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We calculated the motion of one or two excitons through a small grid of Rydberg atoms. Both
one- and two-dimensional grids were studied with the number of sites in a direction between 4 and
10. To mimic the possibility of non-perfect filling, calculations were performed with atoms randomly
missing from sites. Results are presented for four qualitatively different situations. 1) The corners
and edges, with the randomness of non-perfect filling, strongly affects the exciton motion and can
pin the exciton. 2) For the case where a single exciton is simultaneously generated at two sites, the
direction the exciton moves can be controlled by imprinting a phase difference on the two adjacent
sites. 3) For the case where two excitons are generated at adjacent sites, calculations where a pair of
excitons move through the grid are compared to the one exciton case to see whether exciton-exciton
correlations are measurable. 4) The grid version of an exciton current can be defined by analogy to
a continuity equation in one dimension and using the analogy to a velocity operator in one, two or
three dimensions; for one dimension, the two definitions give similar results which means the direct
measurement of the current in one dimension is possible.

PACS numbers: 32.80.Ee, 34.20.Cf, 37.10.Jk

I. INTRODUCTION

The transport of particles or energy or charge or spin,
etc through a system has been of fundamental interest
in science from the earliest investigations through today.
Transport necessarily involves the coupling between spa-
tially separated regions of the system and the specific
behavior of the transport is determined by the coupling.
In this paper, we investigate the motion of an excitation
(exciton) through a small grid of Rydberg atoms where
the coupling is due to the 1/R3, dipole-dipole interaction
between states on atoms separated by a distance R. Un-
like our recent study[1] where we focused on randomness
in systems of several 10’s of thousands of atoms, we will
investigate how an exciton moves through a small grid
of Rydberg atoms, often less than 10 atoms total. For
an experimental realization, the only condition necessary
is for one (or a couple) atoms being in a Rydberg state
with angular momentum ℓ and the others being in a state
with angular momentum differing by one, i.e. ℓ± 1. We
will treat the case where one (or a couple) atoms are
in a Rydberg p-state and all of the others are in a Ry-
dberg s-state. The dipole-dipole interaction allows the
p-character to hop from atom-to-atom.
The idea of Rydberg excitations hopping through a

(nearly) frozen gas of atoms goes back to the original
experiments on Rydberg gases[2, 3] where a dense gas
of Rydberg atoms led to some states changing charac-
ter. After changing character, the excitations could hop
through the “sea” of excited states. Since the Rydberg
states were generated from a gas of randomly placed
atoms, the character of the exciton hopping was strongly
affected by the random coupling between atoms. How an
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exciton hops through a completely random Rydberg gas
was investigated in Refs. [4, 5] with Ref. [5] showing the
exciton is typically trapped to a region of 2 or 3 atoms in
a random gas which is consistent with the measurements
in Ref. [6].

The interaction of a pair of atoms through the near
field form of the dipole-dipole interaction decreases with
distance like 1/R3. The near field form of the dipole-
dipole interaction is appropriate because the energy dif-
ference between pairs of Rydberg states with principal
quantum number n correspond to frequencies of order
ω ∼ 1/n3; the wavelength of the light associated with this
frequency is typically many orders of magnitude larger
than the separation of the atoms and/or the total size
of the system. The appropriateness of this approxima-
tion has been checked experimentally and can lead to
different physical processes. For example, the dipole-
dipole interaction can lead to the suppression of exci-
tation in a gas and Ref. [7] observed the case where one
atom prevented the excitation of more than 1000 atoms.
References [8, 9] observed this suppression between two
individual atoms. The coherence of the dipole-dipole
coupling between a pair of Rydberg atoms was investi-
gated in Ref. [10]. Reference [11] provided spectroscopic
evidence for the dipole-dipole interaction between cold
Rydberg atoms. As a final example of basic phenom-
ena, Ref. [12] gave experimental and theoretical evidence
for spatially resolved observation of the effect of dipole-
dipole interaction between Rydberg states and Ref. [13]
measured the energy exchange between spatially sepa-
rated Rydberg atoms.

All of the calculations in this paper has as the start-
ing point a regular array of Rydberg atoms with a cer-
tain fraction of atoms randomly missing from sites. The
exciton(s) will start at certain sites and the time evo-
lution of the wave function will be coherent. We will
not address how realistic this situation is but note that
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the necessary technology appears to be available. Refer-
ence [14] describes trapped Rydberg atoms in an optical
lattice. Another method for creating a Rydberg array
could start with atoms trapped in an optical lattice with
a subsequent excitation to a Rydberg state. The calcula-
tions of Ref. [15] gave an optimal choice in laser parame-
ters that could lead to Rydberg atoms being in a regular
spatial array even though the unexcited atoms are ran-
domly distributed. On a similar note, Ref. [16] used polar
molecules confined in an optical lattice to investigate the
time evolution of coherently excited dipoles.

We only treat the case of one (or a couple) exciton(s)
moving through a lattice. There have been several stud-
ies of the many exciton case for Rydberg gases (e.g. see
Refs. [17–22]), but the behavior of many excitons is be-
yond the scope of this paper. There have been several
studies of exciton transport similar in spirit to the calcu-
lations presented here. Reference [23] considers an inter-
esting case of using Rydberg dressing to effect transport
of a more compact state. A similar system was stud-
ied in Ref. [24] but dissipation was introduced through
coupling to states with short lifetimes. Reference [25]
experimentally imaged the dipole-dipole mediated trans-
port of excitations between Rydberg atoms. The man-
ifestation of excitation transport in the energy spectra
of atoms interacting through the dipole-dipole term was
numerically studied in Ref. [26]. We investigate the case
of having the atoms placed on a lattice of sites with a
specified amount of randomness in the fraction of sites
with missing atoms. Within investigations using Ryd-
berg atoms, Refs. [27, 28] have addressed randomness
within a lattice of atoms, up to 6 sites in Ref. [27] and 2
sites in Ref. [28]. Also, Refs. [4, 5] investigated how an
exciton hops through a completely random Rydberg gas.
Lastly, Refs. [29, 30] treated the case of exciton motion
with “heavy-tailed disorder” in the diagonal elements of
the Hamiltonian.

We perform calculations for the coherent transport of
excitons through a lattice of Rydberg atoms. The ex-
citon(s) start at specific sites and the wave function is
propagated using a Schrödinger equation in an effective-
state basis set. Thus, the calculations should capture
all of the interference effects that can lead to Anderson
localization and represent a special case of interacting
particles in a random potential.[31] Conversely, because
we do not include any types of dissipation, the percola-
tion or diffusive transport is not represented. All of the
calculations are presented for perfect lattices, for lattices
with 20% of the atoms randomly missing, and for lattices
with 50% of the atoms randomly missing; while the miss-
ing atoms lead to a decrease in the average strength of the
interaction, our results are not consistent with this being
a dominant effect. The atoms are assumed to be frozen
in space for the short time represented by the calcula-
tions. We focus on cases where there are relatively few
atoms so that the effects of edges and/or corners become
important. For example, Ref. [1] found that randomness
in large two dimensional arrays with wrapped boundary

conditions did not lead to a large number of highly lo-
calized states. The results presented below show that an
edge or corner in addition to the randomness will often
lead to strongly localized states. Also, interesting inter-
ference patterns emerge during the exciton motion due to
reflection from edges and corners. We also present calcu-
lations for the case where the motion of a single exciton
can be guided if it can be split between adjacent sites
with one site imprinted with a phase. For the type of
exciton studied here, the motion is directed opposite to
the phase increase (negative group velocity) as expected
from the bands reported in Ref. [27]. In addition, we give
two definitions of the exciton current (one which can be
used only from experimental observables and one which
requires the exciton wave function) and compare them
for a simple line of atoms. Finally, we present results
for two coherent excitons and show that the restrictions
on the exciton wave function leads to correlation even
though there is no interaction between pairs of excitons.
Atomic units are used unless explicit SI units are given.

II. COMPUTATIONAL METHOD

For the calculations in this paper, we treat the case
where one or two atoms have p-state character and the
rest have s-state character. The dipole-dipole interac-
tion is largest if the s- and p-states have similar principal
quantum number. For the cases treated in this paper, we
chose the 30s and 30p states of Rb. The specific choice of
angular momentum, n, and atom will affect the details of
the exciton hopping but does not change the qualitative
features.
The computational techniques are the same as in the

part of Ref. [1] regarding the time dependent calcula-
tions; these are Figs. 1, 3, 5, and 7 of Ref. [1]. The
exciton(s) is(are) treated as a coherent quantum system.
The atoms are assumed to be fixed in space over the rel-
evant time scales and, thus, the character of the different
atoms evolves through a quantum wave function

i∂Ψ/∂t = HΨ (1)

where the Ψ contains the amplitudes for the different
combination of states of each atom. We numerically solve
this equation using the leapfrog algorithm:

Ψ(t+ δt) = Ψ(t− δt)− 2iδtHΨ(t) (2)

which has a one time step error of order δt3. The leapfrog
algorithm has two nice features when H is time indepen-
dent: it exactly conserves the norm of Ψ and exactly
conserves < Hn > with n an integer.
The special case discussed here (p-state coherent mo-

tion through a sea of s-states) is treated as Eq. (6) in
Ref. [27]. For one exciton, the basis states can be labeled
as |i,m〉 meaning the p-state is at site i with angular mo-
mentum projection m. In this special case, the non-zero
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matrix elements reduce to

Vim,i′m′ = −
√

8π

3

(dna1,nb0)
2

R3

×(−1)m
′

(

1 1 2
m −m′ m′ −m

)

Y2,m′−m(R̂) (3)

where the dna1,nb0 is the reduced matrix element between
the p-state with principal quantum number na and the
s-state with principal quantum number nb, (...) is the

usual 3-j coefficient and ~R = ~ri − ~ri′ is the displacement
vector between sites i and i′. For two excitons, the basis
states can be labeled as |i1,m1; i2,m2〉 with i2 > i1.
For the general case, the non-zero matrix elements are

complex. In order to treat the largest number of atoms,
we further restricted the p-state to have m = 0. This
can be accomplished experimentally by having an exter-
nal field so that the m = 0, 1,−1 states are sufficiently
separated in energy so that the motion does not mix m.
Now the basis state can be designated solely by the site
i and the non-zero matrix elements reduce to

Hii′ = Vii′ = −2

3
P2(cos θii′)

(dna1,nb0)
2

R3
(4)

where P2(x) = (3x2− 1)/2 is a Legendre polynomial and
cos θii′ = (zi − zi′)/R. This expression is only for i 6= i′;
when i = i′, the matrix element is 0: Hii = 0. For the
two exciton case, the nonzero matrix elements reduce to

Hi1i2,i
′

1
i′
2
=

2
∑

a=1

2
∑

b=1

Hia,i
′

b
δi3−a,i

′

3−b
(5)

where the one exciton operator is from Eq. (4). If there
are N atoms, there are N one-exciton states and N(N −
1)/2 two-exciton states.
For atoms in a two-dimensional grid, the number of

atoms scales as N = N2
1 with N1 the number of sites in

one direction; the number of two exciton states for a two-
dimensional grid is N(N − 1)/2 ≃ N4

1 /2. The number of
operations in one time step of Eq. (2) is from a matrix-
vector multiply, HΨ, and is proportional to the square
of the number of states. Thus, the number of operations
involved in one time step for the two exciton problem
in two dimensions scales like N8

1 . Thus, the two exciton
calculations can transition from computationally easy to
“impossibly” long over a small range of N1.
For the calculations with non-perfect filling, the results

were obtained by averaging over many different random
configurations. Each configuration was constructed by
using a random number generator to randomly decide
whether or not a site was occupied by a Rydberg atom.
Thus, the number of atoms in any run fluctuated with
each configuration. If there was no atom at the initial
site of an exciton, then that configuration was not used.
If there was an atom at the initial site of every exciton,
then the Eq. (2) was solved and the probability for an
exciton to be at each site was stored and averaged over
many configurations. This mimics the way an experiment
would work if performed with destructive measurement
of the exciton position.

FIG. 1. The average number of sites for the p-state to have
moved in the x-direction when the exciton starts at the lower
left corner of a 2-dimensional array (blue) or at the center of
the left edge of the array (red). The array has 7× 7 possible
sites. For the corner initial position, the solid line is for 0%
missing atoms, the dotted line is for 20% missing atoms, and
the short dashed line is for 50% missing atoms. For the “cen-
ter of left edge” initial position, the dash-dot line is for 0%
missing atoms, the dash-dot-dot-dot line is for 20% missing,
and the long dash line is for 50% missing.

III. RESULTS

In all of our calculations, we use the 30s and 30p
states of Rb as our ‘sea’ and ‘excitation’ states respec-
tively. The size of these states is less than 0.1 µm. The
standard step distance between atoms will be 10 µm.
Thus, the interactions higher order than dipole-dipole
are negligible. These states have dipole matrix element
d30s,30p = 846 a.u.; this value was obtained using the nu-
merical method described in Ref. [32] but based on the
updated quantum defects in Ref. [33]. For the one- and
two-dimensional calculations, the atoms will be confined
in the xy-plane which means there is no angular depen-
dence to the matrix elements coupling different states.

A useful quantity is the energy scale of the matrix
element between nearest neighbors: Esc ∼ d2/R3 =
1.06 × 10−10 a.u. We can convert this to a time scale
by tsc = 2π/Esc = 5.93 × 1010 a.u. which is 1.43 µs.
This gives a sense of the time scale needed for the p-state
character to move from site to site. The Hamiltonian can
be scaled in terms of d2/R3 which means our results can
be scaled in a similar way. For example, the time scale
is decreased by a factor of 4 if the dipole matrix element
is a factor of 2 larger; the time scale is decreased by a
factor of 8 if the separation between atoms is a factor of
2 smaller.
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A. One exciton starting at a corner or edge

In this section, we present the results of calculations
where the wave function has a single exciton that initially
at a corner or an edge position. For all of the calculations,
we are showing the results for a 7 × 7 array of atoms
although the 5×5 and 9×9 arrays showed similar results.
Figure 1 shows the average distance the exciton has

hopped in the x-direction divided by the distance be-
tween adjacent sites. Results are shown when the exciton
starts at the lower left corner of the array and for when it
starts at the center of the left edge of the array. The ordi-
nate of Fig. 1 can be thought of as the average number of
sites the exciton has moved in the x-direction. By sym-
metry, the average distance hopped in the y-direction will
be the same as the x-direction for a corner start. For the
center edge initial position, the average distance hopped
in the y-direction is 0 by symmetry.
Some of the general features should be expected. For

example, as the fraction of missing atoms increase, the
distance the exciton hops at early times decreases. This
arises because missing sites means the exciton must hop
further to reach the next atom. However, the decrease is
not simply due the decrease in the interaction strength
but is more due to a missing site blocking the motion of
the exciton. If ∆x is divided by the fraction of missing
sites, then all of the curves are approximately the same
for times less then ≃ 1 µs. This scaling would not
result if the time was scaled by the average decrease in
coupling, d2/R3, but does result if the early time motion
to the next site is blocked a fraction of the time. Also,
it might be expected that a perfect array will lead to the
exciton hopping quickly to the other side of the array
with something like ballistic transport but with substan-
tial spreading due to the highly localized initial state;
thus, the solid and the dash-dot lines show an early time
peak of ∼ 4 sites.
Perhaps surprisingly, the early time behavior (t <

1.5 µs) of the exciton does not show a strong effect on
whether the exciton starts in a corner or at an edge. The
early time increase in ∆x is very similar even though the
corner start is effectively missing atoms below it. This re-
sult is due to the fact that the early time behavior of ∆x
is only determined by the presence or absence of atoms
immediately to the right of the starting position. For the
exciton to hop up or down and then right (which is avail-
able for an edge start but not down for a corner start)
requires a longer time and shows up later in the graph.
For the case with missing atoms, the long time be-

havior of the hopping seems to lead to a finite size ∆x
noticeably less than the average for the array which is 3.
As the randomness increases from 20% to 50%, it is not
surprising that the average hopping distance decreases.
However, it is somewhat surprising that the hopping dis-
tance is so small. From Ref. [1], it seems that there is
not a large amount of localization in 2-dimensions (for
example, see Figs. 5 and 6 of Ref. [1]) even for a large
amount of randomness. This was explained as being due

FIG. 2. Same arrangement as Fig. 1 for 50% filling. The
probability for the exciton to be in the column with site x
at different times: solid (1 µs), dotted (2 µs), dashed (3 µs),
dot-dash (4 µs), and dash-dot-dot-dot (10 µs). x = 1 is the
leftmost edge of the array and 7 is the rightmost edge. At
t = 0, the exciton is in the lower left corner of the array.

to the many paths an exciton can take through a 2D lat-
tice even when many sites are missing atoms. However,
Fig. 1 for 50% missing has an average hopping distance
of ∼ 1.5 sites at late times which indicates most excitons
are pinned within 1 or 2 sites of the edge. The small hop-
ping distance in Fig. 1 is due to the additional “defect”
from the edge of the lattice itself which helps to pin the
exciton compared to the calculations of Ref. [1] where
there were no edges. Finally, it is not surprising that the
late time value of ∆x does not depend on the starting
position since the exciton will move in y as well so that
the initial y-position won’t be so important.

Figure 2 shows the probability the exciton is in the
column with site x at different times when the exciton
starts in the lower left corner of the array. As above,
these results are for a 7× 7 array but similar size arrays
give a similar result. The results in this figure correspond
to 50% filling of the sites. At t = 0, the probability to
have x = 1 is 1. Even before the scale time of tsc ∼ 1.4 µs
is reached, the exciton has substantial population in the
columns 2 and 3 at 1 µs. By 2 µs, the population in each
column has nearly reached the late time value with the
main exception being the furthest: columns 5-7. Note
that even at the latest time there is only a population
of ≃ 1/20 in column 7 compared to a roughly statisti-
cal value of ≃ 1/7 for the case with no missing atoms.
This figure shows that an experiment would not need
substantial delays to obtain the late time distribution of
an exciton if there is a large fraction of missing atoms.
It also shows that the exciton is somewhat pinned to the
left edge of the array with ∼ 3/4 of the population in
columns 1-3.

Figure 3 shows the 2D probability for the exciton to be
at different positions after 2 µs when starting at the mid-
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FIG. 3. Same arrangement as Fig. 1. The probability (with
arbitrary normalization) for the exciton to be at different sites
at t = 2 µs for (a) 0% missing, (b) 20% missing, and (c) 50%
missing. The different shades represent a linear decrease in
probability. The initial position of the exciton is at the middle
of the left edge: x = 1,y = 4. The legend in (c) is for all
figures.

FIG. 4. Similar to the Fig. 1 but with different array size and
initial conditions. The change in the average x for an exciton
coherently excited at neighboring sites for a 6× 6 array with
0% missing. The two sites (x, y) = (3, 3) and (4, 3) are equally
excited with the latter site having phase φ relative to the first.
The solid line is for φ = π/8, the dotted lie is for φ = −π/8,
the short dashed line is for φ = π/4, and the dash-dot line is
for φ = π/2.

dle of the left edge. The different filling probabilities are
(a) 0% missing, (b) 20% missing, and (c) 50% missing.
From Fig. 3(c), it is clear that the exciton does not move
far during this time when 50% of the sites are missing;
even in Fig. 3(b), there is a substantial population still
at the initial site while there is very little remaining at
the initial site for perfect filling. This is another indica-
tion that the edge plus randomness can pin the exciton.
The Figs. 3(b,c) show an interesting feature: the highest
probability is for the exciton to be either above or below
the initial position. For the 0% missing case, the highest
probability is at the upper and lower edges of the array.
For the 20% missing case, the highest probability is for
the exciton to remain in place. However, the next high-
est probabilities are at the (x, y) = (2, 4 ± 2) sites (i.e.
shifted to the right by one site and up or down by two
sites).

B. One exciton: coherent superposition of two sites

In Ref. [27], there was discussion of the band structure
of an exciton that hops by using the dipole-dipole inter-
action (see Figs. 2, 3, and 4 for 1-, 2-, and 3-dimensional
arrays). Although the bands are an infinite, perfect lat-
tice property, there are features of the bands that are
manifest in finite, imperfect arrays. One of the simplest
properties is the transport of an exciton when adjacent
sites are given different phases.
We performed calculations for one exciton with an ini-

tial wave function that was the coherent superposition
of two sites. One can choose the sites to mimic various
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directions in ~k. As an illustration, we chose to have ~k to
be in the x-direction. The wave function at t = 0 had the
form Ψ(0) = (|ix, iy > +exp(iφ)|ix + 1, iy >)/

√
2 where

|ix, iy > indicates the exciton is at the site (ix, iy). For
small positive φ, the wave function mostly projects onto
states with positive kx. As φ increases, the average kx
also increases.
Figure 4 shows results for a perfect 6 × 6 lattice

where the exciton is started with the mixture (|3, 3 >

+exp(iφ)|4, 3 >)/
√
2. The plot shows how far the ex-

citon moves from its initial expectation value of < x >
(0) = 3.5 in units of sites. The different curves corre-
spond to different values for φ. There is only one curve
for negative φ because the ∆x changes sign if φ changes
sign for the symmetric starting condition in this figure.
The initial change in position with respect to time is

positive for negative values of φ (and, hence, negative kx)
and is negative for positive values of φ. This may be the
opposite of what a casual reader expects but it agrees
with the results plotted in Fig. 3 of Ref. [27]. The case
where the p-orbital is oriented out of plane corresponds
to the band that starts at ǫ ≃ 1 at k = 0 and decreases
from that value. A band with a decreasing ǫ versus k
corresponds to a negative group velocity. At later times
(starting ∼ 1 µs), the exciton reflects off of the lattice
edge and starts to move in the opposite direction.
Although the results are not presented in this pa-

per, we also performed calculations for randomly missing
sites. The results are similar to those presented in previ-
ous sections. The results for 20% missing have the same
generic behavior as in Fig. 4 but the average ∆x does
not increase or decrease as rapidly as the perfect lattice
case; also, the largest change in position is not as big as
for the perfect lattice. The results for 50% missing have
even smaller contrast to the 20% missing case.
The results of Fig. 4 show that there can be consider-

able control over the exciton motion even starting with
only a two site coherence. If there were different angu-
lar momenta and/or polarization of the exciton, the band
character can substantially change. Thus, measuring how
the exciton moves when started with two site coherence,
even in a small grid of Rydberg atoms, will give insight
into the exciton band(s).

C. Definition of probability current

The probability current ~J is defined as ~J =

(~/[2Mi])[Ψ∗~∇Ψ−Ψ~∇Ψ∗] for a particle moving through
space. This definition is derived from the Schrödinger
equation in in nearly all text books on quantum mechan-
ics (e.g. problem 1.14 of Ref. [34]). This definition is
not applicable to the exciton hopping through a lattice
due to the discreteness of the exciton position. However,
the instantaneous current density could be an interesting
quantity for the hopping exciton because it gives insight
into the motion at a particular time: a given density at
time t, ρ = Ψ∗Ψ, does not determine J . For example,

FIG. 5. The current density defined in Eq. (9) for a line of 6
atoms at three different times. For the definition of Eq. (8),
the current is only defined at the sites; the line is to guide the
eye. The dash-dot line (triangles) is the case of 0% missing
atoms. For the definition of Eq. (9), the current is only defined
on the 1/2 integer points; the lines are to guide the eye. The
exciton is started at the first x-site. The case of 0% missing
is the solid line (plus), the 20% missing is the dotted line (X),
and the 50% missing is the dashed line (diamond). All curves
have been scaled by the same factor.

Ψ ∝ exp(ikx − αx2) gives the same ρ independent of k

while ~J is proportional to k. Although this definition
of probability current can not be applied for the exciton
hopping through the finite lattices, the current density
can be generalized using a velocity operator defined as

~v ≡ −i(~rH −H~r). (6)

For the exciton Hamiltonian of Eq. (4), the x-component
of the velocity operator is

(vx)jj′ = −i(xj − xj′ )Hjj′ (7)

and the x-component of the current density can be de-
fined as

(Jx)j = ℜ[ψ∗

j

∑

j′

vjj′ψj′ ] (8)

where j is the index that specifies the lattice site of the
exciton. This definition presumes the knowledge of the
wavefunction at all sites and can only be extracted from
calculations.
For the one dimensional case, it is possible to define a

current density that only uses the time derivative of the
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probability for the exciton to be on each site. This defi-
nition is of interest because it can be implemented in an
experiment to show the flow of exciton probability. We
artificially expand the grid for the exciton to be extended
from the sites 1−N to the sites 0−(N+1) but the prob-
ability for the exciton to be at sites 0 or N+1 is always 0.
For the definition of the current density, we define the Jx
to be at the half integer grid 1/2, 3/2, ..., N + 1/2. Since
the exciton sites 0 and N+1 always has 0 probability, we
define the current density at the 1/2 and N + 1/2 sites
to be 0 because the population of exciton at sites 0 and
N + 1 do not change with time. For all other sites, we
define

dρ(ix, t)

dt
≡ −[Jx(ix + 1/2, t)− Jx(ix − 1/2, t)] (9)

where ρ(ix, t) = |Ψ(ix, t)|2 is the probability for the ex-
citon to be at site ix at time t. The right hand side is
a definition of how the current changes if the probability
is restricted to local hopping. This is not the case when
sites beyond nearest neighbor can contribute to the ex-
citon motion. However, this definition will allow for a
qualitative picture of the flow of the exciton through the
lattice.
The case of a line of 6 atoms is shown in Fig. 5 for dif-

ferent fraction of missing atoms. The exciton is started
at the first x-site. The two definitions, Eqs. (8) and (9),
give similar currents for the times shown even though
they are based on completely different definitions. Thus,
even though the definition in Eq. (9) is only qualita-
tively relevant, the resulting current densities give infor-
mation about how the exciton moves through the lattice
of atoms. The definition of J means the current at the
site 1/2 is exactly 0 at all times. Conservation of norm
means the current is also exactly 0 at all times for the
site N + 1/2.
There are qualitative features for this specific example

that highlights some of the physics processes. At 1 µs,
the largest current is for the case of 0% missing atoms
and is smallest for 50% missing atoms. This matches the
expectation that the exciton moves most easily through
a perfect lattice. For the 0% missing atoms, the exciton
moves to larger x for 1 and 2 µs and reflects off the lattice
edge and moves to smaller x for 3 µs. This is seen in the
current which is positive and moving to the right for 1
and 2 µs but is negative (indicating motion to the left)
and peaked near the end of the lattice at 3 µs. One
nontrivial feature is that the current for both the 20%
and 50% missing sites are noticeably negative at small x
for 2 µs. This feature is from the reflection of the exciton
off missing sites which gives left-moving population at
early times. This reflection from missing sites leads to
population reflecting from the left edge of the lattice at
3 µs which gives a noticeable positive current at small x
at that time.
The one dimensional current, Eq. (8), can be easily

generalized to 2- or 3-dimensions. However, there is not
enough information in dρ(ix, iy, t)/dt to constrain a defi-

FIG. 6. The expectation value of the separation of two exci-
tons in a one dimensional line of 7 atoms. The excitons start
in sites 1 and 2. The calculations for two exciton hopping are
for 0% missing atoms (solid line), 20% missing atoms (dotted
line), and 50% missing atoms (short dashed line). The calcu-
lations for two independent one exciton calculations are for
0% missing atoms (dash-dot line), 20% missing atoms (dot-
dot-dot-dash line), and 50% missing atoms (long dash lines).

nition of a vector current Jx(ix, iy, t) and Jy(ix, iy, t) sim-
ilar to Eq. (9) since there are 2(N − 1)N unknowns and
only N2 − 1 independent equations. However, integrals
along a line of atoms can give the total current in the x- or
the y-direction. For example, in Eq. (9), the density can
be generalized to ρ(ix, t) ≡ ∑

iy
ρ(ix, iy, t). This could

lead to some insight in how the exciton hops through
two dimensional arrays.

D. Two Coherent Excitons

Although two excitons do not directly interact with
each other, the restrictions on the wave function lead to
an effective interaction which can not be neglected when
there are two or more excitons hopping through the lat-
tice. This can be seen in the simplest case of two excitons.
The wave function can be expressed as the amplitude for
one exciton to be at site j1 and the other exciton to be at
site j2: ψj1,j2 . Since the exciton is simply the existence
of a p-state at a certain site, there can not be terms in
the wavefunction corresponding to j1 = j2. Also, j1, j2 is
indistinguishable from j2, j1. Thus, we artificially order
the sites and restrict j1 < j2. Thus, this system is similar
to a Hubbard model with infinite on site interaction or
a Tonks-Girardeau gas on a lattice. The main difference
is the long range nature of the hopping allows the exci-
ton combination to directly hop from j1 < j2 to j′1 > j2.
This calculation is a special case of two particles coher-
ently hopping in a random potential[31]; it may be worth
pursuing calculations of this system to much larger sizes
to understand the asymptotic localization properties.
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To have the strongest possible effect from two excitons,
higher density of exciton is important. Unfortunately,
this requirement is in conflict with having a reasonable
range of sites for the excitons to hop. In two dimensions,
even several atoms in each direction (e.g. 6× 6) will lead
to the excitons rarely finding each other. To increase the
effect of having a second exciton, we focus on the case of
one dimension and start the excitons in adjacent sites.

The results in Fig. 6 show how the separation of two
excitons behave in a one dimensional lattice. The expec-
tation value of the separation is calculated from

∆x =
∑

j1<j2

(j2 − j1)|ψj1j2 |2 (10)

where the calculations with missing atoms include a sub-
sequent averaging over the different configurations of
missing atoms. The situation for Fig. 6 starts the ex-
citons in sites 1 and 2 of the lattice. To contrast with
independent excitons, we performed calculations for two
different initial positions of the excitons using exactly
the same atomic arrangements as the two exciton calcu-
lations. For the uncorrelated excitons, we calculated the
expectation value of the separation from

∆x =
∑

j1,j2

|j2 − j1||ψ(1)
j1

|2|ψ(2)
j2

|2 (11)

where ψ(k) starts with the exciton initially at site k.

One clear difference between the calculations is the fact
that ∆x ≥ 1 for all times for the two exciton calculation
while ∆x can be less than one for the uncorrelated calcu-
lation. The reason is that the closest two excitons can be
in the correlated calculation is a 1 site separation which
means the expectation value will always be larger than
or equal to one. However, in the uncorrelated calcula-
tion, the probability the two excitons are on the same
site is not 0 and, in fact, all calculations lead to an initial
decrease in ∆x from 1 as both excitons spread into over-
lapping sites. Another important difference is that the
separation is larger for almost all times in the full cal-
culation compared to the uncorrelated calculation. This
means there is an effective repelling interaction between
the excitons at early times that leads to in increase in
separation. However, there are some similarities between
the correlated and uncorrelated calculations which indi-
cate that some aspects of the exciton hopping is included
in the uncorrelated calculation. For example, the case of

0% missing sites (solid line for correlated and dash-dot
line for uncorrelated) shows in initial rise through ∼ 2 µs,
followed by a decrease through ∼ 3.2 µs, with a subse-
quent increase through ∼ 5 µs.

IV. CONCLUSIONS

We have performed calculations for excitons coherently
hopping through small lattices. Unlike the results in
Ref. [1] which were for the largest computationally acces-
sible lattices, the small lattice leads to new effects arising
from the corners and edges of the lattice. For example,
it seems that a corner or an edge can lead to strongly
localized excitons when there are other randomly miss-
ing sites. Also, starting the excitons at particular spots
can lead to interesting patterns in the transport that
arises from reflections at edges and corners. For exam-
ple, starting the exciton at the center of an edge can lead
to population mostly localized at the sides of the lattice
at particular times. Also, imprinting a phase on an ex-
citon evenly divided between adjacent sites can lead to
directional motion even for small lattices. For the type
of exciton investigated here, the direction of motion is
opposite that of the phase increase, i.e. the exciton has
negative group velocity.
The exciton current density has not been previously

investigated for Rydberg gases. Calculations were per-
formed for two possible definitions of exciton current
density: one definition requires the wave function and
is, thus, only accessible to calculation while the other
definition could be used in an experiment. The two defi-
nitions provided similar results for the case of an exciton
hopping through a line of atoms.
Calculations were also performed for a two exciton sys-

tem and compared to that of two uncorrelated excitons
with the same initial conditions. For a line of atoms, the
exciton Hamiltonian is similar to a Hubbard model with
infinite on site interaction or a Tonks-Girardeau gas on
a lattice with important differences arising from the long
range nature of the exciton hopping. For the cases inves-
tigated, the two exciton calculation demonstrated both
striking differences and similarities to the uncorrelated
calculation. The two (or more) exciton case probably
deserves a more in depth treatment than given here.
We appreciate the suggestion by P. Giannakeas to in-

vestigate definitions of discretized current densities. This
material is based upon work supported by the National
Science Foundation under grant No. 1404419-PHY.
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