of the method in cylindrical coordinates (and
decomposing only the azimuthal direction in suitable Fourier
modes). Both 1D and 2D numerics use a spacing of h = 0.01.
(c) Spectra computed using the full 3D numerics with spacing
h = 0.2. Orange (grey) lines depict the real part of A (i.e.,
unstable parts of the eigenvalues), while blue (dark) lines the
imaginary part of A.

To confirm that the discrepancies are indeed caused by
the mesh resolution, when we further decrease the lattice
spacing to h = 0.15 (results not shown here) and recal-
culate the spectrum in 3D, the branches at Im(\) = 1
indeed split into two non-degenerate curves and the spu-
rious modes at Im(\) & 0.2 and Re(\) ~ 0.08 begin to get
suppressed. This suggests that the discrepancies are in-
deed attributable to resolution effects and that the spec-
trum computed with the effectively 1D numerical method
is indeed accurate.

The comparison between the stability spectrum pre-
dicted by the degenerate perturbation method (DPM)
and the one obtained numerically near the linear limit is
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FIG. 4: (Color online) Comparison near the linear limit of
the spectrum of the degenerate perturbation method and the
numerical result of the effectively 1D method involving the
spherical harmonic decomposition. Thick blue (dark) and or-
ange (light) lines depict the imaginary and real parts of the
numerical eigenvalues while the thinner cyan and green lines
(straight grey lines) depict the theoretical results of the degen-
erate perturbation method. The eigenvalue depicted in green
(decreasing thin grey line starting at A = 1 and crossing zero
around g = 5.25) is the one responsible for the destabiliza-
tion of the DSS. The large red dots correspond to the two
frequencies extracted from the oscillations of the perturbed
DSS depicted in Fig. 5. The smaller frequency corresponds
to the oscillatory mode of the DSS while the larger one cor-
responds to the breathing mode of the background density.

shown in Fig. 4. As the figure shows, the DPM captures
the behavior of the spectrum close to the linear limit. Let
us now confirm the stability of the DSS in this limit. We
have performed a direct numerical integration of the full
3D dynamics of the DSS for 1 = 4.5, where it is predicted
to be stable —cf. Figs. 3 and 4. This evolution is depicted
in the top set of panels of Fig. 5. Also, in this figure,
we depict the stable oscillations of a perturbed DSS by
displacing its initial location away from the equilibrium
radius. The evolution for such a DSS performing oscilla-
tions is displayed in the second set of panels in Fig. 5. A
movie for this evolution is provided in the supplemental
material. To more clearly visualize these oscillations, we
depict on the third panel of Fig. 5 the transverse den-
sity cuts at four different stages over half a period of
the oscillation. These density cuts also reveal the exci-
tation of the background cloud which performs breath-
ing oscillations. From the density cuts we extracted the
(radial) location of the DSS along the evolution which
displays a beating-type quasiperiodic oscillation as de-
picted by the blue dots in the bottom panel of Fig. 5.
In fact, by (least-square) fitting a linear combination of
two harmonic oscillations (see red line) we extract the
frequencies wy ~ 1.7581 and wy = 2.0671. Upon closer
inspection, these frequencies correspond, respectively, to
the frequency of the DSS oscillations and the frequency
of the breathing mode of the background cloud. These
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FIG. 5: (Color online) Top set of panels: 2D density cuts
(z = 0) from the full 3D numerical solution for p = 4.5.
The initial condition corresponds to the stationary DSS at its
equilibrium radius. Second set of panels: Evolution of a DSS
shifted from its equilibrium position undergoing oscillatory
motion over one oscillation period T'. The white dashed cir-
cle denotes the starting location of the DSS at the beginning
of the period. Third panel: Radial profiles for the oscillat-
ing DSS over half a period. Bottom panel: Oscillations of
the DSS radius vs. time. Blue dots represent the radius ex-
tracted from full 3D numerics while the solid red line is the
best (least-square) fit to a linear combination of oscillations
with frequencies w; &~ 1.7581 and ws = 2.0671 (see [red] dots
in Fig. 4) corresponding, respectively, to the frequencies of the
DSS oscillations and the breathing mode of the background
cloud. For a movie depicting the stable oscillations of the DSS
please see the supplemental material.

frequencies are also depicted in Fig. 4 clearly showing
that they indeed belong to the stability spectrum of the
stationary DSS state. It is important to stress that the
observed DSS oscillations are supported by the stability
of the DSS at its equilibrium position. Therefore, despite
strong perturbations of the background that undergoes



breathing oscillations, the DSS robustly persists and per-
forms stable oscillations about its equilibrium position.

As the spectrum indicates, see Figs. 3 and 4, for larger
values of the chemical potential the DSS becomes unsta-
ble. To identify this instability, we have looked at the
eigenvectors of the DPM. There are high degeneracies in
the eigenvalues in this case, rendering harder the iden-
tification of the nature of the instability. Nevertheless,
the DPM is still helpful in that regard. For instance,
we know from the eigenvectors that the mode with the
largest slope decreasing at Im(\) = 1, which causes in-
stabilities, is a linear combination of “up” states, and the
“down” states are not involved. Therefore, the instability
is due to a bifurcation rather than a collision with “neg-
ative” energy modes; the latter may lead to oscillatory
instabilities, as discussed, e.g., in Ref. [39]. The former
may be associated with symmetry breaking features and
exhibits the instability via real eigenvalue pairs. Direct
numerical integration of Eq. (1) for chemical potentials
©="5.8,8.2 and 10.6, shows that the first instability is a
bifurcation of a six vortex lines (VL6) cage, while the rest
of the instabilities are dominated by a cubic six vortex
rings (VR6) cage. The first instability suggests a bifurca-
tion of VL6 from the interactions of the DSS and a dark
soliton state with three plane nodes perpendicular to the
(z,y)-plane, separated by angles of 7/3; the dark soliton
state (DS3) can be written as

2
|¢DSm>linear X pm Cos(m¢)e_wr /27 (18)

with m = 3 and a linear eigenenergy (m + 3)w. A
two-mode analysis [39, 43] using this state and the DSS
state yields a prediction of the bifurcation as occurring
at pe = 4.78, which is in good agreement with the nu-
merical result . = 4.85+0.01 of Fig. 3. A similar treat-
ment of the VR6 cage turns out to be more challenging
due to the difficulty in designing the corresponding dark
soliton state. Instead, we have looked at the DS4 state,
which can form an eight vortex line (VL8) cage. The two-
mode analysis then predicts a bifurcation at p. = 5.97,
which is in fair agreement with the second instability
at pe = 6.25 £ 0.01 from Fig. 3. The numerical inte-
gration results, however, show that the DSS destabilizes
towards a transient VR6 cage, and not a VL8 cage. Pre-
sumably the VL8 cage can also cause instabilities of the
DSS but is less robust than the VR6 cage, possibly due
to the intersections of the vortex lines, which are absent
in VR6. Further analysis with higher values of m (not
shown here) also suggests the progressively lesser rele-
vance of the DSm state in causing instabilities. On the
other hand, the VR6 state seems to be very robust and
dominates some of the transient instability dynamics in
a wide range of chemical potentials from the onset of this
instability around g = 6.2. These transient VL6 and VR6
cages are shown in Fig. 6. It should be noted that these
cages are transient states as the dynamics in the long run
is dominated by complex dynamics of vortex rings and
vortex lines undergoing multiple reconnections.

Finally, we present the numerical results for the equi-
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FIG. 6: (Color online) The VL6 cage (a) and the VR6 cage
(b) that transiently emerge as a result of the instability of
the DSS state. The states are captured from the numerical
integration of the GPE (1) dynamics at ¢t = 18 and t = 7 for
pn = 5.8 and 8.2, respectively. In particular, the VR6 cage
seems to be robust and appears in the dynamics for a wide
range of chemical potentials from the onset of the instability
around p = 6.2.

librium location r. of the DSS as a function of the chem-
ical potential p and compare the results with those of
the two particle pictures in the large density limit (see
Sec. ITI). A plot of rcw/ /1t as a function of y is depicted
in Fig. 7. Note that the first particle picture predicts a
slightly larger equilibrium r., while the particle picture
based on energy conservation of the DSS as an adiabatic
invariant agrees very well with the numerical results. It is
interesting to note that the asymptotic behavior only sets
in at about p = 30, deep inside the TF regime. Although
this would be a rather computationally demanding para-
metric range when using 3D (or even 2D) methods, our
effective 1D approach based on a spherical harmonic de-
composition of the angular dependencies, allows us to
reach such large values of p.

V. CONCLUSIONS AND FUTURE
CHALLENGES

In this work, we have revisited the theme of spher-
ical shell dark solitons. We have employed analytical
methods to study these structures both in the vicinity
of the linear limit, using a bifurcation analysis, and in
the Thomas-Fermi limit, where they can be treated as
effective particles. For the numerical simulations, we
have used continuation methods, as well as a quasi-one-
dimensional radial computation method, decomposing
the angular dependence of the perturbations in spherical
harmonics, to determine their stability. We have found
that spherical shell dark solitons can, in fact, be dynam-
ically robust, spectrally stable solutions of the 3D Gross-
Pitaevskii equation within a certain interval of chemical
potentials (and atom numbers); this occurs sufficiently
close to the linear limit of relatively small chemical po-
tentials. Their instabilities, emerging when the chemical
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FIG. 7: (Color online) The equilibrium radius of the spherical
shell dark soliton, scaled by \/i/w, as a function of p (solid
red line). Note that the numerical values reach the asymptotic
value of 1/4/5 (dashed black line), as per the second particle
picture, when p is large. The first particle picture slightly
overestimates 7. (dash-dotted blue line).

potential increases, have been elucidated and their dy-
namical outcome, namely the breakup into vortex ring
and vortex line cages, has been showcased. We believe
that these results, may not only be used to partially ex-
plain the transient observation of these structures in ear-
lier experiments [32] and numerical simulations [33], but
may also pave the way for their consideration in future
experiments.

Our work suggests a number of interesting future re-
search directions, concerning, in particular, related co-
herent structures, their physical relevance and proper-
ties. For instance, this study suggests large scale sta-
bility computations for a wide range of pertinent steady
states with radial symmetry, including ones with different
numbers of radial nodes as well as a number of different
external potentials. Furthermore, it would be relevant
to generalize and apply the numerical (and analytical)
techniques used herein to multicomponent BEC settings.
For example, one can study “symbiotic states” composed
of spherical shell dark-bright solitons, in the spirit of the
dark-bright 2D rings of Ref. [45]. On the other hand,
states emerging robustly from the instabilities of these
spherically (or cylindrically) symmetric ones, such as the
vortex ring (and line) cages are worthwhile to investigate
further in their own right. Efforts along these directions
are currently in progress and will be presented in future
publications.
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APPENDIX: 2D DECOMPOSITION USING
CYLINDRICAL COORDINATES

The greatest advantage of the 1D method involving the
decomposition into spherical harmonics is that one can
compute the spectrum for large chemical potentials with-
out excessive computational costs. The reason that typ-
ical computations for large chemical potentials become
computationally prohibitive, is that in this limit the den-
sity is large and, thus, the width of the relevant localized
structures (proportional to 1/,/x) becomes much smaller
than the domain size (proportional to /t); hence, a large
number of mesh points is necessary to resolve properly
these configurations. Nonetheless, it is worth mention-
ing that, for the projection method in 1D, the form of
states that one can study is also restricted by the spher-
ical symmetry; therefore, it is also relevant to employ an
analog of this method in 2D, so as to encompass a wider
class of states. An example concerns states with a topo-
logical charge S along the z axis, i.e., stationary states
of the form 1) = 1 e*5?. Note that in this framework,
one can study states including —but not limited to— the
ground-state, planar, ring, or spherical shell dark soliton
states, vortex lines, as well as coplanar or parallel vortex
rings and hopfions [44], in both isotropic and anisotropic
traps.

In 2D, and for cylindrical coordinates (p,¢,z), the
Laplacian is decomposed as follows:

A
vei=auf+ S5, (19)
where its components read:
10 af 0 f
Apf = 5 0p <Pa—p>+@a (20)
0% f

The A operator has eigenstates {e™™?} with eigenvalues

—m?, i.e.,

Age'™? = —m2e™m?, (22)

A stationary state 1g(p, z), defined in the domain p €
[0,00) x z € R, and bearing a topological charge S, sat-
isfies the following equation:

2
—%AH%-FQS?%-FV(P,Z)¢0+|¢0|2¢0—M¢0 =0, (23)



As in the 1D case, we construct the linear stability
problem as follows. Let 1y a rotationally symmetric sta-
tionary state, up to a topological charge S, along the z
axis perturbed using the complete basis of {e™?}:

w _ eiqu

Substituting this expansion into the GPE of Eq. (1), and
upon linearizing and matching the basis expansion on
both sides, one can see that the different m modes are
mutually independent. An equivalent derivation as in 1D
shows that \ are the eigenvalues of the matrix

M= My Mis ,
Moy Moo

where
m 2
M = =i (=38u + 20 4V 2ul? - )
My = —id,
May = g2,

Go+ Y [am(p, 2, t)e™? + b7, (p, 2, t)eim‘ﬁ]} :

As before, one can therefore compute the full spectrum
by computing each mode m independently and then
putting them together. In the results based on this
method and presented in Sec. IV, weusem =0,1,2, ..., 5.
It is worth commenting here that the matrix for the 2D
eigenvalue problem with a charge S is less symmetric
than matrices corresponding to the 1D projection and
the 2D case with no charge. Therefore, the full 2D prob-
lem with charge appears to demand more computational
work. However, it should be noted that, in the 2D case,
the eigenvalues of the full matrix M corresponding to the
projections over the +m and —m modes are related via
an orthogonal transformation and, thus, the two set of
eigenvalues are complex conjugates of each other. There-
fore, it is only necessary to compute the non-negative m
set and, hence, the charged and the uncharged states ac-
tually have similar computational complexity.

2
My =i (—%AH + (m{pf) TV 2ol — u) ;
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